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Abstract In this paper, the dynamic instability of
thin laminated composite plates subjected to harmonic
in-plane loading is studied based on nonlinear anal-
ysis. The equations of motion of the plate are devel-
oped using von Karman-type of plate equation includ-
ing geometric nonlinearity. The nonlinear large deflec-
tion plate equations of motion are solved by using
Galerkin’s technique that leads to a system of nonlinear
Mathieu-Hill equations. Dynamically unstable regions,
and both stable- and unstable-solution amplitudes of
the steady-state vibrations are obtained by applying
the Bolotin’s method. The nonlinear dynamic stability
characteristics of both antisymmetric and symmetric
cross-ply laminates with different lamination schemes
are examined. A detailed parametric study is conducted
to examine and compare the effects of the orthotropy,
magnitude of both tensile and compressive longitudi-
nal loads, aspect ratios of the plate including length-
to-width and length-to-thickness ratios, and in-plane
transverse wave number on the parametric resonance
particularly the steady-state vibrations amplitude. The
present results show good agreement with that avail-
able in the literature.
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List of symbols

Ai j , Bi j , Di j Extensional, coupling,
bending stiffness

ε
(0)
xx , ε

(0)
yy , γ (0)

xy Membrane strains

ε
(1)
xx , ε

(1)
yy , γ (1)

xy Flexural (bending) strains
E1 , E2, G12 , υ12 , υ21 Engineering constants of

orthotropic composite ply
h Plate thickness
a Plate length
b Plate width
m Longitudinal half-wave

number
n In-plane transverse half-wave

number
λm mπ/a
λn nπb
Fxx (t) Pulsating longitudinal load
Fs Static component of Fxx (t)
Fd Harmonic component of Fxx

(t)
P Excitation frequency
p Nondimensionalized P
qmn Generalized coordinate
t Time
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u0 , v0 , w0 Orthogonal components of
mid-plane displacement
functions

(X,Y, Z) Plate coordinates
ρ Mass density
ρt Mass density per unit length
(Nxx , Nyy, Nxy) The total in-plane force

resultants
(Mxx , Myy, Mxy) The total moment resultants
Ncr Static buckling load
A Amplitude of steady-state

vibrations
�mn Frequency of the free

vibration
μmn Excitation parameter

1 Introduction

Laminated composite plates are being increasingly
used in aerospace, automotive, and civil engineer-
ing as well as in many other applications of mod-
ern engineering structures. Tailoring ability of fiber-
reinforced polymer composite (FRPC)materials for the
stiffness and strength properties with regard to reduc-
tion of structural weight made them superior com-
pared with metals in such structures. To use them effi-
ciently as a structural component it is required to have
a good knowledge and understanding of their mechani-
cal behavior such as deformations, stress distributions,
natural frequencies, and static and dynamic instabil-
ities under various loading and boundary conditions.
Many scholars and researchers from different disci-
plines have been conducting their research works to
study and investigate thosementioned structural behav-
ior of composite structures. One of the most interest-
ing fields of study of laminated composite plates is the
dynamic instability under periodic in-plane loads.

When the lightweight structural components are
subjected to dynamic loading particularly periodic in-
plane loads, when the frequency of in-plane dynamic
load and the frequency of vibration satisfy certain spe-
cific conditions, parametric resonance will occur in
the structure, which makes the plate enter into a state
of dynamic instability [1]. This instability is of con-
cern because it can occur at load magnitudes that are
much less than the static buckling load, so a compo-
nent designed to withstand static buckling may fail in
a periodic loading environment. Further, the dynamic

instability occurs over a range of forcing frequencies
rather than at a single value [1,2].

The interest to study the dynamic stability behav-
ior of engineering structures dates back to the text by
Bolotin [3] which addresses numerous problems on the
stability of structures under pulsating loads. Accord-
ing to the general theory of dynamic stability of elastic
systems by using Bolotin’s method a set of differential
equations of the Mathieu-Hill type are derived, and by
seeking periodic solutions using Fourier series expan-
sion the boundaries of unstable regions are determined.
An extensive bibliography of the earlier works on para-
metric response of structures was presented by Evan-
Iwanowsky [4].

A detailed research survey on the dynamic stability
behavior of plates and shells in which the literature
from 1987 to 2005 has been reviewed can be found in
the review paper by Sahu and Datta [5].

Srinivasan and Chellapandi [6] studied the dynamic
instability of rectangular laminated composite plates
under longitudinal periodic loads. They used finite strip
method and using Bolotin’s procedure to obtain the
parametric instability regions. Although the numerical
results have been limited only for the clamped plates
but their method is applicable for any boundary condi-
tions. They investigated three different configurations
including symmetric, antisymmetric and asymmetric
plates and the effects of aspect ratios of the plate on
unstable regions.

Influence of out-of-plane transverse shear deforma-
tion on dynamic instability also has been addressed in
the literature [7,8]. Moorthy and Reddy et al. [9] used
first order shear deformation plate theory to study the
effects of damping, length-thickness ratio, boundary
conditions, number of layers and lamination angles on
instability regions.

Dynamic instability of laminated composite plates
supported on elastic foundation, subjected to periodic
in-plane loads was investigated by Patel et al. [10].
They used C1 eight-nodded shear-flexible plate ele-
ment which allows both displacement and stress con-
tinuity at the interfaces between the layers. The influ-
ences of various parameters such as ply-angle, static
load factor, thickness and aspect ratios, and elastic
foundation stiffness on dynamic instability regions
were examined.

Ramachandra and Panda [11] investigated the
dynamic instability problem of composite plates sub-
jected to periodic nonuniform in-plane loads. Both the
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static anddynamic components of the applied loadwere
assumed to vary according to either parabolic or linear
distributions. They used Ritzmethod to estimate the in-
plane stress distribution within the pre-buckling range
due to the applied nonuniform load. Galerkin’s method
was implemented to derive the Mathieu type of equa-
tions. The effects of span-thickness and aspect ratios,
boundary conditions and static load factor on dynamic
instability regions were investigated.

All these mentioned works are based on linear anal-
ysis and so lead to the determination of dynamic insta-
bility regions. Stability analysis based on classical lin-
ear theories provided only an outline of the parame-
ter regimes where nonlinear effects are of importance.
According to Popov [12] without adequate nonlinear
analysis the results in some cases can be inaccurate.
According to linear theory, one expects the vibration
amplitudes in the regions of dynamic instability to
increase unboundedly with time indeed very rapidly
so as to increase exponentially. However, this con-
clusion contradicts experimental results which reveal
that vibrations with steady-state amplitudes exist in
the instability regions. As the amplitude increases, the
character of the vibrations changes; the speed of the
growth gradually decreases until vibrations of constant
(or almost constant) amplitude are finally established
[3].

Some nonlinear vibrations of composite panels have
been addressed by Alijani and Amabili [13] from 2003
to 2013. But a few works have been conducted consid-
ering the nonlinear plate theories for dynamic stabil-
ity problems. A higher-order geometrically nonlinear
theory was used by Librescu and Thangjitham [14] to
investigate the parametric instability of symmetrically
laminated plates. The geometrically nonlinear para-
metric instability characteristics of composite plates
based on finite element formulation using C1 eight-
noded shear-flexible plate element have been studied
by Ganapathi et al. [15]. They used Newmark integra-
tion scheme coupledwith amodifiedNewton–Raphson
iteration procedure to solve the nonlinear governing
equations.

To the best of authors’ knowledge, there is no com-
prehensive work on nonlinear dynamic instability of
thin laminated composite plates which considers the
effects of stacking sequence, aspect ratios, lamination
symmetry and so on. In the present paper, von Karman-
type of plate equation is used to develop the equa-
tion of motion of plate including geometric nonlinear-

ity for thin laminated composite flat plate subjected
to harmonic in-plane loading. Galerkin’s technique is
then employed to solve the nonlinear large deflection
plate equations of motion and a system of nonlinear
Mathieu-Hill equations are derived. The dynamically
unstable regions, and both stable- and unstable-solution
amplitudes of steady-state vibrations are determined by
applying the Bolotin’s method. The parametric studies
are performed to investigate and compare the effects of
lamination schemes including stacking sequence and
number of plies of symmetric and antisymmetric cross-
ply laminated plates, the magnitude of in-plane loads
both tensile and compressive loads, aspect ratios of the
plate including length-to-width and length-to-thickness
ratios, and in-plane transverse wave number on the
parametric resonance particularly of the steady-state
vibrations. The present results show good agreement
when compared with that available in the literature and
hence can be used as benchmark results for future stud-
ies.

2 Formulation

A thin simply supported laminated composite rectan-
gular plate, having length a and width b with respect to
the Cartesian coordinates (X,Y, Z)which are assigned
in the mid-plane of the plate is considered as shown in
Fig. 1.

Here, u, v and w are the displacement components
of the plate with reference to this coordinate system in
the X,Y, and Z directions, respectively.

The plate as shown in Fig. 1 is subjected to a peri-
odically pulsating load in the length direction with the
longitudinal loading per unit length as follow:

Fxx (t) = Fs + FdcosPt (1)

where Fs is a time-invariant component, FdcosPt is
the harmonically pulsating component, and P denotes
the frequency of excitation in radians per unit time.

Since u0 � w0 and v0 � w0 we can consider that
ρt ∂

2u0
/
∂t2 → 0 and ρt ∂

2v0
/
∂t2 → 0 . Therefore

by neglecting the in-plane inertia forces the equations
of motion in the form of that originally presented by
von Karman [16] and used in further development in
Lagrangian coordinates byFung [16,17], under the lon-
gitudinal pulsating load are given by
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Fig. 1 The geometry and
loading condition of a
laminated composite
rectangular plate

∂Nxx

∂x
+ ∂Nxy

∂y
= 0 (2)

∂Nxy

∂x
+ ∂N yy

∂y
= 0 (3)

∂2Mxx

∂x2
+ 2

∂2Mxy
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∂y2
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(4)

where

ρt =
∫ h

2

− h
2

ρdz (5)

and (Nxx , Nyy , Nxy) are the total in-plane force resul-
tants and (Mxx , Myy , Mxy) are the totalmoment resul-
tants that are defined by

⎧
⎨

⎩
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⎫
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⎭
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⎧
⎨
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dz (6)

⎧
⎨
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Mxy

⎫
⎬

⎭
=

∫ h
2

−h
2

⎧
⎨

⎩
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σyy

σxy

⎫
⎬

⎭
Zdz (7)

The nonzero von Karman strains associated with non-
linear large deflections and curvatures are given by
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⎨
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εxx
εyy
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⎫
⎬

⎭
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⎧
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+ z
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ε
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γ
(1)
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⎫
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{
ε0

}
=

⎧
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(0)
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(0)
yy
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(0)
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⎧
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⎪⎩

ε
(1)
xx

ε
(1)
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(1)
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⎫
⎪⎬
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=
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⎪⎪⎭
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where (ε
(0)
xx , ε

(0)
yy , γ

(0)
xy ) are themembrane strains, (ε(1)

xx ,

ε
(1)
yy , γ

1)
xy) are the flexural (bending) strains and (u0, v0,

w0) are mid-plane displacements.
The thin rectangular plate is constructed by a cross-

ply laminated composite material having density ρ.
Hence, the state of stress is governed by the gener-
alized Hooke’s law. The linear constitutive relations
for the kth orthotropic lamina in the principal material
coordinates of a lamina are

⎧
⎨

⎩

σ1
σ2
σ6

⎫
⎬

⎭

(k)

=
⎡

⎣
Q11 Q12 0
Q12 Q22 0
0 0 Q66

⎤

⎦

(k) ⎧
⎨

⎩

ε1
ε2
ε6

⎫
⎬

⎭
(11)

where [Q](k) is the reduced stiffness matrix of the kth
lamina and its components Q(k)

i j are known in terms of
the engineering constants of the kth layer, as
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Q11 = E11

1 − υ12υ21
(12a)

Q12 = υ12E22

1 − υ12υ21
(12b)

Q22 = E22

1 − υ12υ21
(12c)

Q66 = G12 (12d)

where E11 and E22 are the elastic moduli in the princi-
pal material coordinates, G12 is the shear modulus and
υ12 and υ21 are the Poisson’s ratios.

The constitutive equation of the laminate which is
made of several orthotropic layers, with the arbitrar-
ily oriented material axes to the laminate coordinate,
can be obtained by transformation of the stress-strain
relations in the laminate coordinates as follow:

⎧
⎨

⎩

εxx
εyy
γxy

⎫
⎬

⎭

(k)

=
⎡

⎣
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⎫
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⎭
(13)

where
[
Q̄

](k)
is the transformed reduced stiffness

matrix defined as follow:

[
Q̄

] = [T ]−1 [Q] [T ]−T (14)

where [T ] is the transformation matrix between the
principal material coordinates and the plate’s coordi-
nates given by

[T ] =
⎡

⎣
cos2 ϑ sin2 ϑ 2 cosϑ sin ϑ

sin2 ϑ cos2 ϑ −2 cosϑ sin ϑ

− cosϑ sin ϑ 2 cosϑ sin ϑ cos2 ϑ − sin2 ϑ

⎤

⎦

(15)

and ϑ is the angular orientation of the fibers. By fol-
lowing Eqs. (6–15) the force andmoment resultants are
defined as

⎧
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(16)

where Ai j denote the extensional stiffnesses, Di j the
bending stiffnesses, and Bi j the bending-extensional
coupling stiffnesses

Ai j =
∑N

k=1
Q̄(k)

i j (hk − hk+1), (i, j = 1, 2, 6)

(17a)

Bi j = 1

2

∑N

k=1
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Di j = 1

3

∑N

k=1
Q̄(k)

i j (h3k − h3k+1) (17c)

where hk and hk+1 are measured from the plate refer-
ence surface to the outer and inner surfaces of the kth
layer, respectively, as shown in Fig. 1. From Eq. (16),
the strains can be written as⎧
⎪⎨

⎪⎩

ε
(0)
xx

ε
(0)
yy

γ
(0)
xy

⎫
⎪⎬

⎪⎭

= [
Ai j

]−1

⎧
⎨

⎩

Nxx

Nyy

Nxy

⎫
⎬

⎭
− [

Ai j
]−1 [

Bi j
]

⎧
⎪⎨

⎪⎩

ε
(1)
xx

ε
(1)
yy

γ
(1)
xy

⎫
⎪⎬

⎪⎭

=

⎧
⎪⎨

⎪⎩

a11Nxx + a12Nyy − b11ε
(1)
xx − b12ε

(1)
yy

a12Nxx + a22Nyy − b21ε
(1)
xx − b22ε

(1)
yy

a66Nxy − b66γ
(1)
xy

⎫
⎪⎬

⎪⎭
(18)

where

a11 = �A22, a12 = −�A12, a22 = �A11, a66

= 1

A66
,
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,� = 1
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The moment resultants also can be written from
Eq. (16) as
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where
[
bi j

] = [
Ai j

]−1 [
Bi j

]
(21a)

[
di j

] = − [
Bi j

] [
bi j

] + [
Di j

]
(21b)

d11 = �(A11A22D11 − A11B
2
12 − A2

12D11

+ 2A12B11B12 − A22B
2
11)

d12 = �(A11A22D12 − A11B12B22 − A2
12D12

+ A12B11B22 + A12B
2
12 − A22B11B12)

d21 = �(A11A22D12 − A11B12B22 − A2
12D12

+ A12B11B22 + A12B
2
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2
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2
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66
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Here, we define themembrane forces in terms of Airy’s
stress function ϕ as

Nxx = ∂2φ

∂y2
(22a)

Nyy = ∂2φ

∂x2
(22b)

Nxy = − ∂2φ

∂x∂y
(22c)

Substituting Eqs. (10) and (22 a–c) into Eqs. (18) and
(20) the strains and moment resultants are given in
terms of the Airy’s stress function φ and w0. By com-
bining themid-plane strains, the compatibility equation
can be expressed as

∂2ε
(0)
yy

∂x2
+ ∂2ε

(0)
xx

∂y2
− ∂2γ

(0)
xy

∂x∂y
=

(
∂2w0

∂x∂y

)2

− ∂2w0

∂x2
∂2w0

∂y2

(23)

Replacing the strains in terms of the Airy’s stress func-
tion φ from Eq. (18) and w0 into Eq. (23) the nonlinear
equation of compatibility can be derived as:

a22
∂4φ

∂x4
+ a11

∂4φ

∂y4
+ (2a12 + a66)

∂4φ

∂x2∂y2

+b21
∂4w0

∂x4
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∂y4
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∂x2∂y2

=
(

∂2w0

∂x∂y

)2

− ∂2w0

∂x2
∂2w0

∂y2
(24)

3 Solution for laminated orthotropic plates

Considering the simply supported boundary condition
for the laminated orthotropic plate, the Navier’s dou-
ble Fourier series with the time-dependent coefficient
qmn(t) is chosen to describe the out-of-plane displace-
ment function w0(x, y, t) :

w0 =
∑∞

m=1

∑∞
n=1

qmn (t) sin
mπ

a
x cos

nπ

b
y (25)

where m and n represent the number of longitudinal
and transverse half waves in corresponding standing
wave pattern, respectively.

Fxx is the average longitudinal force at the edge, thus
the stress function has to satisfy the following condition

1

b

∫ b

0

∂2φ

∂y2
dy = Fxx at x = 0 , a (26)

Airy’s stress function can be governed by substituting
Eq. (25) into (24) and applying different trigonometric
relations, as:

φ = 1

2
Fxx y

2 +
∑∞

m=1

∑∞
n=1

×
{
−1

2
Amnqmn (t) ξ1 [sin (λmx − λn y)

+ sin (λmx + λn y)]

+ 1

32
Bmnq

2
mn (t) [ξ2 cos (2λmx)

− ξ3 cos (2λn y)]} (27)

where λm = mπ
/
a, λn = nπ

/
b and

Amn = b21λ
4
m + b12λ

4
n + (b11+b22−2b66) λ2mλ2n

(28a)

Bmn = λ2mλ2n

(28b)

ξ1 = 1

/ (
a22λ

4
m + a11λ

4
n+(2a12 + a66)λ

2
mλ2n

)

(28c)

ξ2 = 1

/
(a22λ

4
m) (28d)

ξ3 = 1

/
(a11λ

4
n) (28e)

Substituting the relations (22a–c) in Eqs. (2) and
(3), these equations are satisfied automatically.With the
definitions (22a-c), the membrane forces Nxx , Nyy and
Nxy are computable by this solution and the boundary
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condition (26) is satisfied. Asmentioned before by sub-
stituting Eqs. (10) and (22a–c) into equations (20) the
moments are given in terms of theAiry’s stress function
φ and w0 so by inserting these functions the moment
resultants Mxx , Myy and Mxy are also computable. By
substituting these stress and moment resultants and the
out-of-plane displacement as defined in Eq. (25) into
the third equation of motion, Eq. (4) and after multiply-
ing the governing equation by sin λmx cos λn y and inte-
grating over the plate area, a system of m × n second-
order ordinary differential equations is obtained:

Mmnq̈mn (t) + Kmnqmn (t)

− (Fs + Fd cos pt)Qmnqmn (t)

+ ηmnq
3
mn(t) = 0 (29)

where Mmn , Kmn ,Qmn and ηmn are matrices that are
defined in appendix and q̈mn (t) , qmn (t) and q3mn(t) are
columnvectors consisting of the q̈mn (t)’s,qmn (t)’s and
q3mn(t)’s, respectively. The subscriptsm and n have the
following ranges:

m, n = 1, 2, 3, 4, .., N . (30)

Introducing following notation:

ωmn =
√

Kmn

Mmn
(31a)

γmn = ηmn

Mmn
(31b)

N∗ = Kmn

Qmn
(31c)

Equation (29) canbewritten in the formof the nonlinear
Mathieu equation as follow:

q̈mn (t) + �2
mn(1 − 2μmn cos pt)qmn (t)

+ γmnq
3
mn (t) = 0 (32)

where �mn is the frequency of the free vibration of the
plate loaded by a constant longitudinal force Fs ,

�mn = ωmn

√

1 − Fs
N∗

(33)

andμmn is a quantity that is called the excitation param-
eter,

μmn = Fd
2(N∗ − Fs)

(34)

4 Amplitude of vibrations at the principal
parametric resonance

As mentioned above Eq. (32) is a nonlinear Mathieu
equation where the nonlinear term γ q3mn(t) represents
the effect of large deflection. According to Liapunov
Principle, dynamically unstable region is determined
by the linear parts of the Eq. (32) [3] which will be dis-
cussed in the next section. Here the focus is set on the
parametric resonance of the system. The basic solu-
tions of Mathieu equation include two periodic solu-
tions: i.e., periodic solutions of periods T and 2T with
T = 2π/P . The solutionswith period 2T are of greater
practical importance as the widths of these unstable
regions are usually larger than those associated with
solutions having period T . Using Bolotin’s [3] method
for parametric vibration, the solution of period 2T is
given by the following equation:

q (t) =
∑∞

k=1,3,5,...
fk sin

kPt

2
+ gk cos

kPt

2
(35)

where fk and gk are arbitrary vectors. If we investigate
the vibration at the principal resonance at frequency
≈ 2� , we can neglect the influence of higher harmon-
ics in the expansion of above equation and can assume

q (t) = f sin
Pt

2
+ g cos

Pt

2
(36)

as an approximation. By substituting this function into
Eq. (32) and equating the coefficients of sin (Pt/2 and
cos (Pt2) terms and neglecting terms containing higher
harmonics, the following system of equations for the
coefficients a and b remains:
[
�2

mn (1 + μmn) − P2

4

]
f + � ( f, g) = 0, (37a)

[
�2

mn (1 − μmn) − P2

4

]
g + � ( f, g) = 0, (37b)

where � ( f, g) and � ( f, g) are defined as coefficients
of the terms including sin (Pt/2) and cos (Pt/2)which
were obtained from the first approximation of expan-
sion in a Fourier series as:

� ( f, g) = 3γmn

4
A2 f (38a)

� ( f, g) = 3γmn

4
A2g (38b)
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where A is the amplitude of steady-state vibrations and
is given by:

A =
√

f 2 + g2 (39)

By substitution of Eqs. (38a, b) into (37a, b) a system
of two homogeneous linear equations with respect to f
and g can be obtained. This system has solutions that
differ from zero only in the case where the determinant
composed of the coefficients disappears:

∣
∣∣
∣∣

1+μmn − n2mn + 3γmn
4�2

mn
A2 0

0 1−μmn − n2mn + 3γmn
4�2

mn
A2

∣
∣∣
∣∣
= 0

(40)

where

nmn = P

2�mn
(41)

Expanding the determinant and solving the resulting
equationwith respect to the amplitude, A, of the steady-
state vibrations the following equation is obtained:

A = 2�mn√
3γmn

√
n2mn − 1 ± μmn (42)

It can be proved that in the ±μmn term of the above
equation, only +μmn term yields the stable solution,
and all the other terms yield unstable solutions.

5 Dynamic instability regions

The resonance curve is not influenced by nonlinearity
of Eq. (29) and asmentioned in the previous section the
dynamic instability regions are determined by linear
part of Mathieu-Hill equation, and so Eq. (29) can be
rewritten as follow:

Mmnq̈mn (t)+(K ∗
mn − Q∗

mn cos Pt)qmn (t)

+ ηmnq
3
mn(t) = 0 (43)

where

K ∗
mn = Kmn − FsQmn (44)

and

Q∗
mn = FdQmn (45)

The principal region of dynamic instability which cor-
responds to solution of period 2T is determined by
substituting Eq. (37) into (43) and equating the deter-
minant of the coefficient matrix of linear part of the
governing equation to zero as follow:

∣∣∣
∣∣
K ∗
mn − Q∗

mn
2 − Mmn

4 P2 0

0 K ∗
mn + Q∗

mn
2 − Mmn

4 P2

∣∣∣
∣∣
= 0

(46)

Comparing Eqs. (46) and (40) by replacing μmn , nmn ,
γmn and �mn in terms of K ∗

mn , Q
∗
mn and Mmn reveals

that the dynamic instability regions are determined by
setting A = 0 in Eq. (40).

Equation (46) can be rearranged to the more simpli-
fied form of an eigenvalue problem as follow:

∣∣∣
∣∣
K ∗
mn − Q∗

mn
2 0

0 K ∗
mn + Q∗

mn
2

∣∣∣
∣∣
− P2

∣∣
∣∣
Mmn
4 0
0 Mmn

4

∣∣
∣∣ = 0

(47)

6 Numerical results and discussions

Nonlinear dynamic stability characteristics of cross-
ply laminated composite rectangular plates subjected
to combined static and periodic longitudinal loads are
studied here. Thematerial properties used in the present
analysis are chosen in accordance with Ramachandra
et al. [11] as E1/E2 = 40 , G12/E2 = 0.5 and υ12 =
0.25.

Asmentioned before themain objective of this paper
is to study the influence of geometric nonlinearity on
the dynamic instability of laminated composite rectan-
gular plates which are characterized by the nonlinear
Mathieu-Hill equation as given by Eqs. (29) and (32).
In Sect. 5 it was observed that the dynamic instability
regions based on the large deflection formulation are
achieved by either linear part of the nonlinearMathieu-
Hill equation or by setting A = 0 in Eq. (40).

6.1 Validation

In order to validate the present formulation which is
based on the nonlinear analysis we also obtain the
numerical results that correspond to the dynamically
unstable regions to compare them with those available
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Nonlinear dynamic instability analysis of laminated composite thin plates 195

Fig. 2 The first unstable region of a four-layered symmetric [(0◦, 90◦)1]S cross-ply laminated square plate with thickness ratio of
a/h = 25 subjected to periodic longitudinal load having static load factor of α = 0

in the literature [9,11], for cross-ply laminated com-
posite plates.

Figure 2displays the boundaries of thefirst (from left
to the right of the frequency axis) dynamically unsta-
ble region of a four-layered symmetric [(0◦, 90◦)1]S
cross-ply laminated square plate having thickness ratio
of a/h = 25. Here to compare the results with Moor-
thy et al. [9] and Ramachandra et al. [11] the static and
periodic components of the longitudinal load are con-
sidered as Fs = αNcr and Fd = βNcr where α and β

are static and periodic load factors, respectively. In this
figure α is zero and the critical buckling load Ncr of the
studied plate has been calculated as follow:

|Kmn − NcrQmn| = 0 (48)

The free vibration frequencies of the studied plate
are also calculated as follow:

∣∣∣Kmn − ω2Mmn

∣∣∣ = 0 (49)

As it can be observed from this figure each unstable
region is separated by two lines with a common point
of origin. Actually these two lines are not completely
straight and they curved slightly outward. In this fig-

ure the “1st approximation” predicate to the smallest
possible truncation which corresponds to k = 1 in Eq.
(35) and the next smallest truncation, called the “2nd
approximation” corresponds to k = 3 in Eq. (35). As it
has been mentioned in Sect. 4, in the present work the
influence of higher harmonics in the expansion of Eq.
(35) has been neglected and led to Eq. (36) which is
the “1st approximation”. It is observed from this figure
that there is an excellent agreement between the present
results with those obtained by Moorthy et al. [9] and
Ramachandra et al. [11] and as one can see all the corre-
sponding three plots almost completely coincide with
each other.

As an another comparison of the present results with
Moorthy et al. [9] and also to investigate the effects of
orthotropy on the first unstable region, (m, n) = (1, 1),
the results are plotted in Fig. 3. The figure repre-
sents the plots for four-layered symmetric [(0◦, 90◦)1]S
cross-ply laminated square plate with thickness ratio of
a/h = 25 subjected to periodic longitudinal load hav-
ing again static load factor of α = 0 . For a better
comparison of the results here the plots are depicted
based on the critical buckling load and fundamental fre-
quency of the plate having orthotropic ratio of E1

E2
= 40

for all the three cases, i.e., for E1
E2

= 40, E1
E2

= 30 and
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Fig. 3 Effect of orthotropy on the first unstable region, (m, n) = (1, 1), of a four-layered symmetric [(0◦, 90◦)1]S cross-ply laminated
square plate with thickness ratio of a/h = 25 subjected to periodic longitudinal load having static load factor of α = 0

E1
E2

= 20. As it can be observed from this figure for the

case E1
E2

= 40 the present plot and the corresponding
one by Moorthy et al. [9] almost completely coincide
with each other and there is a very small difference
between present plots and that of Moorthy et al. [9] for
the orthotropic ratios of 30 and 20. This figure illus-
trates that at any certain value of load factor β, that is,
at any certain longitudinal periodic load, once the ratio
of E1

E2
is decreased, the values of excitation frequency

for instability tend to decrease and the range of val-
ues (or in other words the width of instability region)
increases. Here again there is an excellent agreement
between these two studies.

In the analysis of dynamic stability of plates and
shells, there exists simultaneously the stable- andunsta-
ble solutions. Figure 4 presents the effect of orthotropy
on both the stable- and unstable-solution amplitudes
of steady-state vibrations of the first mode, (m, n) =
(1, 1) , for the four-layered symmetric [(0◦

, 90
◦
)1]S

cross-ply laminated square plate. The plates have thick-
ness ratio of a/h = 25 and subjected to periodic lon-
gitudinal load with static load factor of α = 0 and
dynamic load factor of β = 0.3. The critical buck-
ling load and fundamental frequency of the plate for all

these three cases of E1
E2

are the same as the case which
is explained in Fig. 3. It is a characteristic of the nonlin-
ear response that the resonance curves are bent toward
the axis of increasing frequencies [3]. The difference
between these two solutions refers to the required mag-
nitudes of frequency and amplitude to stimulate a para-
metric resonance. If this difference between them is
small, then there might be the possibility of occurring
parametric resonance. If the difference is large, itmeans
high values of vibration frequency and amplitude are
needed to stimulate a possible parametric resonance.
The dynamic stability of such a plate or shell system is
said to be good [1,18]. As it is observed from this figure
both the stable and unstable amplitudes of steady-state
vibrations shift to the right having lower frequencies
of excitation; or in other words, at any certain exci-
tation frequency both stable and unstable amplitudes
of steady-state vibrations increase as the ratio of E1

E2
is decreased. Also it is evident from this figure that
once the amplitude is zero the corresponding excitation
frequency coincides with the boundaries of dynami-
cally unstable regions, having dynamic load factor of
β = 0.3. The zero stable- and unstable-solution ampli-
tudes of this figure exactly coincide with the left and
right curves of corresponding unstable regions, respec-
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Fig. 4 Effect of orthotropy on both the stable- and unstable-
solution amplitudes of steady-state vibrations of the first mode,
(m, n) = (1, 1) , for the four-layered symmetric [(0◦, 90◦)1]S

cross-ply laminated square plate having thickness ratio of a/h =
25 subjected to periodic longitudinal load having static load fac-
tor of α = 0 and dynamic load factor of β = 0.3

tively, shown in Fig. 3 and the range of frequencies
between these two solutions at A = 0 predicate the
dynamically unstable regions at this certain value of
dynamic load factor β. So this figure shows graphi-
cally that unstable regions could be obtained by setting
A = 0 in Eq. (40) and it could be considered as a
validation of this nonlinear part of dynamic instability
analysis.

As another validation of the nonlinear part of
dynamic instability analysis, i.e., both the stable-
and unstable-solution amplitudes of steady-state vibra-
tions, the present results are compared with those given
by Ostiguy et al. [19] for isotropic homogeneous rect-
angular plate in Figs. 5 and 6. To compare the results
we set in our formulation the material property as
E1 = E2 = E = 4.83GPa, υ12 = υ = 0.38 and
ρ = 1190kg/m3 and the geometry of the plate as
a = 50cm, b = 20.4cm and h = 0.125cm. The
static component of the periodic longitudinal load in
these two figures is considered as Fs = −0.5 N∗

cr and
Fs = −0.8 N∗

cr , respectively, and the dynamic compo-
nent is considered as Fd = −0.2 N∗

cr for both figures
where N∗

cr is the buckling load according to Ostiguy et

al. [19] as follow:

Ncr = π2D

b2

(
mc

b

a
+ 1

mc

a

b

)2

(50a)

where

D = Eh3

12(1 − υ2
12)

(50b)

andmc is the “number of half waves of prevalent buck-
ling mode” which “depends strongly on the aspect
ratio of the plate” [19]. It is observed from these fig-
ures that there is an excellent agreement between the
present results with those obtained by Ostiguy et al.
[19] and as one can see all the corresponding plots of
(m, n) = (3, 1) , (4, 1) and (5, 1) completely coin-
cide with each other and there is small and accept-
able difference for lower mode of (m, n) = (2, 1)
between the present results and those by Ostiguy et al.
[19]. This difference could be due to considering the
Navier’s double Fourier series for displacement func-
tion w0(x, y, t) of simply supported boundary condi-
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Fig. 5 Comparison of both the stable- and unstable-solution
amplitudes of steady-state vibrations of the present study with
those of Ostiguy et al. [19] for isotropic homogeneous rectan-

gular plate having aspect ratios of a/h = 400 and a/b = 2.45
subjected to periodic longitudinal load having static component
of Fs = −0.5 N∗

cr and dynamic component of Fd = −0.2 N∗
cr

Fig. 6 Comparison of both the stable- and unstable-solution
amplitudes of steady-state vibrations of the present study with
those of Ostiguy et al. [19] for isotropic homogeneous rectan-

gular plate having aspect ratios of a/h = 400 and a/b = 2.45
subjected to periodic longitudinal load having static component
of Fs = −0.8 N∗

cr and dynamic component of Fd = −0.2 N∗
cr
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tion in the present work which is more accurate even
for lower value of m = 2 of upper limits of summa-
tion in Eq. (25) than the solution for the stress func-
tion which has been represented by a truncated double
series consisting of Beam Functions in the later study
that leads to “determination of the elasticity parameter,
whose value is dependent on the number of terms taken
in the double series” [19]. The authors of the later arti-
cle also mentioned in their work that the convergence
characteristic of that elasticity parameter indicates that
more terms were needed for convergence as the order
of (m) of the spatial mode is increased [19]. Hence
their solution for lower values of m doesn’t have suf-
ficient accuracy so one can see from these two figures
(Figs. 5, 6) that once the upper limits of summation of
m increase to m = 3, 4, 5, . . . excellent agreement is
achieved between these two studies.

6.2 Effect of variation of lamination schemes

For isotropic plate the buckling load in terms of engi-
neering constants is given by Timoshenko and Gere as
[20]

Ncr = π2D

b2

(
b

a
+ a

b

)2

(51a)

where

D = Eh3

12(1 − ν2)
(51b)

Themechanism of dynamic buckling is similar to static
buckling and the only difference is the additional con-
siderations of the inertia force so that it leads to the
dynamic buckling load to be lower than the static buck-
ling load for the same structure. But the mechanism
of dynamic instability is much more complex since in
both static and dynamic buckling themain factor is only
the critical static or dynamic load amplitude while in
dynamic instability, not only the vibration amplitude of
dynamic load, but also the vibration frequency together
with the simulating frequencywill play important roles.
So the dynamic instability of the plate or shell structure
will be occurred at much lower loads.

For laminated rectangular plates, the critical buck-
ling load is approximated as

(N cr)Composite = π2D∗

b2

(
b

a
+ a

b

)2

(52a)

where

D∗ = E2h3

12(1 − ν12ν21)
(52b)

This approximates the static buckling load for lami-
nated rectangular plate and hence for the dynamic insta-
bility analysis both the static part of the load Fs and
the periodic part Fd in Eq. (1) should be a percent-
age of this buckling load. This is why we have con-
sidered conservatively in the next tables and figures
that Fs = (0.1, 0.3, 0.5)Ncr and corresponding peri-
odic part as Fd = 0.3Fs .

The dimensionless excitation frequency parameter
p which is mentioned in the next figures and tables is
introduced as follow:

p = 2πbP

√
ρt

A11
(53)

To compare the results in the following tables we spec-
ified each unstable region by the nondimensional fre-
quency parameter p of the point of origin and the half
angle of the unstable region as θ .

Here and in following figures, tables and discussions
the first two primary steady-state vibrations (from left
to right) refer to the first two modes.

The effects of variation of the lamination scheme
on the first two modes, dynamically unstable regions
and both stable- and unstable-solution amplitude of
steady-state vibrations of antisymmetric cross-ply lam-
inated rectangular plates are presented in Figs. 7, 8, and
Tables 1, 2 and 13. Figure 7 and 8 show the influence
of the lamination scheme on the fundamental mode
of dynamically unstable regions and corresponding
stable-solution amplitude-frequency curve of steady-
state vibrations for antisymmetric cross-ply laminated
plates, respectively. The plates are subjected to tensile
loading of Fs = 0.1Ncr and Fd = 0.3Fs . It is observed
that the first mode unstable regions and amplitude of
steady-state vibrations shift to the right along the fre-
quency axis having higher frequencies of excitation as
the number of layers are increased. This is probably
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Fig. 7 The first mode unstable region corresponding to various lamination schemes for the antisymmetric cross-ply laminated rectan-
gular plate having aspect ratios of a/b = 2 and a/h = 100 subjected to tensile loading of Fs = 0.1Ncr

Fig. 8 The stable-solution amplitude of steady-state vibrations
of the first mode corresponding to various lamination schemes
for the antisymmetric cross-ply laminated rectangular plate hav-

ing aspect ratios of a/b = 2 and a/h = 100 subjected to tensile
loading of Fs = 0.1Ncr and Fd = 0.3Fs
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Table 1 The first two unstable regions of an antisymmetric cross-ply laminated rectangular plate having aspect ratios of a/b = 2 and
a/h = 100 subjected to tensile loading of Fs = 0.1Ncr

Lamination scheme 1st Mode, 2nd Mod
(m, n) = (1, 1) (m, n) = (1, 2)

2 Plies (0◦, 90◦) Point of origin p (× 10−1) 4.3867410 16.4443734

θ (× 10−3) 2.2243915 0.5940836

2 Plies (90◦, 0◦) Point of origin p (× 10−1) 4.3867410 16.4443734

θ (× 10−3) 2.2243915 0.5940836

4 Plies (0◦, 90◦)2 Point of origin p (× 10−1) 6.8654193 26.2730634

θ (× 10−3) 1.4223678 0.3718588

4 Plies (90◦, 0◦)2 Point of origin p (× 10−1) 6.8654193 26.2730634

θ (× 10−3) 1.4223678 0.3718588

6 Plies (0◦, 90◦)3 Point of origin p (× 10−1) 7.2317969 27.7132649

θ (× 10−3) 1.3503768 0.3525353

6 Plies (90◦, 0◦)3 Point of origin p (× 10−1) 7.2317969 27.7132649

θ (× 10−3) 1.3503768 0.3525353

8 Plies (0◦, 90◦)4 Point of origin p (× 10−1) 7.3557191 28.1999640

θ (× 10−3) 1.3276476 0.3464513

8 Plies (90◦, 0◦)4 Point of origin p (× 10−1) 7.3557191 28.1999640

θ (× 10−3) 1.3276476 0.3464513

10 Plies (0◦, 90◦)5 Point of origin p (× 10−1) 7.4123760 28.4224148

θ (× 10−3) 1.3175087 0.3437400

10 Plies (90◦, 0◦)5 Point of origin p (× 10−1) 7.4123760 28.4224148

θ (× 10−3) 1.3175087 0.3437400

Table 2 The stable- and unstable-solution amplitudes corre-
sponding to first mode, (m, n) = (1, 1), of steady-state vibra-
tions for an antisymmetric cross-ply laminated rectangular plate

having aspect ratios of a/b = 2 and a/h = 100 subjected to ten-
sile loading of Fs = 0.1Ncr and Fd = 0.3Fs under the excitation
with nondimensional frequency parameter p = 1

Lamination scheme Amplitude (A/b), Amplitude (A/b),
Stable-solutions (× 10−2) Unstable-solutions (× 10−2)

2 Plies (0◦ , 90◦ ) 3.248133736 3.245776765

2 Plies (90◦ , 0◦ ) 3.248133736 3.245776765

4 Plies (0◦ , 90◦ )2 2.628551757 2.625638661

4 Plies (90◦ , 0◦ )2 2.628551757 2.625638661

6 Plies (0◦ , 90◦ )3 2.49699994 2.493933187

6 Plies (90◦ , 0◦ )3 2.49699994 2.493933187

8 Plies (0◦ , 90◦ )4 2.449288107 2.446161538

8 Plies (90◦ , 0◦ )4 2.449288107 2.446161538

10 Plies (0◦ , 90◦ )5 2.426886808 2.423731342

10 Plies (90◦ , 0◦ )5 2.426886808 2.423731342
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Table 3 The stable- and unstable-solution amplitudes corre-
sponding to second mode, (m, n) = (1, 2), of steady-state vibra-
tions for an antisymmetric cross-ply laminated rectangular plate

having aspect ratios of a/b = 2 and a/h = 100 subjected to ten-
sile loading of Fs = 0.1Ncr and Fd = 0.3Fs under the excitation
with nondimensional frequency parameter p = 3.5

Lamination scheme Amplitude (A/b), Amplitude (A/b),
Stable-solutions (× 10−2) Unstable-solutions (× 10−2)

2 Plies (0◦ , 90◦) 2.871214011 2.871037694

2 Plies (90◦ , 0◦) 2.871214011 2.871037694

4 Plies (0◦ , 90◦)2 2.148992941 2.148992941

4 Plies (90◦ , 0◦)2 2.148992941 2.148757363

6 Plies (0◦ , 90◦)3 1.986641608 1.986386775

6 Plies (90◦ , 0◦)3 1.986641608 1.986386775

8 Plies (0◦ , 90◦)4 1.926589176 1.926326399

8 Plies (90◦ , 0◦)4 1.926589176 1.926326399

10 Plies (0◦ , 90◦)5 1.898150383 1.897883669

10 Plies (90◦ , 0◦)5 1.898150383 1.897883669

Table 4 The stable- and unstable-solution amplitudes corre-
sponding to first mode, (m, n) = (1, 1), of steady-state vibra-
tions for an antisymmetric cross-ply laminated rectangular plate

having aspect ratios of a/b = 2 and a/h = 100 subjected to ten-
sile loading of Fs = 0.3Ncr and Fd = 0.3Fs under the excitation
with nondimensional frequency parameter p = 1

Lamination scheme Amplitude (A/b), Amplitude (A/b),
Stable-solutions (× 10−2) Unstable-solutions (× 10−2)

2 Plies (0◦ , 90◦) 3.234754859 3.227649473

4 Plies (0◦ , 90◦)2 2.612001258 2.60319663

6 Plies (0◦ , 90◦)3 2.479571523 2.470294934

8 Plies (0◦ , 90◦)4 2.431517728 2.422057098

10 Plies (90◦ , 0◦)5 2.408951185 2.399401578

due to the bending-extension coupling of lamination
which is reduced by increasing the number of the plies
in antisymmetric cross-ply laminates. This shifting to
the right of frequency axis of both unstable regions and
the steady-state amplitude (reducing the amplitude at a
certain excitation frequency) is reduced once the num-
ber of layers is doubled and appears to converge at a
certain value as can be observed from these figures that
the unstable regions of eight- and ten-layered laminates
are too close to each other and the amplitudes of eight-
and ten-layered laminates almost coincide with each
other.

Table 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12 also
present a detailed study considering again the effects
of variation of the lamination scheme on the first two
modes of unstable regions and both stable and unstable-

solution amplitude of steady-state vibrations of anti-
symmetric cross-ply laminated plate, respectively. In
Table 1 the results have been listed for unstable regions
which are specified by the points of origin and the half
angle of the unstable region θ as mentioned before for
the tensile load, Fs = 0.1Ncr. Tables 2, 3, 4, 5, 6, 7
present the result for both stable- and unstable-solution
amplitude of steady-state vibrations for three differ-
ent tensile loads, Fs = 0.1Ncr, Fs = 0.3Ncr and
Fs = 0.5Ncr and the corresponding results for com-
pressive loads, Fs = −0.1Ncr, Fs = −0.3Ncr and
Fs = −0.5Ncr are tabulated in Tables 8, 9, 10, 11, 12
and 13. For the comparison studies the results in
Tables 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 and 13 are
normalized using the same nondimensional excitation
frequency p= 1. All the discussions and correspond-
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Table 5 The stable- and unstable-solution amplitudes corre-
sponding to second mode, (m, n) = (1, 2), of steady-state vibra-
tions for an antisymmetric cross-ply laminated rectangular plate

having aspect ratios of a/b = 2 and a/h = 100 subjected to ten-
sile loading of Fs = 0.3Ncr and Fd = 0.3Fs under the excitation
with nondimensional frequency parameter p = 3.5

Lamination scheme Amplitude (A/b), Amplitude (A/b),
Stable-solutions (× 10−2) Unstable-solutions (× 10−2)

2 Plies (0◦ , 90◦) 2.870214739 2.869685571

4 Plies (0◦ , 90◦)2 2.147657656 2.146950405

6 Plies (0◦ , 90◦)3 1.985197125 1.984431973

8 Plies (0◦ , 90◦)4 1.925099634 1.924310586

10 Plies (90◦ , 0◦)5 1.896638506 1.895837613

Table 6 The stable- and unstable-solution amplitudes corre-
sponding to first mode, (m, n) = (1, 1), of steady-state vibra-
tions for an antisymmetric cross-ply laminated rectangular plate

having aspect ratios of a/b = 2 and a/h = 100 subjected to ten-
sile loading of Fs = 0.5Ncr and Fd = 0.3Fs under the excitation
with nondimensional frequency parameter p = 1

Lamination scheme Amplitude (A/b), Amplitude (A/b),
Stable-solutions (× 10−2) Unstable-solutions (× 10−2)

2 Plies (0◦ , 90◦) 3.221320417 3.209419798

4 Plies (0◦ , 90◦)2 2.595345219 2.580559438

6 Plies (0◦ , 90◦)3 2.462019734 2.44642829

8 Plies (0◦ , 90◦)4 2.413616518 2.397710346

10 Plies (90◦ , 0◦)5 2.390881019 2.374822573

Table 7 The stable- and unstable-solution amplitudes corre-
sponding to second mode, (m, n) = (1, 2), of steady-state vibra-
tions for an antisymmetric cross-ply laminated rectangular plate

having aspect ratios of a/b = 2 and a/h = 100 subjected to ten-
sile loading of Fs = 0.5Ncr and Fd = 0.3Fs under the excitation
with nondimensional frequency parameter p = 3.5

Lamination scheme Amplitude (A/b), Amplitude (A/b),
Stable-solutions (× 10−2) Unstable-solutions (× 10−2)

2 Plies (0◦ , 90◦) 2.869215118 2.86833281

4 Plies (0◦ , 90◦)2 2.146321541 2.145141924

6 Plies (0◦ , 90◦)3 1.98375159 1.982475243

8 Plies (0◦ , 90◦)4 1.923608938 1.922292658

10 Plies (90◦ , 0◦)5 1.895125423 1.893789346

ing observations that were mentioned in the previous
paragraph about Figs. 5 and 6 for unstable regions and
amplitude of stead-state vibrations are also observed
from Tables 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 and
13, respectively, and hence are valid. In addition it is
also observed from Tables 1 and 2 and 3 which are
for the first two modes’ unstable regions and ampli-
tude of steady-state vibrations, respectively, of the

plate with stacking sequence of (0◦ /90◦ /0◦ . . .) have
exactly the same unstable regions and amplitude of
steady-state vibrations both in stable- and unstable-
solutions in comparison with the laminations with the
stacking sequence of (90◦ /0◦ /90◦ . . .). It means that
these two different stacking sequences for the plate
show equal rigidity although in the study of Ng et
al. [21] for dynamic unstable regions of laminated
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Table 8 The stable- and unstable-solution amplitudes corre-
sponding to first mode, (m, n) = (1, 1), of steady-state vibra-
tions for an antisymmetric cross-ply laminated rectangular plate

having aspect ratios of a/b = 2 and a/h = 100 subjected to
compressive loading of Fs = −0.1Ncr and Fd = 0.3Fs under
the excitation with nondimensional frequency parameter p = 1

Lamination scheme Amplitude (A/b), Amplitude (A/b),
Stable-solutions (× 10−2) Unstable-solutions (× 10−2)

2 Plies (0◦ , 90◦) 3.263803378 3.261457731

4 Plies (0◦ , 90◦)2 2.647890493 2.644998696

6 Plies (0◦ , 90◦)3 2.517349485 2.514307553

8 Plies (0◦ , 90◦)4 2.47003076 2.466930481

10 Plies (90◦ , 0◦)5 2.447819295 2.444690848

Table 9 The stable- and unstable-solution amplitudes corre-
sponding to second mode, (m, n) = (1, 2), of steady-state vibra-
tions for an antisymmetric cross-ply laminated rectangular plate

having aspect ratios of a/b = 2 and a/h = 100 subjected to
compressive loading of Fs = −0.1Ncr and Fd = 0.3Fs under
the excitationwith nondimensional frequency parameter p = 3.5

Lamination scheme Amplitude (A/b), Amplitude (A/b),
Stable-solutions (× 10−2) Unstable-solutions (× 10−2)

2 Plies (0◦ , 90◦) 2.872389181 2.872212936

4 Plies (0◦ , 90◦)2 2.150562803 2.150327397

6 Plies (0◦ , 90◦)3 1.988339656 1.988085041

8 Plies (0◦ , 90◦)4 1.928340105 1.928077567

10 Plies (90◦ , 0◦)5 1.899927521 1.899661056

Table 10 The stable- and unstable-solution amplitudes corre-
sponding to first mode, (m, n) = (1, 1), of steady-state vibra-
tions for an antisymmetric cross-ply laminated rectangular plate

having aspect ratios of a/b = 2 and a/h = 100 subjected to
compressive loading of Fs = −0.3Ncr and Fd = 0.3Fs under
the excitation with nondimensional frequency parameter p = 1

Lamination scheme Amplitude (A/b), Amplitude (A/b),
Stable-solutions (× 10−2) Unstable-solutions (× 10−2)

2 Plies (0◦ , 90◦) 3.281730972 3.274727515

4 Plies (0◦ , 90◦)2 2.669956881 2.661343997

6 Plies (0◦ , 90◦)3 2.540549962 2.531496837

8 Plies (0◦ , 90◦)4 2.493671518 2.484447577

10 Plies (90◦ , 0◦)5 2.471672508 2.462366161

cylindrical shells it is revealed that (0◦/90◦ /0◦ . . .)

laminate shows more rigidity. Hence in the follow-
ing Tables 4, 5, 6, 7, 8, 9, 10, 11, 12 and 13
only the results are listed for one of these lamina-
tion stacking sequences, i.e., the stacking sequence of
(0◦/90◦ /0◦ . . .).

6.3 Effect of magnitude and direction of the
longitudinal loads

Comparing the results in Tables 2, 3, 4, 5, 6, and 7 indi-
cate that by increasing themagnitude of tensile longitu-
dinal loading from Fs= 0.1Ncr to Fs= 0.5Ncr both the
stable and unstable solutions of amplitudes decrease
which means that the corresponding excitation fre-
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Table 11 The stable- and unstable-solution amplitudes corre-
sponding to second mode, (m, n) = (1, 2), of steady-state vibra-
tions for an antisymmetric cross-ply laminated rectangular plate

having aspect ratios of a/b = 2 and a/h = 100 subjected to
compressive loading of Fs = −0.3Ncr and Fd = 0.3Fs under
the excitationwith nondimensional frequency parameter p = 3.5

Lamination scheme Amplitude (A/b), Amplitude (A/b),
Stable-solutions (× 10−2) Unstable-solutions (× 10−2)

2 Plies (0◦ , 90◦) 2.873740033 2.873211514

4 Plies (0◦ , 90◦)2 2.152366729 2.151661025

6 Plies (0◦ , 90◦)3 1.99029062 1.989527427

8 Plies (0◦ , 90◦)4 1.930351711 1.929564811

10 Plies (90◦ , 0◦)5 1.901969177 1.901170529

Table 12 The stable- and unstable-solution amplitudes corre-
sponding to first mode, (m, n) = (1, 1), of steady-state vibra-
tions for an antisymmetric cross-ply laminated rectangular plate

having aspect ratios of a/b = 2 and a/h = 100 subjected to
compressive loading of Fs = −0.5Ncr and Fd = 0.3Fs under
the excitation with nondimensional frequency parameter p = 1

Lamination scheme Amplitude (A/b), Amplitude (A/b),
Stable-solutions (× 10−2) Unstable-solutions (× 10−2)

2 Plies (0◦ , 90◦) 3.299561161 3.287943744

4 Plies (0◦ , 90◦)2 2.691842386 2.67758952

6 Plies (0◦ , 90◦)3 2.563540481 2.548570188

8 Plies (0◦ , 90◦)4 2.517090249 2.501842027

10 Plies (90◦ , 0◦)5 2.495297712 2.479915498

Table 13 The stable- and unstable-solution amplitudes corre-
sponding to second mode, (m, n) = (1, 2), of steady-state vibra-
tions for an antisymmetric cross-ply laminated rectangular plate

having aspect ratios of a/b = 2 and a/h = 100 subjected to
compressive loading of Fs = −0.5Ncr and Fd = 0.3Fs under
the excitationwith nondimensional frequency parameter p = 3.5

Lamination scheme Amplitude (A/b), Amplitude (A/b),
Stable-solutions (× 10−2) Unstable-solutions (× 10−2)

2 Plies (0◦ , 90◦) 2.875090249 2.874209745

4 Plies (0◦ , 90◦)2 2.154169145 2.152993827

6 Plies (0◦ , 90◦)3 1.992239674 1.990968768

8 Plies (0◦ , 90◦)4 1.932361222 1.931050909

10 Plies (90◦ , 0◦)5 1.904008644 1.902678805

quency that causes instability shifts to the right along
frequency axis having higher frequencies. Hence it can
be expected that by increasing the tensile longitudinal
load the plate stiffness is also increased. The inverse
trend can be seen in the case of compressive loading.
For the compressive loading the results for amplitudes
have been listed in Tables 8, 9, 10, 11, 12 and 13.
The plates have higher stable and unstable amplitudes

as the magnitude of longitudinal compressive load-
ing is increased from Fs= −0.1Ncr to Fs= −0.5Ncr

meaning that the corresponding excitation frequency
that causes instability shifts to the left along frequency
axis having lower frequencies. This was expected since
by increasing the magnitude of longitudinal compres-
sive loading the plate stiffness reduces. To study these
effects for first two modes of unstable regions the
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Table 14 The first two unstable regions of a ten-layered antisymmetric cross-ply laminated rectangular plate having aspect ratios of
a/b = 2 and a/h = 100 subjected to various tensile loading

Lamination scheme 1st Mode, 2nd Mode,
(m, n) = (1, 1) (m, n) = (1, 2)

Fs= 0.1Ncr Point of origin p (× 10−1) 7.4123760 28.4224148

θ (× 10−3) 1.3175087 0.3437400

Fs= 0.3Ncr Point of origin p (× 10−1) 7.4649136 28.4361615

θ (× 10−3) 3.9212851 1.0306588

Fs= 0.5Ncr Point of origin p (× 10−1) 7.5170840 28.4499015

θ (× 10−3) 6.4845977 1.7168306

Table 15 The first two unstable regions of a ten-layered antisymmetric cross-ply laminated rectangular plate having aspect ratios of
a/b = 2 and a/h = 100 subjected to various compressive loading

Lamination scheme 1st Mode, 2nd Mode,
(m, n) = (1, 1) (m, n) = (1, 2)

Fs= −0.1Ncr Point of origin p (× 10−1) 7.3594633 28.4086614

θ (× 10−3) 1.3269728 0.3439064

Fs= −0.3Ncr Point of origin p (× 10−1) 7.3061675 28.3949014

θ (× 10−3) 4.0062542 1.0321562

Fs= −0.5Ncr Point of origin p (× 10−1) 7.2524800 28.3811348

θ (× 10−3) 6.7201068 1.7209891

results for points of origin and the corresponding angle
of unstable region which predicate as a factor for
magnitude of the areas of these regions, are listed in
Tables 14 and 15 for a ten-layered antisymmetric lam-
inated rectangular plate subjected to various magni-
tudes of tensile and compressive loads, respectively.
The results illustrate that instability regions shift to
the right along frequency axis having higher excitation
frequencies once the magnitude of longitudinal ten-
sile load is increased from Fs= 0.1Ncr to Fs= 0.5Ncr.
This also can be expected as was mentioned above
that increasing the tensile longitudinal loads causes
the plate’s stiffness to increase. Although the results in
Table 15 indicate that the inverse trend canbe seen in the
case of compressive loading, in compressive loading
conditions increasing the absolute magnitude of com-
pressive loads from Fs = −0.1Ncr to Fs = −0.3Ncr
causes the instability region to shift to the left along fre-
quency axis having lower excitation frequencies. This
can be expected and noted in the above that by increas-
ing the magnitude of longitudinal compressive loads
plate’s stiffness is reduced. It can be observed from
these two tables that the widths of instability regions

are increased once the absolute values of magnitude
of longitudinal loads are increased for both tensile and
compressive loading conditions. Comparing the results
for symmetric laminates in Tables 16, 17, 18 and 19
with corresponding results for antisymmetric laminate
in Tables 5, 6, 11 and 12 also reveal that at the same
nondimensional frequency parameter (p) for both the
tensile and compressive load conditions, symmetric
laminates having stacking sequence of [(0◦, 90◦)n]S
have higher amplitudes (having lower excitation fre-
quencies) than antisymmetric (0◦/90◦/ . . .) laminates
even though this trend is inverse for the case of lam-
ination schemes of symmetric [(90◦, 0◦)n]S and anti-
symmetric (90◦/0◦/ . . .) laminates. This outcome is in
good agreementwith that reported byNajafov et. al [22]
for nonlinear free vibration of truncated orthotropic
thin laminated conical shells.

6.4 Effect of symmetry in variation of lamination
schemes

To examine the effect of symmetry in lamination
schemes of the studied laminated plate on both stable-

123



Nonlinear dynamic instability analysis of laminated composite thin plates 207

Table 16 The stable- and unstable-solution amplitudes corre-
sponding to first mode, (m, n) = (1, 1), of steady-state vibra-
tions for a symmetric cross-ply laminated rectangular plate hav-

ing aspect ratios of a/b = 2 and a/h = 100 subjected to tensile
loading of Fs = 0.5Ncr and Fd = 0.3Fs under the excitation
with nondimensional frequency parameter p = 1

Lamination scheme Amplitude (A/b), Amplitude (A/b),
Stable-solutions (× 10−2) Unstable-solutions (× 10−2)

4 Plies [(0◦, 90◦)1]S 3.162137505 3.150013303

4 Plies [(90◦, 0◦)1]S 1.022314884 0.984173729

8 Plies [(0◦, 90◦)2]S 2.785788422 2.772018639

8 Plies [(90◦, 0◦)2]S 1.812077314 1.790836229

12 Plies [(0◦, 90◦)3]S 2.648481006 2.633993517

12 Plies [(90◦, 0◦)3]S 2.007433606 1.988280636

16 Plies [(0◦, 90◦)4]S 2.577085349 2.562194197

16 Plies [(90◦, 0◦)4]S 2.098302273 2.07998621

20 Plies [(0◦, 90◦)5]S 2.533282308 2.518132136

20 Plies [(90◦, 0◦)5]S 2.150981654 2.133117971

24 Plies [(0◦, 90◦)6]S 2.503654559 2.488324006

24 Plies [(90◦, 0◦)6]S 2.185395885 2.167815808

28 Plies [(0◦, 90◦)7]S 2.482275384 2.466811969

28 Plies [(90◦, 0◦)7]S 2.209649348 2.192263773

Table 17 The stable- and unstable-solution amplitudes corre-
sponding to second mode, (m, n) = (1, 2), of steady-state vibra-
tions for a symmetric cross-ply laminated rectangular plate hav-

ing aspect ratios of a/b= 2 and a/h= 100 subjected to tensile
loading of Fs= 0.5Ncr and Fd= 0.3Fs under the excitation with
nondimensional frequency parameter p = 3.5

Lamination scheme Amplitude (A/b), Amplitude (A/b),
Stable-solutions (× 10−2) Unstable-solutions (× 10−2)

4 Plies [(0◦, 90◦)1]S 2.903888647 2.903016878

4 Plies [(90◦, 0◦)1]S 0 0

8 Plies [(0◦, 90◦)2]S 2.432149154 2.43110823

8 Plies [(90◦, 0◦)2]S 0.938568047 0.938568047

12 Plies [(0◦, 90◦)3]S 2.25305931 2.251935606

12 Plies [(90◦, 0◦)3]S 1.311481313 1.309549904

16 Plies [(0◦, 90◦)4]S 2.157948013 2.156774755

16 Plies [(90◦, 0◦)4]S 1.462709767 1.460978295

20 Plies [(0◦, 90◦)5]S 2.098813391 2.097607058

20 Plies [(90◦, 0◦)5]S 1.54636407 1.544726369

24 Plies [(0◦, 90◦)6]S 2.058446744 2.05721674

24 Plies [(90◦, 0◦)6]S 1.599705126 1.599705126

28 Plies [(0◦, 90◦)7]S 2.029121828 2.027874037

28 Plies [(90◦, 0◦)7]S 1.636741915 1.635194733

123



208 M. Darabi, R. Ganesan

Table 18 The stable- and unstable-solution amplitudes corre-
sponding to first mode, (m, n) = (1, 1), of steady-state vibra-
tions for a symmetric cross-ply laminated rectangular plate hav-

ing aspect ratios of a/b = 2 and a/h = 100 subjected to com-
pressive loading of Fs = −0.5Ncr and Fd = 0.3Fs under the
excitation with nondimensional frequency parameter p = 1

Lamination scheme Amplitude (A/b), Amplitude (A/b),
Stable-solutions (× 10−2) Unstable-solutions (× 10−2)

4 Plies [(0◦, 90◦)1]S 3.241806939 3.229981801

4 Plies [(90◦, 0◦)1]S 1.247127238 1.247127238

8 Plies [(0◦, 90◦)2]S 2.875902599 2.862566325

8 Plies [(90◦, 0◦)2]S 1.947773811 1.928028274

12 Plies [(0◦, 90◦)3]S 2.743109598 2.729124488

12 Plies [(90◦, 0◦)3]S 2.130724832 2.112689876

16 Plies [(0◦, 90◦)4]S 2.674241485 2.659894308

16 Plies [(90◦, 0◦)4]S 2.216544846 2.199213782

20 Plies [(0◦, 90◦)5]S 2.632055827 2.617477427

20 Plies [(90◦, 0◦)5]S 2.266477597 2.249531264

24 Plies [(0◦, 90◦)6]S 2.603552338 2.588813432

24 Plies [(90◦, 0◦)6]S 2.299163717 2.282460077

28 Plies [(0◦, 90◦)7]S 3.241806939 3.229981801

28 Plies [(90◦, 0◦)7]S 1.247127238 1.247127238

and unstable-solution amplitudes of the steady-state
vibrations, the results are listed in Tables 16, 17, 18 and
19 for the tensile and compressive axial loads, respec-
tively. A graphical presentation of Table 16 also is pro-
vided in Fig. 9. The first and second modes in these
tables refer to the modes (1,1) and (1,2), respectively,
which shows no change in terms of wave numbers in
comparison with antisymmetric laminates which are
listed in Tables 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
and 15. All the above discussions about Tables 6, 7, 12,
and 13 and Fig. 8 are valid about Tables 16, 17, 18
and 19 and Fig. 9, respectively. It can also be observed
from these tables and Fig. 9 again that by increasing
the number of plies in symmetric laminate the ampli-
tude of steady-state vibrations converges at a certain
value where the nondimensional amplitude vs nondi-
mensional frequency curves of twenty, twenty-four and
twenty-eight plies almost coincide with each other. It is
also observed that in symmetric laminated plates both
stable- and unstable-solutions amplitude of steady-
state vibration do not have the same values for stacking
sequence of [(0◦, 90◦)n]S and [(90◦, 0◦)n]S although
as it was mentioned before these results have the same
values in the case of antisymmetric laminated plates.

However by increasing the number of plies in symmet-
ric laminate the difference is decreased.

Comparing the results of symmetric laminates in
Tables 16, 17, 18 and 19 with corresponding results
for antisymmetric laminate in Tables 5, 6, 11 and 12
also reveal that at the same nondimensional frequency
parameter (p) for the both tensile and compressive
load conditions, symmetric laminates having stack-
ing sequence of [(0◦, 90◦)n]S have higher amplitudes
(having lower excitation frequencies) than antisymmet-
ric (0◦/90◦/ . . .) laminates even though this trend is
inverse for the case of lamination schemes of sym-
metric [(90◦, 0◦)n]S and antisymmetric (90◦/0◦/ . . .).
This outcome is in good agreement with that reported
by Najafov et. al [22] for nonlinear free vibration of
truncated orthotropic thin laminted conical shells.

6.5 Effect of the length-to-width ratio

The effect of variation of the aspect ratio of the lami-
nated plates, i.e., length-to-width ratio a/b on the insta-
bility regions and stable-solution amplitudes of the
steady-state vibrations for the ten-layered (0

◦
, 90

◦
)5

cross-ply laminated plate having thickness ratio a/h =
100 subjected to longitudinal tensile loading of Fs =
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Fig. 9 The stable-solution amplitude of steady-state vibrations
of the first mode corresponding to various lamination schemes
for the symmetric cross-ply laminated rectangular plate having

aspect ratios of a/b = 2 and a/h = 100 subjected to tensile
loading of Fs = 0.5Ncr and Fd = 0.3Fs

Table 19 The stable- and unstable-solution amplitudes corre-
sponding to second mode, (m, n) = (1, 2), of steady-state vibra-
tions for a symmetric cross-ply laminated rectangular plate hav-

ing aspect ratios of a/b = 2 and a/h = 100 subjected to com-
pressive loading of Fs = −0.5Ncr and Fd = 0.3Fs under the
excitation with nondimensional frequency parameter p = 3.5

Lamination scheme Amplitude (A/b), Amplitude (A/b),
Stable-solutions (× 10−2) Unstable-solutions (× 10−2)

4 Plies [(0◦, 90◦)1]S 2.909693768 2.908823738

4 Plies [(90◦, 0◦)1]S 0 0

8 Plies [(0◦, 90◦)2]S 2.439077296 2.43803933

8 Plies [(90◦, 0◦)2]S 0.956377815 0.953727552

12 Plies [(0◦, 90◦)3]S 2.260536397 2.259416411

12 Plies [(90◦, 0◦)3]S 1.324285385 1.322372678

16 Plies [(0◦, 90◦)4]S 2.165753489 2.164584462

16 Plies [(90◦, 0◦)4]S 1.474200939 1.47248298

20 Plies [(0◦, 90◦)5]S 2.066628062 2.06540293

20 Plies [(90◦, 0◦)5]S 1.557238063 1.55561181

24 Plies [(0◦, 90◦)6]S 2.066628062 2.06540293

24 Plies [(90◦, 0◦)6]S 1.61021894 1.608646249

28 Plies [(0◦, 90◦)7]S 2.037420904 2.036178199

28 Plies [(90◦, 0◦)7]S 1.647019321 1.645481802
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Fig. 10 Variation of the first mode unstable region with plate’s
length of a ten-layered (0

◦
/90

◦
)5 antisymmetric cross-ply lam-

inated rectangular plate having thickness ratio a/h = 100 sub-

jected to tensile loading of Fs = 0.5N∗
cr; N

∗
cr corresponds to

buckling load of the case a/b = 2

Table 20 Variation of the first two unstable regions with plate’s
aspect ratio of a ten-layered (0

◦
/90

◦
)5 antisymmetric cross-ply

laminated plate having thickness ratio of a/h = 100 subjected

to tensile loading of Fs = 0.5N∗
cr; N

∗
cr corresponds to buckling

load of the case a/b = 2

Lamination scheme 1st Mode, 2nd Mode,
(m, n) = (1, 1) (m, n) = (1, 2)

a
b = 0.5 Point of origin p (× 10−1) 3.7585420 5.1944527

θ (× 10−3) 3.2423329 2.3484589
a
b = 1 Point of origin p (× 10−1) 5.2672968 14.8142034

θ (× 10−3) 5.9189258 2.1096994
a
b = 1.5 Point of origin p (× 10−1) 9.0773696 32.2468704

θ (× 10−3) 9.0720438 2.5596828
a
b = 2 Point of origin p (× 10−1) 15.0341680 56.8998031

θ (× 10−3) 12.9686501 3.4336510

0.5Ncr are shown in Fig. 10, Table 20 and Fig. 11,
respectively. The plots of amplitudes are depicted in
Fig. 11 based on the dynamic term of the longitudi-
nal load as Fd = 0.3Fs . Since here the length a of
the plates is kept constant and to study the variation

of aspect ratio the width of the plates b is varied the
nondimensional frequency parameter p∗ is defined as
follow:

p∗ = 2πaP

√
ρt

A11
(54)
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Fig. 11 Variation of the first two stable-solution amplitudes
of steady-state vibrations with plate’s length of a ten-layered
(0

◦
/90

◦
)5 antisymmetric cross-ply laminated rectangular plate

having thickness ratio a/h = 100 subjected to tensile loading
of Fs = 0.5N∗

cr; N
∗
cr corresponds to buckling load of the case

a/b = 2 and Fd = 0.3Fs

The results show that with a decrease in width of the
plate, i.e., overall increase in aspect ratio of a/b , the
plate’s stiffness is increased as well, hence the dynami-
cally unstable regions shift to the right along frequency
axis having higher frequencies of excitation of point of
origins, the widths of instability regions are increased
and also the amplitudes of steady-state vibrations at any
specific frequency are decreased. This is in full agree-
ment with the corresponding study of Ramachandra et
al. [11] for dynamically unstable regions.

6.6 Effect of the length-to-thickness ratio

Figure 12, Table 21 and Fig. 13 present the effect of
variation of the thickness ratio a/h on the instability
regions and stable-solution amplitudes of the steady-
state vibrations for the ten-layered (0◦, 90◦)5 cross-ply
laminated square plate subjected to longitudinal com-
pressive loading of Fs= −0.3Ncr. The plots of ampli-
tudes are depicted in Fig. 13 based on the dynamic term
of the longitudinal load as Fd= 0.3Fs . It is observed

that with a decrease in thickness of the plate, i.e., over-
all increasing the length-to-thickness ratio a/h , the
dynamically unstable regions shift to the left along the
frequency axis having lower frequencies of point of
origin, the widths of instability regions are decreased
and also the amplitudes of steady-state vibrations at
any specific frequency are increased. This is due to
the fact that decreasing the thickness of plate makes
the plate to be less stiff. This is also in full agree-
ment with the corresponding study of Moorthy and
Reddy [9]. This is also in full agreement with the cor-
responding study of Lam and Ng [21] for dynamically
unstable regions of laminated composite cylindrical
shells.

7 Conclusions

The nonlinear dynamic stability of both antisymmetric
and symmetric cross-ply laminated composite plates
under combined static and periodic longitudinal load-
ing has been studied. Equations of motion with von
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Fig. 12 Variation of the first mode unstable region with plate’s thickness of a ten-layered (0
◦
/90

◦
)5 antisymmetric cross-ply laminated

square plate subjected to compressive loading of Fs = −0.3N∗
cr; N

∗
cr corresponds to buckling load of the case a/h = 120

Table 21 Variation of the first two dynamically unstable regions
with plate’s thickness of a ten-layered (0

◦
/90

◦
)5 antisymmetric

cross-ply laminated square plate subjected to compressive load-

ing of Fs = −0.3N∗
cr; N

∗
cr corresponds to buckling load of the

case a/h = 120

Lamination scheme 1st Mode, 2nd Mode,
(m, n) = (1, 1) (m, n) = (1, 2)

a
h = 100 Point of origin p (× 10−1) 5.0738029 14.7465143

θ (× 10−3) 3.6904626 1.2718097
a
h = 110 Point of origin p (× 10−1) 4.6125480 13.4059221

θ (× 10−3) 3.3549686 1.1561907
a
h = 120 Point of origin p (× 10−1) 4.2281690 12.2887619

θ (× 10−3) 3.0753897 1.0598416

Karman-type of nonlinearitywere solvedby employing
Galerkin’s technique. By applying Bolotin’s method to
the governing system of nonlinear Mathieu-Hill equa-
tions the amplitudes of both stable and unstable solu-
tions were obtained for steady-state vibrations. It is
confirmed that instability regions and both stable and
unstable-solution amplitudes of steady-state vibrations
are significantly influenced by the lamination schemes
including symmetric and antisymmetric lamination, the

number and sequence of the plies,magnitude and direc-
tion of the longitudinal periodic loads, aspect ratios
of the plate including length-to-width and length-to-
thickness ratios, and in-plane transverse wave number.
Hence in any particular application specific configu-
rations of laminate should be considered in design of
composite plates. A comparative study of the present
work with those available in literature shows a very
good agreement. However, as the results of the present
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Fig. 13 Variation of the first two stable-solution amplitudes of
steady-state vibrations with plate’s thickness of a ten-layered
(0

◦
/90

◦
)5 antisymmetric cross-ply laminated square plate sub-

jected to compressive loading of Fs = −0.3N∗
cr; N

∗
cr corresponds

to buckling load of the case a/h = 120 and Fd = 0.3Fs

study reveal, the linear analysis carried out in avail-
able literature can only provide the information about
the instability region and unable to predict the vibra-
tion amplitudes in these regions. The nonlinear analy-
sis developed in the present work can determine such
vibration amplitudes. The present work has shown
that there is vibration with steady-state amplitude in
the instability region which approaches almost con-
stant amplitude when the excitation frequencies are
increased. Hence, for more perfect and complete stud-
ies of dynamic instability of laminated plates, the non-
linear analysis is required to determine both the stable
and unstable amplitudes of steady-state vibrations in
addition to instability regions. Where the occurrence
of dynamic instability is inevitable, in order to have a
control on vibration amplitudes in the unstable regions
the nonlinear analysis is required. By adjusting the cor-
responding effective parameters as explained in the
present work, steady-state vibrations with allowable
amplitudes based on the design criteria can be achieved
in the dynamically unstable regions.

The major outcomes of the present study are sum-
marized as follow:

• For both symmetric and antisymmetric laminated
plates, amplitudes of steady-state vibrations are
decreased, corresponding dynamically unstable
regions shift to the right along the frequency axis
having higher frequencies of excitation, and the
widths of the instability regions are decreasedwhen
the number of plies are increased. Convergence is
also achieved at a specific number of the plies in
each case.

• Increasing themagnitude of compressive longitudi-
nal load causes increasing amplitude of steady-state
vibrations, shifting dynamically unstable regions to
the left along the frequency axis, and increasing
albeit the widths of instability regions.

• Increasing the magnitude of tensile longitudi-
nal loads results in decreasing the amplitude of
steady-state vibrations, shifting dynamically unsta-
ble regions to the right along the frequency axis, and
increasing albeit the widths of instability regions.
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• With an increase in aspect ratio a/b of the plate,
the dynamically unstable regions shift to the right
along frequency axis having higher frequencies of
excitation of point of origin, the widths of instabil-
ity regions are increased and also the amplitudes of
steady-state vibrations are decreased.

• Increasing the thickness ratio a/h causes the
dynamically unstable regions shift to the left along
frequency axis having lower frequencies of excita-
tion of point of origin.Moreover thewidths of insta-
bility regions are decreased and also the amplitudes
of steady-state vibrations are increased.

The present work can be used as a bench mark study
in future studies on dynamic instability of laminated
composite plates.
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Appendix A

Mmn = −16πa4 A22 ρt A11(A22 A66 a4 n4 + n2(A11A22

− A12(A12 + 2A66))m2b2a2 + A11 A66 b4m4)mb4

Qmn = 16 A11 A33 a2m3(A22 A66 a4n4 + n2(A11 A22

− A12(A12 + 2A66))m2 b2 a2 + A11 A66 b4m4)π3b4

ηmn = (A11b4 m4 + A22 a4n4)π5m(A11 A22

− A122)(A22 A66 a4 n4 + n2(A11 A22 − A12(A12

+ 2A66))m2b2a2 + A11 A66b4m4)

Kmn = 16m A22 A11π5(b8 A66(−A11 D11 + B112)m8

+ (D11 A122 + (2D11 A66 − 2B11(B12

+ 2B66))A12 + (−D11 A22 + (−2D12 − 4D66)A66

+ (B12 + 2B66)2)A11 + B111 A22)a2 n2 b6 m6

+ 2 a4n4 b4((D12 + 2D66)A122

+ ((2D12 + 4D66)A66 − B22 B11 − B122

− 4B66 B12 − 4B662)A12 + ((−2D66 − D12)A22

− 1

2
D22 A66 + B22(B12 + 2B66)

)
A11

+
(
1

2
D11A66 + B11(B12 + 2B66)

)
A22

− B11 B22 A66)m4 + (D22 A122

+ (2D22 A66 − 2B22(B12 + 2B66))A12

+ (−A22 D22 + B222)A11 + A22((−2D12

− 4D66)A66 + (B12 + 2B66)2))a6 n6b2m2

+ a8n8A66(−A22 D22 + B222))
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