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Abstract This paper presents a new fault-tolerant
controller based on an immersion and invariance (I&I)
observer to deal with the partial loss of actuator’s effec-
tiveness associated with a quadrotor unmanned aerial
vehicle. The I&I observer is utilized to estimate the
actuator fault which is unknown, and it is combined
with a sliding mode controller to stabilize the attitude
of the quadrotor. A dynamic scaling factor and a fil-
tered state are introduced to the observer to guaran-
tee the availability of the invariant and attractive man-
ifold. To avoid the singularity associated with orien-
tation representations, the unit quaternion represen-
tation is utilized to formulate the attitude controller.
The Lyapunov-based stability analysis is employed
to prove that a global asymptotical stability result
is achieved. Real-time flight tests are implemented
on a self-built hardware-in-loop-simulation quadrotor
testbed, and the results show that the proposed fault-
tolerant controller has achieved good control perfor-
mance under partial loss of actuator’s effectiveness.
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1 Introduction

The quadrotor UAV has attracted great attention from
military and civil applications due to its special advan-
tages such as simple structure, vertical taking off and
landing (VTOL) ability, and rapid maneuvering in
recent years [1]. It has been widely used in a variety
of situations including surveillance, fire fighting, envi-
ronmental monitoring and so on [2]. The roll, pitch and
yaw motions of a quadrotor UAV are achieved through
adjusting the speed of four rotors. However, the fre-
quent variation of the rotors’ speedwill increase the risk
of the actuator’s fault. The quadrotor has six degree of
freedom with only four control inputs, which is known
as the under-actuated property [3,4].When one ormore
actuators lost effectiveness, the quadrotor UAV will be
unstable or even out of control. The actuator’s fault has
been considered to be the most critical since the system
performance can be severely deteriorated by improper
actuator actions [5]. This will bring great dangers to the
quadrotor itself. Therefore, a lot of fault-tolerant con-
trol (FTC) strategies have been developed to maintain
high robustness for the quadrotor UAV against unex-
pected actuator’s faults [6,7].

Previous FTC approaches for quadrotor UAVs can
be divided into two main groups: active fault-tolerant
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control (AFTC) and passive fault-tolerant control
(PFTC). Themain difference between these two groups
is that addictive fault detection and fault isolation
mechanism are involved in the AFTC [8]. Researchers
from different institutions, such as Concordia Uni-
versity, Massachusetts Institute of Technology, Nan-
jing University of Aeronautics & Astronautics and so
on, have developed various linear or nonlinear fault
FTC methods including gain-scheduled PID FTC [9],
backstepping-based FTC [10], sliding mode control
(SMC)-based FTC [11], model reference adaptive con-
trol (MRAC)-based FTC [12], combined/composite
model reference adaptive control (CMRAC) FTC [13],
model predictive control (MPC) FTC [14] and flatness-
based trajectory planning/replanning (FTPR) FTC[15].
All the methods mentioned above have been verified
through numerical simulations or real-time flight tests
on quadrotor UAV testbeds. However, there are some
limitations for these existing FTC strategies. For exam-
ple, in [9], a fast switch from normal PID gains to the
pre-tuned fault-related gains must be taken into con-
sideration which highly depends on the fault detec-
tion module. In [11], the actuator’s fault is modeled
as some external disturbance, but this can not represent
the influence caused by actuator’s fault accurately. In
MPC-based FTC method, the fault detection module
is also required which will increase the computation
cost and is not easy to be implemented for most exist-
ing onboard embedded controller of quadrotor UAVs.
For MRAC-based FTC and CMRAC-based FTC, the
dynamic model of the quadrotor UAV needs to be lin-
earized around the equilibrium point while the actua-
tor’s fault may let the quadrotor UAV be away from the
equilibrium point, thus the control performance may
be degraded.

Other than the aforementioned FTC approaches
for quadrotor UAVs, the observer-based FTC strategy
provides another choice. In [16–18], some works on
observer-based fault-tolerant control are investigated
for various nonlinear systems. To solve the unmeasured
state problem, the fuzzy state observer is utilized to pro-
vide estimations for those unmeasured signals. In [16],
a novel adaptive fuzzy decentralized FTC scheme is
developed by combining the backstepping technique
with the nonlinear FTC theory. In [17], a robust adap-
tive fuzzy fault-tolerant control scheme is developed
by introducing the dynamical signal and the chang-
ing supply function technique design into the back-
stepping control design. In [18], a novel NN adap-

tive output-feedback FTC approach is developed by
combining the adaptive backstepping design principle
with the combination Nussbaum gain function prop-
erty. In all the works mentioned above, the observers
are used to compensate for the unmeasured state of the
dynamic systems, and all signals in closed-loop system
can be guaranteed to be bounded.Numerical simulation
results show the effectiveness of the control schemes.

When it comes to the quadrotor UAV, in [19], a non-
linear observer is utilized to generate fault offset resid-
uals for fault diagnosis which is verified by using the
off-line data acquired from the real-time flight exper-
iments. In [20], an adaptive thau observer is devel-
oped to estimate the system states and generate a set
of offset residuals to represent actuator’s fault. Exper-
imental results are provided to show that this method
can not only detect and isolate the failed actuators but
also estimate the fault severities. In [21], a two-stage
Kalman filter is used to simultaneously estimate and
isolate possible faults associated with each actuator.
This FTC approach is verified via experimental results
performed on an quadrotor UAV testbed. The observer-
based methods mentioned above are AFTC ones, some
of them are only verified through numerical simula-
tions, and some of them do not contain fault-tolerant
control together with fault detection.

Recently, the immersion and invariance (I&I)
methodology has been widely used in control of the
quadrotor UAV [22], visual servoing, control of pendu-
lum on cart and many other mechanical systems [23].
Unlike the classic adaptive control design [24], this
approach does not require the linear parameterization
condition nor invokes the certainty equivalence. Aim-
ing at the disadvantages of existing FTC approaches
for quadrotor UAVs mentioned above, an I&I-based
nonlinear observer is proposed in this paper to com-
pensate for the unknown actuator’s fault. The main
contribution of this paper can be summarized as fol-
lows: (1) a multiplicative factor with control inputs is
developed to demonstrate the practical properties of
the faults associated with quadrotor’s actuators; (2) the
attitude dynamics is constructed in terms of the unit
quaternion to avoid the singularity that may appear in
the attitude control development; (3) the control strat-
egy is designed based on the nonlinear dynamic model
without simplifying the dynamics around the hover-
ing state; (4) the I&I-based observer is firstly utilized
to compensate for the actuator’s fault, and a dynamic
scaling factor together with a filtered output state are
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introduced to ensure the solvability of the partial differ-
ential equations; (5) the sliding mode control scheme
without fault detection and isolation is developed for
the fault-tolerant control of the quadrotor. Theproposed
FTC strategy is verified via real-time experiments per-
formed on the HILS testbed.

This paper is organized as follows. The dynamic
model of the quadrotor UAV with actuator’s fault is
described in Sect. 2. In Sect. 3, the design of the
fault-tolerant controller and the stability analysis are
presented. The real-time experimental results are pro-
vided in Sect. 4. Finally, some conclusion remarks are
included in Sect. 5.

2 Problem formulation

2.1 The quadrotor’s dynamics

In order to describe the dynamics and kinematics of
quadrotor UAV, two right-hand coordinate systems are
utilized. The inertial reference frame is denoted by
{I }, and the body-fixed reference frame is denoted by
{B}, as illustrated in Fig. 1. The origin of the orthog-
onal right-hand coordinate system {I } is attached
on the ground, which can be represented by I =
{xI , yI , zI } with zI being the vertical direction
upward into the sky, yI being the west direction and
xI being determined by the right-hand rule. The frame
B = {xB, yB, zB} represents an orthogonal right-
hand coordinate system which is centered at the cen-
troid of the quadrotor. The body axis zB is the nor-
mal axis of the principal plane of quadrotor directed
from bottom to top, the body axis xB is along with
the forward flying direction of the quadrotor, and the
direction of the body axis yB is determined by the right-
hand rule. The thrusts generated by the four rotors are
denoted by fi (t), i = 1, 2, 3, 4. The dynamic model of
the quadrotor expressed in {B} can be illustrated via
the following differential equations,

{
J ω̇ = −S(ω)Jω + τ

Ṙ = S(ω)R
, (1)

whereω(t) = [ω1(t) ω2(t) ω3(t)
]T ∈ R

3 denotes the
angular velocity of the UAV with respect to the frame
{I } defined in the frame {B}, J = diag{J1, J2, J3},
with Ji ∈ R

+ for i = 1, 2, 3 is the moment of inertia.
The matrix S(·) represents a skew-matrix that satisfies

Fig. 1 Coordinate system of the quadrotor UAV

S(a) =
⎡
⎣ 0 −a3 a2

a3 0 −a1
−a2 a1 0

⎤
⎦ , ∀a = [a1 a2 a3

]T
.

(2)

The matrix R ∈ SO(3) is the rotation matrix from
{B} to {I }. The vector τ(t) = [ τ1(t) τ2(t) τ3(t)

]T ∈
R
3 denotes the control input torque. The relationship

between the control input signals and the rotor thrusts
is given as follows:

⎡
⎣ τ1

τ2
τ3

⎤
⎦ =

⎡
⎣−l −l l l

−l l l −l
−ε ε −ε ε

⎤
⎦

︸ ︷︷ ︸
L

⎡
⎢⎢⎣

f1
f2
f3
f4

⎤
⎥⎥⎦ = L

⎡
⎢⎢⎣

f1
f2
f3
f4

⎤
⎥⎥⎦ , (3)

where l ∈ R
+ is the distance between the epicenter

of quadrotor and rotor axes, and ε ∈ R
+ denotes a

constant force-to-moment coefficient.

2.2 The quadrotor’s actuator’s fault dynamics

For the quadrotor, it is possible that one or more actua-
tors will have some failures during the flight operation.
In the case that a failure happen on the i th actuator of
the quadrotor at the time of t f , the actual control actions
applied on the i th actuator can be denoted as f

′
i (t), and

multiple important and common fault patterns can be
listed as follows [5]:

– Stuck type or lock in place (LIP) fault: f
′
i (t) =

fi (t f ) is a constant for i = 1, 2, 3, 4.
– Float fault: f

′
i (t) = 0.
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– Hard-over fault: f
′
i (t) = max( fi ) or f

′
i (t) =

min( fi ) regardless of the command signal.
– Loss of effectiveness (LOE) fault: f

′
i (t) = λi (t)

fi (t f ) where 0 < λi (t) ≤ 1.

Generally, among the fault patterns mentioned
above, the LOE fault occurs especially frequently and
is also themost complicated one, thus itwill be themain
fault considered in this paper. After the LOE fault hap-
pens, the relationship between the control input signals
and the rotor thrusts given in (3) will be rewritten as
follows:

⎡
⎣ τ1

τ2
τ3

⎤
⎦ = L

⎡
⎢⎢⎣

λ1 0 0 0
0 λ2 0 0
0 0 λ3 0
0 0 0 λ4

⎤
⎥⎥⎦
⎡
⎢⎢⎣

f1
f2
f3
f4

⎤
⎥⎥⎦

= L

⎡
⎢⎢⎣

f1 0 0 0
0 f2 0 0
0 0 f3 0
0 0 0 f4

⎤
⎥⎥⎦

︸ ︷︷ ︸
F

⎡
⎢⎢⎣

λ1
λ2
λ3
λ4

⎤
⎥⎥⎦

︸ ︷︷ ︸
λ

= LFλ, (4)

so the fault dynamics of the quadrotor can be obtained
as

J ω̇ = −S(ω)Jω + LFλ. (5)

The vector λ(t) ∈ R
4 in (5) is defined as λ(t) =[

λ1(t) λ2(t) λ3(t) λ4(t)
]T
, and the control input

matrix F(t) ∈ R
4×4 is defined as F(t) = diag

{[ f1(t) f2(t) f3(t) f4(t)
]T}.

Assumption 1 The LOE fault in this paper is consid-
ered as a constant gain fault [25], i.e.,

λ̇ = 04×1. (6)

Remark 1 The constant gain fault means that once the
fault happens, it would not vary during the whole con-
trol procedure, and the actuators of the quadrotorwould
still produce thrust force which would be λ times of the
normal thrust force.

2.3 Attitude representation via unit quaternion

According to the Euler’s theorem [26], any rota-
tion matrix can be uniquely represented by a rota-

tion angle ϕ(t) ∈ R about a suitable unit vector

k(t) = [
k1(t) k2(t) k3(t)

]T ∈ R
3. Given (ϕ, k) ∈

R
4, an alternative parameterization of the attitude

is provided by a unit quaternion vector q(t) =[
q0(t) qTv (t)

]T ∈ R × R
3, which provides a method

to describe the rigid body’s attitude without singu-
larity and is defined via the angle-axis parameters as

q(t) = [
cos
( 1
2ϕ(t)

)
kT (t) sin

( 1
2ϕ(t)

) ]T
. Note that

the unit quaternion is subject to the constraint

qTv qv + q20 = 1. (7)

Thus the rotation matrix R can be calculated by using
the unit quaternion q(t) as

R =
(
q20 − qTv qv

)
I3 + 2qvq

T
v − 2q0S(qv). (8)

The unit quaternion q(t) can be related to angular
velocity ω(t) via

{
q̇0 = − 1

2q
T
v ω

q̇v = 1
2 (S(qv) + q0 I3)ω

, (9)

where I3 represents a 3 × 3 identity matrix.
Since the control object is to design a control input

torque to ensure the attitude control with the existence
of actuator’s fault, the desired attitude of quadrotor
UAV is represented by a body fixed, orthogonal coor-
dinate frame {Bd} as illustrated in Fig. 1. The desired

unit quaternion, qd(t) = [q0d(t) qTvd(t) ]T ∈ R × R
3,

is utilized to describe the orientation of {Bd} and the
desired angular velocity, denoted byωd(t), is the angu-
lar velocity of the desired body frame {Bd }with respect
to the initial frame {I } expressed in {Bd}. The desired
rotationmatrix Rd ∈ SO(3) can be calculated by using
qd(t) as follows:

Rd =
(
q20d − qTvdqvd

)
I3 + 2qvdq

T
vd − 2q0d S(qvd).

(10)

Similarly as (9), the time derivative of qd(t) is related
to the desired angular velocity ωd(t) through the fol-
lowing differential equations

{
q̇0d = − 1

2q
T
vdωd

q̇vd = 1
2 (S(qvd) + q0d I3)ωd

. (11)
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To quantify the mismatch between the actual and
desired orientation of the quadrotor UAV, the quater-

nion tracking error, denoted by eq = [
e0, eTv

]T ∈
R × R

3 is defined as follows:

{
e0 = q0q0d + qTv qvd

ev = q0dqv − q0qvd + S(qv)qvd
, (12)

which also satisfies the constraint

eTq eq = 1. (13)

Then we define the rotation matrix, denoted by R̃ ∈
SO(3), that brings {Bd} into {B} as follows:

R̃ =
(
e20 − eTv ev

)
I3 + 2eve

T
v − 2e0S(ev). (14)

The angular velocity of {B} with respect to {Bd}
expressed in {B}, denoted by ω̃ ∈ R

3, can be writ-
ten as

ω̃ = ω − R̃Tωd . (15)

Based on the previous definitions, the quadrotor UAV’s
attitude control objective can be stated as follows:

lim
t→∞ev = 0, lim

t→∞ω̃ = 0. (16)

3 Control development

3.1 Observer design

The dynamics of the quadrotor in (5) and (6) can be
reorganized as follows:

{
ω̇ = −J−1S(ω)Jω + J−1LFλ

λ̇ = 0
. (17)

The following definition will be invoked in the follow-
ing control development and analysis.

Definition 1 If there exists amappingβ(ω, ωd , ω̇d , eq):
R
3 × R

3 × R
3 × R

4 → R
4, which is substituted by

β(ω, X) for the consideration of simplicity, the follow-
ing dynamic system

ξ̇ = − ∂β

∂ω
(−J−1S(ω)Jω + J−1LF λ̂) − ∂β

∂X
Ẋ , (18)

with ξ(t) ∈ R
4, is called an observer for the system

(17), if the manifold

M = {(λ, ω, ξ, X) : ξ + β(ω, X) − λ = 0} (19)

is attractive and invariant [27].

The above definition implies that an asymptotically
converging estimate λ̂(t) ∈ R

4 of the actuator’s fault
is given by

λ̂ = ξ + β(ω, X). (20)

Toprove the result in (20), let the estimation error signal
z0(t) ∈ R

4 be defined as follows:

z0 = λ̂ − λ = ξ + β(ω, X) − λ, (21)

where β(·) is continuously differentiable and the norm
of β(·) determines the distance of the state from the
manifoldM defined in (19). Taking the time derivative
of (21) and substituting (18) into the resulting equation
yields

ż0 = − ∂β

∂ω
J−1LFz0. (22)

To complete the design, it is necessary to design the
function β(ω, X) such that the system has a uni-
formly asymptotically stable equilibrium at z0 = 0,
but this is not a easy task. Furthermore, the problem
can be also translated into finding an output injec-
tion matrix B(ω, X) that ensures the system ż0 =
−B(ω, X)J−1LFz0 to be uniformly asymptotically
stable at z0 = 0. In fact, since the dimension of ω is
larger than one, theremay not exist aβ(ω, X) that satis-
fies ∂β

∂ω
= B(ω, X). To overcome this obstacle,we refer

to [28] to introduce an auxiliary state vector ω̂(t) ∈ R
3

to make β(ω, X) become β(ω, ω̂, X). In this way, the
observer can be considered of full order since the auxil-
iary state vector ω̂(t) provides an estimate of the output
of the system. Different from [28], in this paper, λ̂(t) is
coupled with the control input matrix F(t) here, which
means that the regression matrix contains the control
inputs F which include λ̂, so β(ω, ω̂, X) is more dif-
ficult to be determined. To overcome this issue, the
observer in (18) is redefined as
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ξ̇ = −
(

∂β

∂ω

(
−J−1S(ω)Jω + J−1LF λ̂

)

+ ∂β

∂ω̂
˙̂ω + ∂β

∂X
Ẋ

)
, (23)

where ω̂(t) is the estimation ofω(t), and it is generated
via

˙̂ω = −J−1S(ω)Jω + J−1LF λ̂ + K (ω, r, ω̂ − ω)(ω̂ − ω).

(24)

To compensate for the mismatch between ω(t) and
ω̂(t), a dynamic scaling factor r(t) is introduced to
the off-the-manifold variables in (21), so that the esti-
mation signal can be redefined as follows:

z = λ̂ − λ

r(t)
= ξ + β(ω, ω̂, X) − λ

r(t)
. (25)

Thus the dynamics of z(t) in (22) can be rewritten as

ż = − ∂β
∂ω

J−1LF(λ̂ − λ)r − (ξ + β − λ)ṙ

r2

= − ∂β

∂ω
J−1LFz − ṙ

r
z. (26)

The following assumptions will be invoked in the fol-
lowing control development. The scaling factor r(t)
will be designed later.

Assumption 2 The control input matrix F(t) to be
designed later can be represented in the following form

F = −LR · u(ω, X) · g(β), (27)

where LR = LT (LLT )−1 is the right-inverse of L such
that L · LR = I3, the auxiliary vector u(·) ∈ R

3 is

defined as u(·) = [u1(·) u2(·) u3(·) ]T, and the g(·) ∈
R
1×4 is an auxiliary vector.

Remark 2 Assumption 2 is proposed based on the
dynamics of the quadrotor which can also be validated
by the design of control input. On the other hand, this
assumption is just utilized to simplify the following
analysis and it does not make any difference in the
observer and controller design.

Assumption 3 There exist a constant γ and a contin-
uously differentiable function matrix B(ω, X, β) =
γ (J−1LF)T ∈ R

4×3 such that − 1
2 ([BJ−1LF]T +

BJ−1LF) = −γ [J−1LF]T[J−1LF].

Remark 3 Assumption 3 implies that the system ż =
−B(ω, X, β)J−1LFz has a uniformly globally sta-
ble equilibrium at 0. The observer design problem is
now reduced to the problem of designing a function
β(ω, ω̂, X) and a dynamic scaling ṙ such that the sys-
tem (26) has a globally stable equilibrium at the origin.

By substituting (27) into B(ω, X, β), it can be
obtained that

B(ω, X, β) = −γ gT (β)uT (ω, X)J−1

= [ B1(ω, X, β) B2(ω, X, β) B3(ω, X, β)
]
,

(28)

where Bi (ω, X, β) = −γ
ui (ω,X)

Ji
gT (β), i = 1, 2, 3.

Let the function vector β(ω, ω̂, X) be defined as

β(ω, ω̂, X) =W1(ω1, ω̂2, ω̂3, X)

+ W2(ω̂1, ω2, ω̂3, X)

+ W3(ω̂1, ω̂2, ω3, X), (29)

where

⎧⎪⎪⎨
⎪⎪⎩

W1 = ∫ ω1
0 B1(σ, ω̂2, ω̂3, X, β1(σ, ω̂2, ω̂3, X))dσ

W2 = ∫ ω2
0 B2(ω̂1, σ, ω̂3, X, β2(ω̂1, σ, ω̂3, X))dσ

W3 = ∫ ω3
0 B3(ω̂1, ω̂2, σ, X, β3(ω̂1, ω̂2, σ, X))dσ

,

(30)

with

⎧⎪⎪⎨
⎪⎪⎩

β1(σ, ω̂2, ω̂3, X) = β(ω, ω̂, X)|ω1=σ,ω2=ω̂2,ω3=ω̂3

β2(ω̂1, σ, ω̂3, X) = β(ω, ω̂, X)|ω2=σ,ω1=ω̂1,ω3=ω̂3

β3(ω̂1, ω̂2, σ, X) = β(ω, ω̂, X)|ω3=σ,ω1=ω̂1,ω2=ω̂2 .

(31)

For W1 in (29), it can be obtained that

W1(ω1, ω̂2, ω̂3, X)

=
∫ ω1

0
B1(σ, ω̂2, ω̂3, X,W1(σ, ω̂2, ω̂3, X) + W2 + W3)dσ

= −γ

∫ ω1

0

u1(σ, ω̂2, ω̂3, X)

J1
· gT (W1(σ, ω̂2, ω̂3, X)

+ W2 + W3)dσ. (32)
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Taking the partial derivative of W1 with respect to ω1

yields

∂W1(ω1, ω̂2, ω̂3, X)

∂ω1

= −γ
u1(·)
J1

· gT (W1(·) + W2(·) + W3(·)), (33)

i.e.,

∂β

∂ω1
= ∂β1

∂ω1
= −γ

u1(ω1, ω̂2, ω̂3, X)

J1
· gT (β1)

= βω1(ω1, ω̂2, ω̂3, X, β1). (34)

By the same way, ∂β
∂ω2

and ∂β
∂ω3

can be obtained as fol-
lows:

∂β

∂ω2
= βω2(ω̂1, ω2, ω̂3, X, β2), (35)

∂β

∂ω3
= βω3(ω̂1, ω̂2, ω3, X, β3) . (36)

In summary, ∂β
∂ω

can be written as

∂β

∂ω
=
[

∂β1
∂ω1

∂β2
∂ω2

∂β3
∂ω2

]

= [βω1(·) βω2(·) βω3(·)
]
. (37)

To represent the mismatch between ω(t) and ω̂(t),
an error signal is defined as eω = ω̂ − ω =[
eω1 eω2 eω3

]T ∈ R
3. From Assumption 3 and the

fact that F will be designed to be continuously differen-
tiable, it can be shown that B(·) is continuously differ-
entiable, thus there exists δi j (ω, eω, X, β) ∈ R

4, i, j =
1, 2, 3 satisfying the following equations

⎧⎪⎪⎨
⎪⎪⎩

βω1(·) = B1(ω, X, β) + eω2δ12(·) + eω3δ13(·)
βω2(·) = B2(ω, X, β) + eω1δ21(·) + eω3δ23(·)
βω3(·) = B3(ω, X, β) + eω1δ31(·) + eω2δ32(·)

.

(38)

So (37) can be rewritten as

∂β

∂ω
= B(ω, X, β) + Σ3

j=1eω jΔ j (ω, eω, X, β), (39)

where Δ j (·) = [
δ1 j (·) δ2 j (·) δ3 j (·)

]
, δ j j (·) = 0 for

j = 1, 2, 3. By substituting (39) into (26), (26) can be
rewritten as follows:

ż = −B(·)J−1LFz + Σ3
j=1eω jΔ j (·)J−1LFz − ṙ

r
z.

(40)

By taking the time derivative of eω(t) and substituting
(24) into the resulting equation, it can be obtained that

ėω = −K (ω, r, ω̂ − ω)eω + r J−1LFz. (41)

Theorem 1 Consider the system (17), if the dynamic
scaling factor r(t) is designed as follows:

ṙ(t) = cr
3∑
j=1

e2ω j · ∥∥Δ̄ j (ω, eω, X, β)
∥∥2 with r(0)≥1,

(42)

where c ≥ 3/(2γ ),
∥∥Δ̄ j (ω, eω, X, β)

∥∥ denotes the
upper bound of

∥∥Δ j (ω, eω, X, β)
∥∥, and K (ω, r, ω̂−ω)

satisfies the following equation

K (ω, r, ω̂ − ω) = mr2 I3 + pcr2D, (43)

with m and p being some positive gains, D =
diag{

[∥∥Δ̄1(·)
∥∥2 ∥∥Δ̄2(·)

∥∥2 ∥∥Δ̄3(·)
∥∥2 ]T} being a

diagonal matrix. Thus the dynamics in (26), (41), and
(42) has a globally stablemanifold of equilibria defined
by M = {(z, eω)|(z, eω) = (0, 0)}. Furthermore, it
can be obtained that z(t), r(t) and eω(t) ∈ L∞.

Proof Based on (42), it can be concluded that ṙ(t) ≥ 0
and r(t) ≥ 1. To prove the above theorem, a nonnega-
tive function Vz(t) ∈ R is defined as

Vz(t) = 1

2
z(t)T z(t). (44)

After taking the time derivative of (44) and substituting
(40) together with (42) into the resulting equation, the
following expression for V̇z(t) can be obtained

V̇z = zT ż

≤ − γ

∥∥∥J−1LFz
∥∥∥2 − ṙ

r
‖z‖2
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+ Σ3
j=1

∣∣eω j
∣∣ ∥∥∥J−1LFz

∥∥∥ · ∥∥Δ̄ j (·)
∥∥ · ‖z‖

≤ − γ

2

∥∥∥J−1LFz
∥∥∥2 −

3∑
j=1

(√
γ

6

∥∥∥J−1LFz
∥∥∥

−
√

3

2γ

∣∣e j ∣∣ ∥∥Δ̄ j (ω, e)
∥∥ ‖z‖

)2

≤ − γ

2

∥∥∥J−1LFz
∥∥∥2 . (45)

From (45), it can be concluded that z(t) ∈ L∞ and
LF(t)z(t) ∈ L∞. To facilitate the analysis for eω(t),
another nonnegative function Ve(t) ∈ R is defined as

Ve(t) = 1

2
eTω(t)eω(t) + 1

mγ
Vz(t). (46)

After taking the time derivative of (46) and substituting
(41) and (45) to the resulting equation, the following
expression for V̇e(t) can be obtained

V̇e ≤ eTω ėω − 1

2m

∥∥∥J−1LFz
∥∥∥2 (47)

≤ −m

2
r2 ‖eω‖2 − pcr2eTω Deω.

Then it is not difficult to check that the dynamics in
(40)–(41) is globally stable at (z, eω) = (0, 0), and
also it can be obtained that eω(t) ∈ L∞. Furthermore,
to verify the boundness of r(t), another nonnegative
function Vr (t) ∈ R is defined as

Vr (t) = Ve(t) + p

2
r2. (48)

After taking the time derivative of (48) and substituting
(42) together with (47) into the resulting equation, the
following expression for V̇r can be obtained

V̇r ≤ − m

2
r2 ‖eω‖2 − pcr2eTω Deω

+ pcr2
3∑
j=1

e2ω j · ∥∥Δ̄ j (·)
∥∥2

≤ − m

2
r2 ‖eω‖2 . (49)

From (48) and (49), we know that r(t) ∈ L∞, and then
the theorem is proven. 
�

3.2 Fault-tolerant controller design

Following the similar steps in [26], the angular velocity
error ω̃ can be related with the quaternion error eq(t)
via the following equations

{
ė0 = − 1

2e
T
v ω̃

ėv = 1
2 (S(ev) + e0 I3)ω̃.

(50)

By taking the time derivative of (15) and substituting
(14) into the resulting equation, the dynamics for ω̃(t)
can be obtained as follows:

J ˙̃ω = − S
(
ω̃ + R̃Tωd

)
J
(
ω̃ + R̃Tωd

)

+ J
(
S(ω̃)R̃Tωd − R̃T ω̇d

)
+ LFλ. (51)

Let the sliding mode surface s(t) ∈ R
3 be defined as

s = ω̃ + Ksev, (52)

where s = [
s1 s2 s3

]T
, Ks = diag

{[
ks1 ks2 ks3

]T}
with ksi > 0 for i = 1, 2, 3.

Lemma 1 If the sliding mode surface s = ω̃+Ksev is
asymptotically stable, then the error signals ω̃(t) and
ev(t) are also asymptotically stable.

Proof Consider the nonnegative function

Vs = 1

2

(
eTv ev + (1 − e0)

2
)

= 1 − e0 ≤ 2. (53)

Take the time derivative of Vs and substitute (50) into
the resulting equation, it can be obtained that

V̇s = −‖Ks‖
2

‖ev‖2 + 1

2
eTv s

≤ −‖Ks‖
4

‖ev‖2 + 1

4 ‖Ks‖ ‖s‖2

= ‖Ks‖
4

(
−2Vs + V 2

s

)
+ 1

4 ‖Ks‖ ‖s‖2 . (54)

Consider the system

ζ̇ = h(ζ, μ) = ‖Ks‖
4

(
−2ζ + ζ 2

)
+ μ, (55)
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where μ is regarded as the control input, and obvi-
ously the system is continuously differentiable andLip-
schitz in (ζ, μ) with ζ ∈ [0, 2]. Since the unforced
system ζ̇ = h(ζ, 0) = ‖Ks‖

4 (−2ζ + ζ 2), ζ ∈ [0, 2] has
an exponentially stable equilibrium point at ζ = 0,
the system (55) is input-to-state stable according to
Lemma 4.6 in [29]. On the other hand, the sliding
mode surface s is asymptotically stable, so the cas-
cade system composed of (55) and μ = 1

4‖Ks‖ ‖s‖2 is
asymptotically stable according to Lemma 4.7 in [29].
Finally, from comparison principle, we can conclude
that 0 ≤ Vs ≤ ζ ≤ 2, so Vs(t) is also asymptotically
stable, namely the vector ω̃(t) and ev(t) are asymptot-
ically stable [30]. 
�

After taking the time derivative of (52) and substitut-
ing (51) together with (50), the open loop error dynam-
ics of the quadrotor UAV is obtained

J ṡ = Π(ω,ωd , ω̇d , eq) + LFλ, (56)

where Π(ω,ωd , ω̇d , eq) = −S(ω̃ + R̃Tωd)J (ω̃ +
R̃Tωd) + J (S(ω̃)R̃Tωd − R̃T ω̇d) + 1

2 J Ks(S(ev) +
e0 I3)ω̃. From the fact that λ = λ̂ − r z, (56) can be
rewritten as

J ṡ = Π(ω,ωd , ω̇d , eq) + LF λ̂ + ρ, (57)

where ρ = r LFz = [ρ1, ρ2, ρ3]T.
Property 1 From the fact that r(t) ∈ L∞ together
with LFz(t) ∈ L∞, which have been already verified
above, it can be concluded that ρ ∈ L∞, so we can
assume that ‖ρ‖ ≤ ρ0 where ρ0 is a positive constant.

Theorem 2 Consider the system of (57), if we design
the control input F in the following form

F = −
∥∥∥λ̂
∥∥∥−2 · LR(Π(ω, ωd , ω̇d , eq)

+Γ s + ρ0sign(s)) · λ̂T , (58)

where Γ ∈ R
3×3 is a positive definite matrix, then the

closed-loop error dynamics is asymptotically stable,
i.e., lim

t→∞ω̃ = 0, lim
t→∞ev = 0.

Proof Based on (58), details about u(ω, X) and g(β)

can be listed as follows:

u(ω, X)

= −S(ω)Jω + J S(ω)R̃Tωd

+ 1

2
J Ks(S(ev) + e0 I3)ω + Γ ω

+ ρ0sign(ω − R̃Tωd + Ksev)

− J S(R̃Tωd)R̃
Tωd − J R̃T ω̇d

− 1

2
J Ks(S(ev) + e0 I3)R̃

Tωd

+ Γ (−R̃Tωd + Ksev)

= [u1 u2 u3
]T

, (59)

g(β) =
∥∥∥λ̂∥∥∥−2 · λ̂T = ‖ξ + β‖−2 · (ξ + β)T . (60)

To prove the stability of the proposed controller, let the
nonnegative function V f (t) ∈ R

3 be defined as

V f = 1

2
sT Js. (61)

By taking the time derivative of (61) and substituting
(57) together with (58) into the resulting equation, the
following equation for V̇ f (t) can be obtained

V̇ f = sT J ṡ

= sTΠ(ω,ωd , ω̇d , eq) − sTΠ(ω,ωd , ω̇d , eq)

− sTΓ s − ρ0s
T sign(s) + sT ρ

≤ − sTΓ s − ρ0s
T sign(s) + ρ0 ‖s‖

≤ − sTΓ s. (62)

From (62), it is not difficult to conclude lim
t→∞ s = 0,

thus it can be concluded that lim
t→∞ω̃ = 0 and lim

t→∞ev =
0 via Lemma 1. 
�

4 Experimental results

To validate the performance of the proposed fault-
tolerant control scheme presented in Sect. 3, real-
time experiments are implemented on a HILS testbed,
shown in Fig. 2. The details of the HILS testbed
are introduced in [31]. Videos of the experiments are
available at https://youtu.be/9vbiGApuLos and https://
youtu.be/d9xsDMNwWrs.

The parameters of the quadrotor UAV system
and the control scheme are listed as J = diag{[

1.34 1.31 2.54
]T} × 10−2 kgm2, l = 0.225m,

ε = 0.25, c = 2.5, γ = 1, p = 1, m = 50, Ks =
diag

{[
2.2 2.5 4

]T}
, Γ = diag

{[
1.86 1.86 3.05

]T}
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Fig. 2 Hardware-in-loop-simulation quadrotor testbed
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Fig. 3 Attitude error (φ, θ, ψ) in Euler angles

and ρ0 = 0.40. The desired attitude is selected to be
qd = [1 0 0 0

]T
with the corresponding desired angu-

lar velocity denoted as ωd = [ 0 0 0
]T

rad/s.
Moreover, the fault matrix is assigned as

λ =

⎧⎪⎨
⎪⎩

[
1 1 1 1

]T
, t < 80 s[

1 1 0.9 1
]T

, 80 s ≤ t < 125 s[
1 0.8 0.9 1

]T
, t ≥ 125 s

, (63)

which means that at the first 80 s, the four rotors are at
normal operation, while at t = 80 seconds, the third
motor can only provide 90% thrust of the normal case.
And at t = 125 seconds, the second rotor also is out of
order and can only provide 80% thrust of the normal
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Fig. 4 Attitude error (e0, ev1, ev2, ev3) in quaternion
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Fig. 5 Error of angular velocities (ω̃1, ω̃2, ω̃3)

case. The real-time experimental results are presented
in Figs. 3, 4, 5, 6, 7, 8, 9 and 10.

Figures 3 and 4 show the attitude error of the quadro-
tor represented by Euler angles and unit quaternion,
respectively. At t = 80 s, the third rotor is facing some
faults, which lead the attitude variation seasonally. As
shown in these figures, the roll and pitch angle fluctuate
about 8◦ while the yaw angle about 3◦. At t = 125 s, the
second rotor loses 20% of effectiveness, which cause a
more drastic variation than the previous fault. It can be
seen that the roll angle fluctuates about 12◦, while the
pitch angle varies about 20◦ and the yaw angle varies
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Fig. 6 Control inputs ( f1, f2, f3, f4)
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Fig. 7 Rotor speeds (n1, n2, n3, n4)

about 4◦.As shown inFigs. 3 and4, the error signal con-
verges to 0 in less than 5 s after the faults happen.Figure
5 illustrates the variation of angular velocity error ω̃ (t).
It can be seen that the angular velocity alters after the
actuator’s fault takes place, while converges to 0 in less
than 2 s. This means that the attitude control objective
has been achieved.

The control inputs F and the corresponding rotor
speeds are illustrated in Figs. 6 and 7, respectively. It
can be seen that fi (t) for i = 1, 2, 3, 4, stays within
some reasonable values.

From Fig. 8, it can been seen that the error signal
eω(t) converges to 0 quickly. Figure 9 shows that the
estimation of actuator’s fault λ̂(t) is stable. Figure 10
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Fig. 8 Estimation error of angular velocities (eω1, eω2, eω3)
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Fig. 9 Estimation of actuator’s faults (λ̂1, λ̂2, λ̂3, λ̂4)

displays the off-the-manifold variables z(t) which is
consistent with (40).

For the comparison purpose, the standard SMC con-
troller is implemented to deal with the same actuators’
fault and the experimental results are shown in Figs.11,
12, 13 and 14.

In order to quantitatively show the differences
between the two controllers, we analyzed the maxi-
mum (MAX) offset, regulating time and the root-mean-
square (RMS) errors after each actuator’s fault happens,
which are displayed in Table 1.

In Table 1, 1st MAX offset and 2nd MAX offset
mean theMAXoffset after the first and the second actu-
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Fig. 11 SMC: attitude error in Euler angles

ators’ faults, respectively, and the same to the regulating
time. First RMSerrorsmean theRMSerrors during 85–
115s, and 2ndRMS errorsmean the RMS errors during
130–160s. From Table 1, we can see that, most of the
maximum offsets and RMS errors in the proposed con-
trol structure are smaller than that of standard SMC.
The regulating time of the proposed controller is also
less than the standard SMC. On the other hand, from
the control inputs, we can also conclude that the pro-
posed control scheme is of more robustness than the
standard SMC.
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Fig. 12 SMC: attitude error in Quaternion
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Table 1 Analysis data of control errors

Controller Proposed controller Standard SMC

1st MAX offset 7◦ 15◦

2nd MAX offset 22◦ 25

1st Regulating time 3s 8 s

2nd Regulating time > 10 s > 10 s

1st RMS errors 0.7350◦ 2.0677◦

2nd RMS errors 2.1701◦ 3.7611◦

5 Conclusion

In this paper, a nonlinear adaptive observer-based fault-
tolerant control scheme is developed to overcome the
partial loss of actuator’s effectiveness of a quadro-
tor UAV. A unit quaternion representation is used to
design a nonsingular attitude tracking controller. The
I&I-based observer is modified by adding a dynamic
scaling factor and a filtered state to ensure the solv-
ability of the partial differential equations. Without the
need of additional fault detection design, the observer is
able to compensate for the actuator’s fault. Based on the
proposed observer, a slidemode controller is developed
to ensure asymptotical tracking of the quadrotor’s atti-
tude. The Lyapunov-based stability analysis has been
presented to prove that the closed-loop system is stable
and the attitude tracking errors converge to zero asymp-
totically. Real-time experimental results performed on
the self-build HILS testbed validate the performance
of the proposed control strategy. Future work will be
focused on the position tracking controller design and
experimental verification on a quadrotor UAV of full
degree of freedom.
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