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Abstract This paper develops a dynamics-based non-
singular interval model and proposes a first-order com-
posite function interval perturbationmethod (FCFIPM)
for luffing angular response field analysis of the
dual automobile cranes system (DACS) with narrowly
bounded uncertainty. By using the nonsingular interval
model to describe a structure parameter with bounded
uncertainty, the reasonable lower and upper bounds can
be obtained, which is quite different from the tradi-
tional interval model with approximate bounds only
from a large number of samples. Firstly, for the DACS
with deterministic information, the inverse kinematics
is analyzed, and the dynamic model of the DACS is
established based on the virtual work principle and the
inverse kinematics. Secondly, considering the nonsin-
gularity of the dynamic response curves, a dynamics-
based nonsingular interval model is introduced. Based
on the nonsingular interval model, the interval luff-
ing angular response vector equilibrium equation of
the DACS is established. Thirdly, a first-order com-
posite function interval perturbation method is pro-
posed. In the FCFIPM, the composite function vec-
tors are expanded by using the first-order Taylor series
expansion, based on the differential property of com-
posite function and monotonic analysis technique, the
lower and upper bounds of the interval luffing angu-
lar response vector of the crane 1 and crane 2 of the
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DACSare determined.Thefirst case is to investigate the
deterministic kinematics and dynamics of the DACS
with a given trajectory. The second case is provided to
illustrate the detailed implementation process of con-
structing a dynamics-based nonsingular intervalmodel.
Finally, some numerical examples are given to verify
the feasibility and efficiency of the FCFIPM for solv-
ing the luffing angular response field problemwith nar-
rowly interval parameters.

Keywords Dual automobile cranes system · Dynam-
ics · Nonsingular interval model · Interval luffing
angular response field · First-order composite function
interval perturbation method

List of symbols

D The length of A1A2

d The length of payload C1C2

Li The length of lifting arm Ai Bi
γi The luffing angular of lifting arm Ai Bi
rAi The position vector of joint point Ai in

the base frame {B}
ṙAi The velocity vector of joint point Ai

rBi The position vector of joint point Bi in
the base frame {B}

ṙBi The velocity vector of joint point Bi
aBi The acceleration vector of joint point

Bi
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rCi The position vector of joint pointCi in
the base frame {B}

ṙCi The velocity vector of joint point Ci

aCi The acceleration vector of joint point
Ci

rOi The position vector of centroid Oi of
lifting arm Ai Bi in the base frame {B}

aOi The acceleration of centroid Oi of lift-
ing arm Ai Bi

rOp The position vector of centroid Op in
the base frame {B}

vOp The velocity vector of the origin Op

aOp The acceleration vector of centroid Op

rpCi
The position vector of joint pointCi in
the moving frame {P}

JwAi Bi
The partial angular velocity matrix of
lifting arm Ai Bi

JvBi The partial velocity matrix of joint
point Bi

Jwp The partial angular velocity matrix of
the payload

JvCi The partial velocity matrix of joint
point Ci

Si The length of hoisting rope BiCi

βi The rotation angle of hoisting rope
BiCi

β̇i The angular velocity of hoisting rope
BiCi with respect to the lifting arm
Ai Bi

mi The mass of lifting arm Ai Bi
R The rotationmatrix frommoving frame

{P} to base frame {B}
R′ The deviation ofRwith respect to time
R′′ The deviation of R′ with respect to

time
θ The rotation angle of {P} relative to

{B}
θ̇ The deviation of θ with respect to time
θ̈ The deviation of θ̇ with respect to time
y TheCartesian coordinates of the origin

Op along the y-axis.
z TheCartesian coordinates of the origin

Op along the z-axis.
FAi Bi The inertia force of lifting arm Ai Bi

respecting to joint point Ai

MAi Bi The inertia moment of lifting arm
Ai Bi respecting to joint point Ai

Fp The inertia force of payload respecting
to point C1

M p The inertiamoment of payload respect-
ing to point C1

τ The driving torque vector of theDACS
τ 1 The driving torque that impose on lift-

ing arm A1B1

τ 2 The driving torque that impose on lift-
ing arm A2B2

JDACS The kinematic Jacobian matrix of the
DACS

J The dynamic Jacobian matrix of the
DACS

Si The matrix of the i th crane
T i The vector of the i th crane
γ The luffing angular response vector.
y The interval parameter vector
yr The interval variable
Si (Ki (X)) The composite function matrix of the

i th crane
T i (Ki (X)) The composite function vector of the

i th crane
yc The midpoint value of the interval

parameter vector y
ycr The midpoint value of interval param-

eter yr
�yr The interval radius of interval param-

eter yr
Sci Themidpoint value of composite func-

tion vector Si (Ki (y))
�1SI

i The deviation interval of composite
function vector Si (Ki (y))

Tc
i Themidpoint value of composite func-

tion vector T i (Ki (y))
�1T I

i The deviation interval of composite
function vector T i (Ki (y))

γ c
i The midpoint value of interval luffing

angular response vector γ I
i

�1γ
I
i The deviation interval of interval luff-

ing angular response vector γ I
i

γ i The upper bound of interval luffing
angular response vector γ I

i
γ i The lower bound of interval luffing

angular response vector γ I
i

Dc The midpoint of length of A1A2

dc The midpoint of length of payload
C1C2
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Lc
1 The midpoint of length of lifting arm

A1B1

Lc
2 The midpoint of length of lifting arm

A2B2

�D The interval radius of interval variable
D

�d The interval radius of interval variable
d

�L1 The interval radius of interval variable
L1

�L2 The interval radius of interval variable
L2

DF The interval change ratio of interval
variable D

dF The interval change ratio of interval
variable d

L1F The interval change ratio of interval
variable L1

L2F The interval change ratio of interval
variable L2

1 Introduction

During last decades, the dynamics and control of dif-
ferent kinds of cranes with different motions have been
investigated widely [1], such as tower cranes [2,3],
rotary cranes [4,5] and overhead cranes [6,7]. Recently,
it is more popular to utilize multiple cranes to gener-
ate more hard operations in some modern construc-
tion projects. For example, Leban et al. [8] employed
the Newton–Euler equations to construct the dynamic
model of dual shipboard cranes system and an inverse
kinematic control strategy for the underdetermined
kinematic problem was presented, as shown in Fig. 1.
Based on the Lagrange equation and D’Alembert prin-
ciple, respectively, the dynamic model and error model
of cooperative cable parallel manipulators for different
multiple mobile cranes (CPMMC) were established by
Zi et al. [9–11]. However, to narrow the gap between
the numericalmethod and the actual situation, paramet-
ric uncertainties should be taken into consideration in
practice to tackle the complicated problem for cranes
[12,13].

Notably, research on uncertain technique has under-
gone rapid development in most practical engineering
problems. This investigation has attracted an increasing
amount of attention, especially in mechanical [14–16],
thermal [17–19], acoustic [20–23] and civil engineer-

ing [24,25]. However, in traditional dynamic response
analysis of automobile crane models, system param-
eters are rarely considered as uncertain parameters.
Actually, uncertainty of structure parameters of an
automobile crane may be resulted from the effects of
external and inner factors [26], such as mechanical
tolerances (e.g., designing/manufacturing/assembling
errors, etc.), unpredictable external excitations (e.g.,
vibration motion, sea wave, etc.) [27], complicated
environment factors (e.g., temperature level, wind load,
etc.) [28] and so on. Generally speaking, the determin-
istic methods can only obtain an approximate solution
of the practical response due to uncertainties in struc-
ture parameters [29,30]. Therefore, it is rather neces-
sary to analyze the luffing angular response field prob-
lem of the dual automobile cranes system (DACS) with
bounded uncertainty in structure parameters, as shown
in Fig. 2 [31].

Up to now, the luffing angular response field prob-
lem of the DACSwith interval parameters has not been
researched yet. As a powerful approach, interval meth-
ods are widely used in many fields with quantifying

Fig. 1 Dual shipboard cranes system

Fig. 2 Dual automobile cranes system
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uncertainties when information about the lower and
upper bounds of some interval parameters is available
[32]. Based on the perturbation theory and monotonic
technique, the general idea of the interval methods is
to compute the upper and lower bounds of response
of systems or structures with interval parameters. In
these methods, the Monte Carlo method (MCM) is
the simplest method for uncertain response field prob-
lem [33–35]. Only if there exists a large number of
samples, the accuracy of MCM can be guaranteed. In
other words, with the increase in the number of sam-
ples, the accuracy of the response intervals obtained by
the MCM will converge to theoretical intervals gradu-
ally; however, the computational cost increases accord-
ingly. Thus, it is not appropriate for the MCM to be
directly applied in large-scale engineering problems,
but it can still be used as a reference method so as
to compare the results with other interval methods. In
order to decrease the computational time, basedonfirst-
order interval parameter perturbation method and the
surface rail generation method, Wang et al. proposed
a modified interval parameter perturbation method
(MIPPM) to estimate response intervals in steady-
state heat convection–diffusion problem and exterior
acoustic field prediction [36,37]. Based on the interval
analysis and Sherman–Morrison–Woodbury formula,
a modified interval perturbation finite element method
(MIPFEM) was proposed by Xia and Yu [38]. In this
method, the interval matrix and the interval vector were
expanded by using the first-order Taylor series, and
the inverse interval matrix was approximated by using
the first-order Neumann series. Besides, for an uncer-
tain system with different kinds of interval parameters,
such as a large uncertain interval variable or an inter-
val random variable, Xia et al. [39] proposed differ-
ent interval perturbation methods to handle these prob-
lems. Based on the so-called improved interval analysis
(IIA) and rational series expansion (RSE), Muscolino
et al. derived approximate explicit expressions of the
frequency response function (FRF)matrix of linear dis-
cretized structures with uncertain parameters [40–43].
Recently, a Chebyshev interval method was proposed
for solving differential equation systems with inter-
val uncertainty. Besides, Chebyshev sampling meth-
ods (Chebyshev tensor product sampling method and
Chebyshev collocation method)-based methodology
was proposed for solving dynamic problem of rigid–
flexible multibody systems with a large number of
uncertain interval parameters [44,45].

As mentioned above, research on the dynamics of
the DACS is still in its preliminary stage and has not
been applied to the luffing angular response field prob-
lem with interval parameters yet. Firstly, how to con-
struct a reasonable interval model, rather than simply
applying a given interval model through a large vari-
ety of samples, has not solved. Secondly, the interval
model compositing of uncertain structure parameters
has not been applied in the prediction of luffing angular
response field of the DACS with bounded uncertainty,
in other words, researchers have not developed an equi-
librium response equation of the DACS with inter-
val parameters yet. Thirdly, the application of interval
methods in the luffing angular response field problem
of the DACS with composite functions, especially for
the prediction of the interval luffing angular response
field with narrow uncertainty, has not explored yet.

In this paper, a first-order composite function inter-
val perturbation method (FCFIPM) is proposed for the
prediction of the luffing angular response field of the
DACS with narrowly interval parameters. The main
procedures of the interval response field prediction are
divided into three steps. The first step is to construct
the kinematics and dynamics of the DACS with deter-
ministic information. Based on the dynamic response
model and the nonsingularity of the response curves,
a dynamics-based nonsingular interval model is con-
structed to obtain reasonable bounds of all the interval
variables in the second step. Subsequently, the luff-
ing angular equilibrium equation of the DACS with
interval parameters is derived. Based on the first-order
Taylor series expansions, the differential property of
composite function and monotonic analysis technique,
the first-order composite function interval perturbation
method (FCFIPM) for the luffing angular response field
prediction of the DACS with narrowly bounded uncer-
tainty is proposed in the third step. Finally, examples
and results are presented and discussed as well.

The remainder of this paper is organized as follows.
In Sect. 2, the kinematics of the DACS is analyzed
by the inverse kinematic method. Based on the virtual
work principle and the kinematics, the dynamic model
of theDACS is derived inSect. 3. InSect. 4, a dynamics-
based nonsingular interval model is constructed, based
on the above interval model, the DACS equilibrium
equation with the nonsingular interval model is gen-
erated. In Sect. 5, based on the differential property of
composite function, the first-order Taylor series expan-
sion and the first-order Neumann series, a first-order
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Dynamics-based nonsingular interval model 2603

Fig. 3 2-D model of the
DACS

composite function interval perturbationmethod for the
interval luffing angular response field of theDACSwith
narrowly interval parameters is proposed. In Sect. 6, the
first case is to provide some simulations under a given
trajectory, in order to investigate the dynamics. The
second case is performed to obtain the dynamics-based
nonsingular interval model of the DACS. Based on the
above dynamics-based nonsingular interval model, the
third case is given for the verification of the effec-
tiveness and feasibility of the first-order composite
function interval perturbation method dealt with nar-
rowly interval parameters. And the effect of different
kinds of interval models on the DACS response field is
also investigated in details. Finally, some concluding
remarks are reported in Sect. 7.

2 Kinematics

2.1 Structural description

The dual automobile cranes system (DACS) is widely
used in hoisting heavy payload applied in engineer-
ing operations. Considering the DACS model shown
in Fig. 2, it is consisted of two automobile cranes and
a payload. Each automobile crane includes one lifting
arm, one luffing cylinder, one rotating table and one
hoisting rope.

In this paper, we consider the luffing motions of two
cranes, simultaneously.According to theworkofLeban
et al. [8], the whole system can make the payload mov-
ing in two-axis (Y and Z axes) translation and rotating
around single axis perpendicular to the O-YZ plane.

For the DACSmodel, the following assumptions are
made for simplicity [26,46]

1. The payload is symmetrical strictly, and the hoist-
ing ropes are never slack.

2. Inertia forces of lifting arms and the payload are
not neglected.

3. The masses of the hoisting ropes are considered to
be neglected compared with other structures of the
system.

Referring to Fig. 3, the base frame {B} : O − Y Z and
the moving frame {P} : Op − YpZ p are fixed on the
centers of A1A2 and C1C2, respectively. The Ai , Bi
and Ci (i = 1, 2) denote the three key joint points of
the i th crane, where Ai denotes the hinge point of the
lifting arm Ai Bi and the i th rotating table, Bi denotes
the hinge point of the lifting arm Ai Bi and the hoisting
rope BiCi , Ci denotes the hinge point of the hoisting
rope BiCi and the payload C1C2. The length of the
lifting arm Ai Bi is Li . The length of the hoisting rope
BiCi is Si . The lengths of A1A2 andC1C2 are D and d,
respectively. The luffing angle of the lifting arms Ai Bi
is γi . The y, z and θ are the three Cartesian coordinates
of the origin Op.

2.2 Inverse kinematics

In this section, based on the inverse kinematics, the
goal of this subsection is to establish the relationship
function between system variables (D, d, Li , y, z and
θ) and response variables (γi ).

The position vectors of joint points Ai (A1 and A2)

in the base frame {B} can be expressed as

rAi = 1

2

[
(−1)i D 0

]T
(1)

The position vectors of joint points Bi (B1 and B2) in
the base frame {B} can be expressed as

rBi = rAi + Li

[
cos γi
sin γi

]
, i = 1, 2 (2)
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The position vector of joint points Ci in the moving
frame {P} can be expressed as

rpCi
= 1

2

[
(−1)i d 0

]T
(3)

The position vector of joint point Ci in the base frame
{B} can be expressed as

rCi = rOp + R · rpCi
, i = 1, 2 (4)

where rOp is the position vector of centroid Op in the
base frame {B}, and rOp = (y z)T . R denotes the rota-
tion matrix from moving frame {P} to base frame {B},
and R =

[
cos θ − sin θ

sin θ cos θ

]
.

The constraint equation associatedwith the i th hoist-
ing rope can be expressed as

∥∥rCi − rBi
∥∥ = Si , i = 1, 2 (5)

Substituting Eqs. (2)–(4) into (5), the above constraint
equation can be expressed as

{(
y − d cos θ

2 + D
2 − L1 cos γ1

)2 + (
z − d sin θ

2 − L1 sin γ1
)2 = S21(

y + d cos θ
2 − D

2 − L2 cos γ2
)2 + (

z + d sin θ
2 − L2 sin γ2

)2 = S22
(6)

Equation (6) can be rewritten as

K1i sin γi + K2i cos γi + K3i = 0, i = 1, 2 (7)

where

K11 = −2L1

(
z − d sin θ

2

)
,

K21 = −2L1

(
y − d cos θ

2
+ D

2

)
,

K31 =
(
y − d cos θ

2
+ D

2

)2

+
(
z − d sin θ

2

)2

+ L2
1 − S21 ,

K12 = −2L2

(
z + d sin θ

2

)
,

K22 = −2L2

(
y + d cos θ

2
− D

2

)
,

K32 =
(
y + d cos θ

2
− D

2

)2

+
(
z + d sin θ

2

)2

+ L2
2 − S22 . (8)

Based on Eq. (7), the inverse kinematic solution for the
DACS can be expressed as

γi = 2 tan−1
−K1i ±

√
K 2
1i + K 2

2i − K 2
3i

K3i − K2i
, i = 1, 2

(9)

2.3 Jacobian matrix

Jacobian matrix is a velocity mapping from input actu-
ators to payload. In this subsection, it is used to obtain
the velocity and acceleration of joints in the luffing
motion of the DACS.

Taking the time derivative of Eq. (7) obtains

K1i cos γi · γ̇ı + sin γi · K̇1i − K2i sin γi · γ̇ı

+ cos γi · K̇2i + K̇3i = 0, i = 1, 2 (10)

Equation (10) can be rewritten as

[
M11 0
0 M22

] [
γ̇1
γ̇2

]
=

[
N11 N12 N13

N21 N22 N23

]⎡
⎣
ẏ
ż
θ̇

⎤
⎦ (11)

where

M11 = K11 cos γ1 − K21 sin γ1,

M22 = K12 cos γ2 − K22 sin γ2,

N11 = −2L1 cos γ1 + 2

(
y − d cos θ

2
+ D

2

)
,

N12 = −2L1 sin γ1 + 2

(
z − d sin θ

2

)
,

N21 = −2L2 cos γ2 + 2

(
y + d cos θ

2
− D

2

)
,

N22 = −2L2 sin γ2 + 2

(
z + d sin θ

2

)
,

N13 = d sin θ

2
N11 − d cos θ

2

N12, N23 = −d sin θ

2
N21 + d cos θ

2
N22. (12)
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Let M =
[
M11 0
0 M22

]
and N =

[
N11 N12 N13

N21 N22 N23

]
,

JDACS is defined as the kinematic Jacobian matrix of
the DACS, which can be expressed as

JDACS = M−1N (13)

3 Dynamics

3.1 Partial velocity vector and partial angular velocity
matrix

To establish the dynamic model of the DACS, in this
subsection, the partial velocity vector and partial angu-
lar velocity matrix of every component of the system
should be calculated firstly. The partial velocity vec-
tor of the component or joint point means the mapping
relationship between the velocity of the centroid of pay-
load and the component or joint point, and the partial
angular velocity matrix of the component or joint point
means the mapping relationship between the angular
velocity of the centroid of payload and the component
or joint point.

Taking the time derivative of Eqs. (2) and (5) obtains

ṙBi = ṙAi + Li γ̇ı

[− sin γi
cos γi

]

= Li γ̇ı

[− sin γi
cos γi

]
, i = 1, 2 (14)

ṙCi = vOp + R′rpCi

= ṙBi + Si β̇i

[− sin βi

cosβi

]
, i = 1, 2 (15)

where vOp is the velocity vector of the origin Op,

vOp = [
ẏ ż

]T
and R′ can be expressed as R′ =

θ̇

[− sin θ − cos θ

cos θ − sin θ

]
.

Referring to thework of Zhu andDou [47] andWu et
al. [48], based on Eq. (13), the partial angular velocity
matrix of lifting arm Ai Bi can be expressed as

JwAi Bi
=

[
Ni1
Mii

Ni2
Mii

Ni3
Mii

]
, i = 1, 2 (16)

Similarly, based on Eq. (14), the partial velocity
matrix of joint point Bi can be expressed as

JvBi =
[

−Li sin γi · Ni1
Mii

−Li sin γi · Ni2
Mii

−Li sin γi · Ni3
Mii

Li cos γi · Ni1
Mii

Li cos γi · Ni2
Mii

Li cos γi · Ni3
Mii

]
, i = 1, 2 (17)

In order to simplify the derivation, here we assume
that lifting arms Ai Bi (i = 1, 2) are both symmetrical.
Thus, the partial velocity matrix of lifting arm Ai Bi
can be expressed as

JvAi Bi = 1

2
JvBi , i = 1, 2 (18)

Similarly, based onEq. (15), the partial angular velocity
matrix of the payload andpartial velocitymatrix of joint
points Ci can be expressed as

Jwp = [
1 0 0

]
(19)

JvCi =
[ − (−1)i sin θ

2 d 1 0
− (−1)i cos θ

2 d 0 1

]
, i = 1, 2 (20)

3.2 Acceleration matrix

In this subsection, in order to describe the inertia force
and moment of lifting arms and payload, the accelera-
tion vectors of joint points and the acceleration matrix
of the system should be analyzed.

By taking the time derivative of Eqs. (14) and (15),
the acceleration vectors of joint points Bi and Ci can
be expressed as

aBi = Li γ̈i

[− sin γi
cos γi

]
− Li γ̇

2
i

[
cos γi
sin γi

]
, i = 1, 2

(21)

aCi = aOp + R′′ · rpCi
, i = 1, 2 (22)

where aOp is the acceleration vector of centroid Op,
and R′′ can be expressed as

R′′ = θ̈

[− sin θ − cos θ

cos θ − sin θ

]
+ θ̇2

[− cos θ sin θ

− sin θ − cos θ

]

(23)

Similarly, based on Eq. (21), the acceleration vector of
centroid Oi of lifting arm Ai Bi can be expressed as

aOi = Li

2
γ̈i

[− sin γi
cos γi

]
− Li

2
γ̇ 2
i

[
cos γi
sin γi

]
, i = 1, 2

(24)
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3.3 Inertia force and moment

Based on the analysis in Sect. 3.2, the goal of this sub-
section is to obtain the inertia force and moment of
lifting arms and payload, respectively.

Considering the joint point Ai is fixed, the inertia
force and moment of lifting arm Ai Bi respecting to
joint point Ai can be expressed as

FAi Bi = −mi
(
aAi + aOi

) = −miaOi , i = 1, 2 (25)

MAi Bi = −γ̈i Ii − mi
Li

2

[− sin γi cos γi
]
aAi

= −γ̈i Ii , i = 1, 2 (26)

where mi is the mass of lifting arm Ai Bi , Ii is the
moment of inertia of lifting arm Ai Bi respecting to its

centroid, and Ii = mi L2
i

3 .
The inertia force and moment of payload respecting

to point C1 can be expressed as

Fp = −mpaC1 (27)

M p = −θ̈ Ip − mp
d

2

[− sin i cos i
]
aOp (28)

where mp is the mass of payload, Ip is the moment
of inertia of payload respecting to joint point C1, and

Ip = mpd2

3 .
In this paper, it is noted that the inertia force and

moment of hoisting ropes are thought as zero for their
masses are neglected.

3.4 Dynamic modeling

Based on the virtual work principle, combining Eqs.
(13), (16), (18)–(20) and (25)–(28), the dynamicmodel
of the DACS can be expressed as follows

JTDACSτ +
{

2∑
i=1

[ (
FAi Bi + mig

)T (
MAi Bi

)T ]
[
JvAi Bi
JwAi Bi

]

+
[ (

Fp + mpg
)T (

M p
)T ]

[
JvC1
Jwp

]}T

= 0, i = 1, 2

(29)

where driving torque vector of the DACS is denoted

as τ = [
τ 1 τ 2

]T
, where τ 1 and τ 2 are the driving

torques that impose on lifting arms A1B1 and A2B2,
respectively.

From Eq. (29), the driving torque vector of the
DMCS can be expressed as

τ = −
(
JTDACS

)−1
{

2∑
i=1

[ (
FAi Bi +mig

)T (
MAi Bi

)T ]

×
[
JvAi Bi
JwAi Bi

]
+
[ (

F p+mpg
)T (

M p
)T ]

[
JvC1
Jwp

]}T

(30)

The main objective of the inverse dynamic model
of the DACS is to determine the driving torque
τ i (i = 1, 2) of each automobile crane when kinematic
Jacobian matrix JDACS, partial velocity of joint points
Ai and C1, partial angular velocity matrices and accel-
eration matrices of lifting arm Ai Bi and payload C1C2

are given.

4 Luffing angular response field problem with
bounded uncertainty

4.1 Definition of dynamics-based nonsingular interval
model

According to the work of Jiang et al. [49], a dynamics-
based nonsingular interval model is proposed to obtain
a reasonable interval parameters set, which can make
distribution curve of dynamic response of the DACS
smooth without any saltation.

Without loss of generation, let the continuous inter-
val variable f

(
YI, t

)
denote the dynamic response

function of multiple interval variables which are repre-
sentedby the interval vectorYI = (

yI1, . . . , y
I
r , . . . , y

I
n

)
.

For simplicity, all interval variables are assumed to
be independent of each other with small uncertainty.
According to the first-order Taylor series expansion and
the perturbation theory, the dynamic response function
f
(
YI, t

)
can be expressed as

f
(
YI, t

)
= f

(
Yc, t

)

+
n∑

i=1

{
∂f

(
YI, t

)

∂yIi

∣∣∣∣∣
Yc

}
(
yr − ycr

) + R

(31)

where R is the remainder term.
In complicated engineering problems, the deviation

of f
(
YI, t

)
with respect to the time t , i.e.,

∂f
(
YI ,t

)
∂t can’t

be obtained in some stochastic points from the interval
of yIi , in other words, some unreasonable samples of
uncertain variables can result in singular matrix [50].
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In this case, in order to obtain the reasonable bound
for every interval parameter, based on the dynamic
response function f

(
YI, t

)
in Eq. (31), a dynamics-

based nonsingular interval model can be defined as

Find yrεyIr =
[
yr , yr

]

s.t. �
∂f

(
yc1,...,yr−σ,...,ycn ,t

)

∂t and �
∂f(yc1,...,yr+σ,...,ycn ,t)

∂t

and ∃ ∂f(yc1,...,yr ,...,y
c
n ,t)

∂t

yr < yr < yr , r = 1, · · · , n. (32)

where �c is the symbol of midpoint value. σ is an
infinitesimal. yr and yr are lower and upper bounds of

the r th interval parameter vector yIr , respectively. n is
the total number of interval parameters.

4.2 Luffing angular response equilibrium equation
with nonsingularity

Due to the nonnegative of the luffing angular response
γi (i = 1, 2), Eq. (9) can also be written as

tan
γi

2
=

√
K 2
1i + K 2

2i − K 2
3i − K1i

K3i − K2i
, i = 1, 2 (33)

To simplify the process of analyzing the luffing
angular response equation of the DACS with interval
parameters, we rewrite Eq. (33) as the following form

Si = T iγ i , i = 1, 2 (34)

where Si and T i are the matrix and vector of the i th
crane; γ i is the luffing angular response vector of the
i th crane. They can be expressed as

Si =
√
K 2
1i + K 2

2i − K 2
3i − K1i ,

T i = K3i − K2i , γ i = tan
γi

2
. (35)

In actual crane engineering problems, due to the
effects of production limitations and manufacturing
errors, the uncertainty in structure parameters is unavoid-
able. Furthermore, according to the work of Zi and
Zhou [26] and Gao et al. [27,30], the allowable ranges
of an uncertain structure parameters usually belong to
some interval. In this paper, the uncertainty of struc-
ture parameters can be quantitatively described as the
interval parameters with small interval change ratios.

According to the definition of dynamics-based non-
singular interval model in Sect. 4.1, we assume that

the allowable interval vector is composed of all the
independent interval variables of the DACS with nar-
row uncertainty, in other words, a reasonable interval
model is constructed, which can be defined as

y ∈ yI =
(
y Ir

)
=

[
y, y

]
, yr ∈ y Ir =

(
y Ir

)
=

[
yr , yr

]
.

(36)

where y and y are lower and upper bounds of interval
parameter vector y, respectively.

Therefore, the luffing angular response equilibrium
equation (Eq. 34) of the DACSwith nonsingularity can
be rewritten as

Si (Ki (y)) = T i (Ki (y)) γ i (y) , i = 1, 2 (37)

where Si (Ki (y)) and Ti (Ki (y)) are called the com-
posite function matrix and the composite function vec-
tor of the i th crane respecting to interval parameter
vector y, respectively, which can be expressed in the
following form

Si (Ki (y)) =
√
K1i (y)2 + K2i (y)2 − K3i (y)2

−K1i (y) ,

T i (Ki (y)) = K3i (y) − K2i (y) . (38)

Based on Eq. (36),Ki (y) stands for the membership
function vector of interval parameter vector y, which
can be expressed as

Ki (y) = {K1i (y) , K2i (y) , K3i (y)}T (39)

where K1i (y), K2i (y) and K3i (y) stand for threemem-
bership expressions of interval parameter vector y,
respectively.

Theoretical solution set of Eq. (37) is defined as

ε =
{
γ I
i |Si (Ki (y)) = T i (Ki (y)) γ i (y) , ∈ yI

}

(40)

In general, the theoretical solution set ε has a very
complicated region. Therefore, it is rather hard to solve
Eq. (40) directly. According to the work of Wang and
Qiu [19,36,37] and Xia et al. [38,39], the appropri-
ate solution of interval luffing angular response vector
γ I
i is usually transformed to solve the smallest closed

interval which includes the theoretical solution set ε.
The approximate solution can be expressed as

γ I
i =

[
γ i , γ i

]
(41)

123



2608 B. Zhou et al.

where γ i and γ i are the lower and upper bounds of the
smallest closed interval, respectively.

Thus, Eq. (37) can be rewritten as

Si (Ki (y)) = T i (Ki (y)) γ I
i , i = 1, 2 (42)

In this paper, we define interval luffing angular
response field as the quantified effect of interval param-
eters on the luffing angular response vector of the
DACS, which can be expressed as the bounds (lower
and upper bound) of luffing angular response vector.

5 First-order composite function interval
perturbation method (FCFIPM)

In this section, the interval luffing angular response
field of the DACS with narrow uncertainty will be cal-
culated by the proposed first-order composite function
interval perturbation method (FCFIPM). As we know,
for an uncertain systemwith bounded parameters, if the
ranges of all the bounded parameters are all rather nar-
row, the accuracy and computational cost of applying
the first-order Taylor series expansion for the nonlinear
functions are acceptable [19,26,36,37,39].

Based on the differential property of composite
function and neglecting the higher-order terms, the
first-order Taylor expansions of composite function
matrix Si (Ki (y)) at the midpoints of the interval
parameter vector y can be expressed as

Si (Ki (y)) = Sci + �1SI
i (43)

where Sci and �1SI
i are the midpoint value and

deviation interval of the composite function matrix
Si (Ki (y)). They can be expressed as

Sci = Si
(
Ki

(
yc
))

(44)

�1SI
i =

n∑
r=1

∂Si (Ki (yc))
∂Ki (yc)

· ∂Ki (yc)
∂yr

(
y Ir − ycr

)

=
n∑

r=1

∂Si (Ki (yc))
∂Ki (yc)

· ∂Ki (yc)
∂yr

�yrδr (45)

where ycr and �yr are the midpoint value and inter-
val radius of the interval parameter yr . yc is the mid-
point value of the interval parameter vector. Sci and
�1SI

i are the midpoint value and deviation interval of
the composite functionmatrix Si (Ki (y)), respectively.

The transition parameter δr denotes a fixed interval, i.e.,
the standard interval variable δr = [−1,+1].

Similarly, using first-order Taylor series expan-
sion, the composite function vector T i (Ki (y)) at the
midpoints of the interval parameter vector y can be
expressed as

T i (Ki (y)) = Tc
i + �1T I

i (46)

where Tc
i and �1T I

i are the midpoint value and
deviation interval of the composite function vector
T i (Ki (y)). They can be expressed as

Tc
i = T i

(
Ki

(
yc
))

(47)

�1T I
i =

n∑
r=1

∂T i (Ki (yc))
∂Ki (yc)

· ∂Ki (yc)
∂yr

(
y Ir − ycr

)

=
n∑

r=1

∂T i (Ki (yc))
∂Ki (yc)

· ∂Ki (yc)
∂yr

�yrδr (48)

It is noted that the accuracy of the first-order Taylor
series expansion decreases when the levels of uncer-
tainty of uncertain parameters increase gradually.

Using the perturbation theory, substituting Eqs. (43)
and (46) into Eq. (42), one yields

γ I
i =

(
Tc
i + �1T I

i

)−1 (
Sci + �1SI

i

)
(49)

According to the Neumann series expansion [26],
if the spectral radius of

(
Tc
i

)−1
�1T i is less than 1,

namely ‖ (Tc
i

)−1
�1T i‖ < 1,

(
Tc
i + �1T I

i

)−1
can be

approximated by retaining the first two terms
(
Tc
i + �1T I

i

)−1 = (
Tc
i

)−1 − (
Tc
i

)−1
�1T I

i

(
Tc
i

)−1

+
((
Tc
i

)−1
�1T I

i

)2 (
Tc
i

)−1

(50)

Substituting Eqs. (50) into (49), using the first-order
perturbation term and neglecting the higher-order
terms, one obtains

γ I
i ≈ (

Tc
i

)−1 Sci + (
Tc
i

)−1
�1SI

i

− (
Tc
i

)−1
�1T I

i

(
Tc
i

)−1 Sci (51)

Thus, Eq. (51) can be rewritten as

γ I
i = γ c

i + �1γ
I
i (52)
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where γ c
i and �1γ

I
i are the midpoint value and devi-

ation interval of the interval luffing angular response
vector γ I

i . They can be expressed as

γ c
i = (

T c
i

)−1 Sci (53)

�1γ
I
i = (

Tc
i

)−1
�1SI

i − (
Tc
i

)−1
�1T I

i

(
Tc
i

)−1 Sci

= (
Tc
i

)−1
[
�1SI

i − �1T I
i

(
Tc
i

)−1 Sci
]

= (
Tc
i

)−1

[
n∑

r=1

(
∂Si (Ki (yc))

∂Ki (yc)
· ∂Ki (yc)

∂yr

−∂Ti (Ki (yc))
∂Ki (yc)

· ∂Ki (yc)
∂yr

(
Tc
i

)−1 Sci

)
�yrδr

]

= �1γ i · δr (54)

Therefore, according to interval union operation and
based on the monotonicity of �1γ

I
i with respect to δr ,

the interval radius �1γ i can be obtained as

�1γ i =
n∑

r=1

∣∣∣∣
(
Tc
i

)−1
(

∂Si (Ki (yc))
∂Ki (yc)

· ∂Ki (yc)
∂yr

−∂Ti (Ki (yc))
∂Ki (yc)

· ∂Ki (yc)
∂yr

(
Tc
i

)−1 Sci

)
�yr

∣∣∣∣
(55)

where |�| denotes the absolute value.
Due to the interval radius �yr derived from interval

luffing angular response vector γ I
i is included in the

above formula, the luffing angular response field is not
deterministic value but an interval.

Therefore, the upper bound γ i and lower bound
γ i of the interval luffing angular response vector γ I

i
with respect to the interval parameter vector y can be
expressed as

γ i = γ c
i + �1γ i (56)

γ i = γ c
i − �1γ i (57)

Combining with dynamics-based nonsingular inter-
val model, Fig. 4 shows the detailed steps and the pro-
cedure of FCFIPM for the DACS can be summarized
as follows

Step 1: Generate initial sample yr , based on the
deterministic dynamic model (see Eq. 30), identify-
ing reasonable lower bound yr and upper bound yr for

every interval variable y Ir (see Eq. 36):

1. Find the maximum upper bound yr of y Ir using

�
∂f(yc1,...,yr+σ,...,ycn ,t)

∂t and ∃ ∂f(yc1,...,,yr ,...,y
c
n ,t)

∂t .
2. Find the minimum lower bound yr of y Ir using

�
∂f

(
yc1,...,yr−σ,...,ycn ,t

)

∂t and ∃ ∂f
(
yc1,...,yr ,...,y

c
n ,t

)

∂t .

3. If r < n, let r = r + 1; otherwise, r = n, go to next
step.

Step 2: Construct dynamics-based nonsingular interval
model YI = (

yI1, . . . , y
I
r , . . . , y

I
n

)
.

Step 3: To produce the luffing angular response equi-
librium equation (see Eq. 37) of the DACS with non-
singularity.

Step 4: Based on differential property of compos-
ite function and perturbation theory, performing the
decompositions of composite function matrix
Si (Ki (y)) (see Eqs. 43–45) and composite function
vector T i (Ki (y)) (see Eqs. 46–48) by first-order Tay-
lor series expansion.

Step 5: Evaluating the inverse of composite function
vector Ti (Ki (y)) in approximate terms by Neumann
series expansion (see Eq. 50).

Step 6: Calculating interval luffing angular response
vector γ I

i (see Eq. 52), the midpoint value γ c
i (see Eq.

53) and deviation interval �1γ
I
i (see Eq. 54) of the

interval luffing angular response vector γ I
i .

Step 7: Calculating the upper bound γ i (see Eq. 56)
and lower bound γ i (see Eq. 57) of the interval luffing

angular response vector γ I
i .

It is worth emphasizing that the proposed FCFIPM
requires to explore dynamics-based nonsingular inter-
val model at first, in order to obtain reasonable maxi-
mum interval for every uncertain structure parameters,
which can enhance the reliability of the system greatly
and provide reference for setting reasonable interval
change ratios of interval variables.

6 Numerical examples

In this section, some examples were carried out with
MATLAB for the DACS to illustrate the feasibility and
effectiveness of the proposed method in this paper. The
first one is presented to analyze the influence of the
system parameters on the dynamics of the DACS with
deterministic parameters. The second one is to con-
struct the dynamics-based nonsingular interval model
under the same spatial trajectory. Based on the above
analysis, the third one is presented to demonstrate
the feasibility of the MHUM for solving the luffing
angular response field problem of the DACS with nar-
rowly bounded structure parameters. The Monte Carlo
method is applied as a referenced approach for validat-
ing the feasible and efficiency of the proposedMHRM.
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Fig. 4 Flowchart of the proposed FCFIPM

6.1 Deterministic kinematic and dynamic responses
analysis

In this section, in order to investigate the effect of the
deterministic system parameters on the kinematic and
dynamic responses of the DACS, the deterministic sys-
tem parameters of DACS are listed in Table 1.

During the simulation, by referring to the engineer-
ing practice, let the centroid of the payload move from
the initial coordinate (0, 0.5m, 0◦) to terminal coordi-
nate (−0.5, 0m, 30◦) along the spatial trajectory for-
mulated as

⎧⎨
⎩

y = −0.5 ∗ sin (pi/2 ∗ t)
z = 0.5 ∗ cos (pi/2 ∗ t)
θ = pi/6 ∗ t

(58)

Table 1 Deterministic DACS parameters

Symbol Description Value

D (m) Length of A1A2 12

d (m) Length of payload 2.5

L1 (m) Length of lifting arm A1B1 5

L2 (m) Length of lifting arm A2B2 5

S1 (m) Length of hoisting rope B1C1 at
the terminal location

1

S2 (m) Length of hoisting rope B2C2 at
the terminal location

1

m1 (kg) Mass of lifting arm A1B1 50,000

m2 (kg) Mass of lifting arm A2B2 50,000

mp (kg) Mass of payload C1C2 50,000
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Fig. 5 Trajectory of the
payload

Fig. 6 Luffing angular
displacement of the DACS

Fig. 7 Luffing angular
velocity of the DACS

The spatial trajectory of the payload in Eq. (58) is a
smooth curve shown in Fig. 5. It is noted that the tra-
jectory in Eq. 58 is a reference trajectory.

Figures 6, 7 and 8 show the curves of the luff-
ing angular displacement γi (i = 1, 2), luffing angu-

lar velocity γ̇i and luffing angular acceleration γ̈i of
the DACS, respectively. It can be seen that all the
curves of the two lifting arms change smoothly and
reasonable numerical results are obtained. In other
words, one can observe that the DACS possesses a
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Fig. 8 Luffing angular
acceleration of the DACS

Fig. 9 Driving torques of
the DACS

good kinematic behavior in terms of angular displace-
ment, angular velocity and angular acceleration of the
luffing angle. Furthermore, appropriate state of lifting
arms is also theoretical references for controlling the
operation of the payload stably and reliably, as well
as effectively reducing the acute vibration of hoisting
ropes.

The driving torques of the DACS and the sum of the
absolute value of driving torques are plotted in Figs. 9
and 10, respectively. It can be seen that the driving
torque of crane 1 is much larger than that of crane
2; besides, the driving torque of crane 1 and crane 2
present increases at first and decreases subsequently.
Furthermore, the maximum sum of the absolute value
of driving torques of the DACS appears when the time
is equal to nearly 0.8 s.

6.2 Dynamics-based nonsingular interval model

In this section, in order to investigate allowable ranges
of uncertain structure parameters (D, d, L1, L2) and
the impact of those on the dynamic response, the actual
analysis process of the dynamics-based nonsingular
interval model can be divided into two steps. The first
step is to obtain the dynamic response with given deter-
ministic parameters. Subsequently, considering the sig-
nificance of structure parameters on dynamic response,
we settle out the allowable ranges of structure param-
eters in the second step. Meantime, we give results of
the effect of the structure parameters on the dynamic
responses of the DACS with deterministic parameters.
Thus, a dynamics-based nonsingular interval model
(Eq. (32) as illustrated in Sect. 4.1) can be constructed.
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Fig. 10 Sum of the absolute
value of driving torques

The results are shown in Figs. 11, 12, 13, 15 and 16,
respectively. During the simulation, let the centroid of
the payload move along the same spatial trajectory as
stated in Sect. 6.1.

Figures 11 and 12 depict the effect of different
D (the length of A1A2) on driving torque of the
crane 1 and crane 2, respectively. As shown in the
six curves of every figure consistently, we can see
that two red curves (D = 11m and D = 13.5m)

are obviously different from other four blue curves
(D = 12, 12.5, 13, 13.5m). The notable character-
istic is that each of two red curves has a singularity
point. For the curves of D = 11m and D = 13.5m,
the singularity points appear when the time is equal to
0.48 and 0.63 s, respectively. However, other four blue
curves are sufficiently smooth and have no singularity

point, which indicate that the allowable range of the
length of A1A2 is from 11.5 to 13m.

Figures 13 and 14 depict the effect of different d
(the length of C1C2) on driving torque of the crane 1
and crane 2, respectively. As shown in the six curves of
every figure consistently, we can see that two red curves
(d = 1m and d = 4m) are obviously different from
other five blue curves (d = 1.5, 2, 2.5, 3, 3.5m). The
notable characteristic is that each of two red curves
has a singularity point. For the curves of d = 1m
and d = 4m, the singularity points appear when the
time is equal to 0.86s and 0.03s, respectively. However,
other five blue curves are sufficiently smooth and have
no singularity point, which indicate that the allowable
range of the length of payload C1C2 is from 1.5 to
3.5m.

Fig. 11 Effect of the length
of A1A2 on driving torque
of the crane 1
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Fig. 12 Effect of the length
of A1A2 on driving torque
of the crane 2

Fig. 13 Effect of the length
of payload C1C2 on driving
torque of the crane 1

Fig. 14 Effect of the length
of payload C1C2 on driving
torque of the crane 2

Figure 15 depicts the effect of different L1 (the
length of lifting arm A1B1) on driving torque of the
crane 1. As shown in the five curves, we can see

that two red curves (L1 = 4m and L1 = 6m)

are obviously different from other three blue curves
(L1 = 4.5, 5, 5.5m). The notable characteristic is that
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Fig. 15 Effect of the length
of lifting arm A1B1 on
driving torque of the crane 1

Fig. 16 Effect of the length
of lifting arm A2B2 on
driving torque of the crane 2

each of two red curves has a singularity point. For the
curves of L1 = 4m and L1 = 6m, the singularity
points appear when the time is equal to 0.29 and 0.27 s,
respectively. However, other three blue curves are suf-
ficiently smooth and have no singularity point, which
indicate that the allowable range of the length of lifting
arm A1B1 is from 4.5 to 5.5m.

Figure 16 depicts the effect of different L2 (the
length of lifting arm A2B2) on driving torque of the
crane 2. As shown in the five curves, we can see
that two red curves (L2 = 3.5m and L2 = 5.5m)

are obviously different from other three blue curves
(L2 = 4, 4.5, 5m). The notable characteristic is that
each of two red curves has a singularity point. For the
curves of L2 = 3.5m and L2 = 5.5m, the singularity
points appear when the time is equal to 0.44 and 0.46 s,
respectively. However, other three blue curves are suf-
ficiently smooth and have no singularity point, which

indicate that the allowable range of the length of lifting
arm A2B2 is from 4 to 5m.

In order to describe the obtained dynamics-based
nonsingular interval model constituting of reasonable
interval parameters clearly, the maximum dispersal
degree (MDD) of an interval variable can be defined
in the following formula

x IMDD = xc

�x
= xU − x L

xU − x L
(59)

where xc and �x are the midpoint value (MV) and
interval radius of the interval variable x I . x L and xU

are the lower bound (LB) and upper bound (UB) of the
interval variable x I .

Based on above analysis, a dynamics-based non-
singular interval model can be constructed as listed in
Table 2.
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Table 2 Dynamics-based nonsingular interval model

Interval variables LB UB MV MDD

DI (m) 11.5 13 12.75 0.06

d I (m) 1.5 3.5 2.5 0.40

L I
1 (m) 4.5 5.5 5 0.10

L I
2 (m) 4 5 4.5 0.11

6.3 Luffing angular response field problem of DACS
with interval parameters

In this section, in order to investigate the feasibility
and effectiveness of the proposed method described
in Sect. 5 on the interval DACS response field prob-
lem, based on the analysis in Sect. 6.2, the uncer-
tain structure parameters (D, d, L1, L2) are consid-
ered as narrowly interval parameters. These interval
parameters are supposed to be independent with each
other. Meantime, we consider other system parameters
as specific deterministic parameters. The properties of
these deterministic and interval parameters are listed in
Table 3.

Based on above description, we have

y = {y1, y2, y3, y4}T = {D, d, L1, L2}T ,

yc = {
yc1, y

c
2, y

c
3, y

c
4

}T = {
Dc, dc, Lc

1, Lc
2

}T
,

�yr = {�y1, �y2, �y3, �y4}T
= {�D, �d, �L1, �L2}T . (60)

where �D, �d, �L1 and �L2 are the interval radius
of interval variables D, d, L1 and L2, respectively.

Substituting Eqs. (60) into (8), one obtains

Kc
11 = −2Lc

1

(
z − dc sin θ

2

)
,

Kc
21 = −2Lc

1

(
y − dc cos θ

2
+ Dc

2

)
,

Kc
31 =

(
y − dc cos θ

2
+ Dc

2

)2

+
(
z − dc sin θ

2

)2

+ (
Lc
1

)2 − S21 ,

Kc
12 = −2Lc

2

(
z + dc sin θ

2

)
,

Kc
22 = −2Lc

2

(
y + dc cos θ

2
− Dc

2

)
,

Kc
32 =

(
y + dc cos θ

2
− Dc

2

)2

+
(
z + dc sin θ

2

)2

+ (
Lc
2

)2 − S22 . (61)

where �c is the symbol of midpoint value.
Substituting Eqs. (61) into (35), one obtains

Sc1 =
√(

Kc
11

)2 + (
Kc
21

)2 − (
Kc
31

)2 − (
Kc
11

)
,

Tc
1 = Kc

31 − Kc
21;

Sc2 =
√(

Kc
12

)2 + (
Kc
22

)2 − (
Kc
32

)2 − (
Kc
12

)
,

Tc
2 = Kc

32 − Kc
22. (62)

Table 3 DACS parameters

System parameters Symbol Description Constant or midpoint values

Deterministic parameters m1 (kg) Mass of lifting arm A1B1 50,000

m2 (kg) Mass of lifting arm A2B2 50,000

mp (kg) Mass of payload C1C2 50,000

S1 (m) Length of hoisting rope B1C1 1

S2 (m) Length of hoisting rope B2C2 1

y (m) Y -axis coordinate of centroid Op y = 0.5

z (m) Z -axis coordinate of centroid Op z = 0.5

θ (◦) Orientation coordinate of centroid Op θ = pi/6

Interval parameters Dc (m) Midpoint of length of A1A2 12.75

dc (m) Midpoint of length of payload C1C2 2.5

Lc
1 (m) Midpoint of length of lifting arm A1B1 5

Lc
2 (m) Midpoint of length of lifting arm A2B2 4.5
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Substituting Eqs. (62) into (53), the midpoint value
γ c
i of the interval luffing angular response vector can

be obtained as

γ c
1 = (

Tc
1

)−1 Sc1,

γ c
2 = (

Tc
2

)−1 Sc2. (63)

For the crane1, ∂S1(K1(yc))
∂K1(yc)

is composedof ∂S1(K1(yc))
∂K11(yc)

,
∂S1(K1(yc))
∂K21(yc)

and ∂S1(K1(yc))
∂K31(yc)

, based on the partial deriva-
tion law, one obtains

∂S1 (K1 (yc))
∂K11 (yc)

= Kc
11√(

Kc
11

)2 + (
Kc
21

)2 − (
Kc
31

)2 − 1,

∂S1 (K1 (yc))
∂K21 (yc)

= Kc
21√(

Kc
11

)2 + (
Kc
21

)2 − (
Kc
31

)2 ,

∂S1 (K1 (yc))
∂K31 (yc)

= −Kc
31√(

Kc
11

)2 + (
Kc
21

)2 − (
Kc
31

)2 . (64)

Similarly, ∂T1(K1(yc))
∂K1(yc)

is composed of ∂T1(K1(yc))
∂K11(yc)

,
∂T1(K1(yc))

∂K21(yc)
and ∂T1(K1(yc))

∂K31(yc)
, one obtains

∂T1 (K1 (yc))
∂K11 (yc)

= 0,
∂T1 (K1 (yc))

∂K21 (yc)
= −1,

∂T1 (K1 (yc))
∂K31 (yc)

= 1. (65)

Here, let us introduce the interval change ratios DF ,
dF , L1F and L2F for interval variables D, d, L1 and
L2, respectively, they can be expressed as follows

�D = Dc · DF , �d = dc · dF , �L1 = Lc
1 · L1F ,

�L2 = Lc
2 · L2F . (66)

Substituting Eqs. (61)–(65) into (55), the interval
radius �1γ 1 of the interval luffing angular response
vector can be obtained as

�1γ 1 =
∣∣∣∣∣
(
Tc
1

)−1

(
4∑

r=1

∂S1 (K1 (yc))
∂K1 (yc)

· ∂K1 (yc)
∂yr

�yr

)

− (
Tc
1

)−2 Sc1

(
4∑

r=1

∂T1 (K1 (yc))
∂K1 (yc)

· ∂K1 (yc)
∂yr

�yr

)∣∣∣∣∣
(67)

where
4∑

r=1

∂S1 (K1 (yc))
∂K1 (yc)

· ∂K1 (yc)
∂yr

�yr

=
⎡
⎣
⎛
⎝ Kc

21√(
Kc
11

)2 + (
Kc
21

)2 − (
Kc
31

)2

⎞
⎠ · (−Lc

1

)

+
⎛
⎝ −Kc

31√(
Kc
11

)2 + (
Kc
21

)2 − (
Kc
31

)2

⎞
⎠

·
(
y − dc cos θ

2
+ Dc

2

)]
· �D

+
⎡
⎣
⎛
⎝ Kc

11√(
Kc
11

)2 + (
Kc
21

)2 − (
Kc
31

)2 − 1

⎞
⎠

· (Lc
1 sin θ

)

+
⎛
⎝ Kc

21√(
Kc
11

)2 + (
Kc
21

)2 − (
Kc
31

)2

⎞
⎠ · (Lc

1 cos θ
)

+
⎛
⎝ −Kc

31√(
Kc
11

)2 + (
Kc
21

)2 − (
Kc
31

)2

⎞
⎠

·
((

y − dc cos θ

2
+ Dc

2

)
(− cos θ)

+
(
z − dc sin θ

2

)
(− sin θ)

)]
· �d

+
⎡
⎣
⎛
⎝ Kc

11√(
Kc
11

)2 + (
Kc
21

)2 − (
Kc
31

)2 − 1

⎞
⎠

·
(

−2

(
z − dc sin θ

2

))

+
⎛
⎝ Kc

21√(
Kc
11

)2 + (
Kc
21

)2 − (
Kc
31

)2

⎞
⎠

·
(

−2

(
y − dc cos θ

2
+ Dc

2

))

+
⎛
⎝ −Kc

31√(
Kc
11

)2 + (
Kc
21

)2 − (
Kc
31

)2

⎞
⎠ · 2Lc

1

⎤
⎦ · �L1

(68)
4∑

r=1

∂T1 (K1 (yc))
∂K1 (yc)

· ∂K1 (yc)
∂yr

�yr

=
(
Lc
1 + y − dc cos θ

2
+ Dc

2

)
· �D

+
[
−Lc

1 cos θ +
(
y − dc cos θ

2
+ Dc

2

)

(− cos θ)

+
(
z − dc sin θ

2

)
(− sin θ)

]
· �d
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+
[
2

(
y − dc cos θ

2
+ Dc

2

)
+ 2Lc

1

]
· �L1

(69)

In order to clarify the expressions, Eq. (68) can be
rewritten as
4∑

r=1

∂S1 (K1 (yc))
∂K1 (yc)

· ∂K1 (yc)
∂xr

�yr

= S1D · �D + S1d · �d + S1L1 · �L1 (70)

where

S1D =
⎛
⎝ Kc

21√(
Kc
11

)2 + (
Kc
21

)2 − (
Kc
31

)2

⎞
⎠ · (−Lc

1

)

+
⎛
⎝ −Kc

31√(
Kc
11

)2 + (
Kc
21

)2 − (
Kc
31

)2

⎞
⎠ ·

(
y − dc cos θ

2
+ Dc

2

)
,

S1d =
⎛
⎝ Kc

11√(
Kc
11

)2 + (
Kc
21

)2 − (
Kc
31

)2 − 1

⎞
⎠

· (Lc
1 sin θ

)

+
⎛
⎝ Kc

21√(
Kc
11

)2 + (
Kc
21

)2 − (
Kc
31

)2

⎞
⎠

· (Lc
1 cos θ

)

+
⎛
⎝ −Kc

31√(
Kc
11

)2 + (
Kc
21

)2 − (
Kc
31

)2

⎞
⎠

·
((

y − dc cos θ

2
+ Dc

2

)
(− cos θ)

+
(
z − dc sin θ

2

)
(− sin θ)

)
,

S1L1 =
⎛
⎝ Kc

11√(
Kc
11

)2 + (
Kc
21

)2 − (
Kc
31

)2 − 1

⎞
⎠

·
(

−2

(
z − dc sin θ

2

))

+
⎛
⎝ Kc

21√(
Kc
11

)2 + (
Kc
21

)2 − (
Kc
31

)2

⎞
⎠

·
(

−2

(
y − dc cos θ

2
+ Dc

2

))

+
⎛
⎝ −Kc

31√(
Kc
11

)2 + (
Kc
21

)2 − (
Kc
31

)2

⎞
⎠ · 2Lc

1.

(71)

Similarly, Eq. (69) can be rewritten as

4∑
r=1

∂T1 (K1 (yc))
∂K1 (yc)

· ∂K1 (yc)
∂yr

�yr

= T1D · �D + T1d · �d + T1L1 · �L1 (72)

where

T1D = Lc
1 + y − dc cos θ

2
+ Dc

2
,

T1d = −Lc
1 cos θ +

(
y − dc cos θ

2
+ Dc

2

)
(− cos θ)

+
(
z − dc sin θ

2

)
(− sin θ) ,

T1L1 = 2

(
y − dc cos θ

2
+ Dc

2

)
+ 2Lc

1.

(73)

Substituting Eqs. (70) and (72) into (67), the interval
radius �1γ 1 of the interval luffing angular response
vector can be rewritten as

�1γ 1 =
∣∣∣
[(
Tc
1

)−1 S1D − (
Tc
1

)−2 Sc1T1D

]
· �D

+
[(
Tc
1

)−1 S1d − (
Tc
1

)−2 Sc1T1d

]
· �d

+
[(
Tc
1

)−1 S1L1 − (
Tc
1

)−2 Sc1T1L1

]
· �L1

∣∣∣
(74)

Based on Eqs. (63) and (74), the upper bound γ 1 and
lower bound γ 1 of the interval luffing angular response

vector γ I
1 of the DACSwith narrowly interval structure

parameters calculated by FCFIPM can be expressed as

γ 1 = γ c
1 + �1γ 1, γ 1 = γ c

1 − �1γ 1. (75)

Similarly, for the crane 2, the interval radius �1γ 2
of the interval luffing angular response vector can be
rewritten as

�1γ 2 =
∣∣∣
[(
Tc
2

)−1 S2D − (
Tc
2

)−2 Sc2T2D

]
· �D

+
[(
Tc
2

)−1 S2d − (
Tc
2

)−2 Sc2T2d

]
· �d

+
[(
Tc
2

)−1 S2L2 − (
Tc
2

)−2 Sc2T2L2

]
· �L2

∣∣∣
(76)
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where

S2D =
⎛
⎝ Kc

22√(
Kc
12

)2 + (
Kc
22

)2 − (
Kc
32

)2

⎞
⎠ · (Lc

2

)

+
⎛
⎝ −Kc

32√(
Kc
12

)2 + (
Kc
22

)2 − (
Kc
32

)2

⎞
⎠

· (−1)

(
y + dc cos θ

2
− Dc

2

)
,

S2d =
⎛
⎝ Kc

12√(
Kc
12

)2 + (
Kc
22

)2 − (
Kc
32

)2 − 1

⎞
⎠

· (−Lc
2 sin θ

)

+
⎛
⎝ Kc

22√(
Kc
12

)2 + (
Kc
22

)2 − (
Kc
32

)2

⎞
⎠

· (−Lc
2 cos θ

)

+
⎛
⎝ −Kc

32√(
Kc
12

)2 + (
Kc
22

)2 − (
Kc
32

)2

⎞
⎠

·
((

y + dc cos θ

2
− Dc

2

)
(cos θ)

+
(
z + dc sin θ

2

)
(sin θ)

)
,

S2L2 =
⎛
⎝ Kc

12√(
Kc
12

)2 + (
Kc
22

)2 − (
Kc
32

)2 − 1

⎞
⎠

·
(

−2

(
z + dc sin θ

2

))

+
⎛
⎝ Kc

22√(
Kc
12

)2 + (
Kc
22

)2 − (
Kc
32

)2

⎞
⎠

·
(

−2

(
y + dc cos θ

2
− Dc

2

))

+
⎛
⎝ −Kc

32√(
Kc
12

)2 + (
Kc
22

)2 − (
Kc
32

)2

⎞
⎠ · 2Lc

2.

T2D = −Lc
2 − y − dc cos θ

2
+ Dc

2
,

T2d = Lc
2 cos θ +

(
y + dc cos θ

2
− Dc

2

)
(cos θ)

+
(
z + dc sin θ

2

)
(sin θ) ,

T2L2 = 2

(
y + dc cos θ

2
− Dc

2

)
+ 2Lc

2. (77)

Similarly, the upper bound γ 2 and lower bound γ 2

of the interval luffing angular response vector γ I
2 of

the DACS with narrowly interval structure parameters
calculated by FCFIPM can be expressed as

γ 2 = γ c
2 + �1γ 2, γ 2 = γ c

2 − �1γ 2 (78)

According to above analysis, we define the interval
change ratios of interval variables are all varied in a
same interval. If DD denotes the dispersal degree of
uncertain variables of the i th crane of the DACS, then
DD will vary in some interval.

To investigate the different effects of different inter-
val parameters from interval models on the intervals of
the luffing angular response field of the DACS, we take
the interval model DD1 = DF = dF = L1F = L2F

as a reference, simulations obtained by the FCFIPM
for the DACS response field problem are carried out by
MATLAB R2014a on a 2.5 GHz Intel(R) Core (TM)
i7–4710MQCPUcomputer. The lower bound (LB) and
upper bound (UB) of the luffing angular response of
the crane 1 and crane 2 of the DACS calculated by the
FCFIPM with different interval models are plotted in
Figs. 17, 18, 19, 20 and Figs. 21, 22, 23 and 24, respec-
tively.

Figures 17 and 21 depict the lower and upper bounds
of the luffing angular response of the crane 1 and crane
2 calculated by the FCFIPM with/without DF , respec-
tively. In other words, where two interval models are
taken as DD1 = DF = dF = L1F = L2F and
DD2 = dF = L1F = L2F , DF = 0. It is obvious that
the change of DF has impact on the lower and upper
bounds of the luffing angular response of the crane 1
and crane 2, which means the length of A1A2 or D has
significant impact on the intervals of the luffing angular
response field of the DACS. Moreover, it is noted that
both the intervals of the luffing angular response field
of the crane 1 and crane 2 show decreasing trends when
the interval parameter D is considered.

Figures 18 and 22 depict the lower and upper bounds
of the luffing angular response of the crane 1 and crane
2 calculated by the FCFIPM with/without dF , respec-
tively. In other words, where two interval models are
taken as DD1 = DF = dF = L1F = L2F and
DD2 = DF = L1F = L2F , dF = 0. It is obvious that
the change of dF has impact on the lower and upper
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Fig. 17 The bounds of the
luffing angular response of
the crane 1 calculated by the
FCFIPM with/without DF

Fig. 18 The bounds of the
luffing angular response of
the crane 1 calculated by the
FCFIPM with/without dF

Fig. 19 The bounds of the
luffing angular response of
the crane 1 calculated by the
FCFIPM with/without L1F

bounds of the luffing angular response of the crane 1
and crane 2, which means the length of payload C1C2

or d has significant impact on the intervals of the luff-
ing angular response field of the DACS. Moreover, it is
noted that the interval of the luffing angular response
field of the crane 1 shows a decreasing trend when the

interval parameter d is considered; however, the inter-
val of the luffing angular response field of the crane 2
shows an increasing trend when the interval parameter
d is considered.

Figures 19 and 23 depict the lower and upper bounds
of the luffing angular response of the crane 1 and crane
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Fig. 20 The bounds of the
luffing angular response of
the crane 1 calculated by the
FCFIPM with/without L2F

Fig. 21 The bounds of the
luffing angular response of
the crane 2 calculated by the
FCFIPM with/without DF

Fig. 22 The bounds of the
luffing angular response of
the crane 2 calculated by the
FCFIPM with/without dF

2 calculated by the FCFIPMwith/without L1F , respec-
tively. In other words, where two interval models are
taken as DD1 = DF = dF = L1F = L2F and
DD2 = DF = dF = L2F , L1F = 0. It is obvious
that the change of L1F has impact on the lower and
upper bounds of the luffing angular response of the

crane 1 but not those of the crane 2, which means the
length of lifting arm A1B1 or L1 has significant impact
on the intervals of the luffing angular response field of
the crane 1 but not the intervals of the luffing angu-
lar response field of the crane 2. Moreover, it is noted
that the interval of the luffing angular response field of
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Fig. 23 The bounds of the
luffing angular response of
the crane 2 calculated by the
FCFIPM with/without L1F

Fig. 24 The bounds of the
luffing angular response of
the crane 2 calculated by the
FCFIPM with/without L2F

the crane 1 shows an decreasing trend when the inter-
val parameter L1 is considered; however, the interval
parameter L1 does not have any impact on the interval
of the luffing angular response field of the crane 2.

Figures 20 and 24 depict the lower and upper bounds
of the luffing angular response of the crane 1 and crane
2 calculated by the FCFIPMwith/without L2F , respec-
tively. In other words, where two interval models are
taken as DD1 = DF = dF = L1F = L2F and
DD2 = DF = dF = L1F , L2F = 0. It is obvious
that the change of L2F has impact on the lower and
upper bounds of the luffing angular response of the
crane 2 but not those of the crane 1, which means the
length of lifting arm A2B2 or L2 has significant impact
on the intervals of the luffing angular response field of
the crane 2 but not the intervals of the luffing angu-
lar response field of the crane 1. Moreover, it is noted
that the interval of the luffing angular response field of
the crane 2 shows an decreasing trend when the inter-
val parameter L2 is considered; however, the interval

parameter L2 does not have any impact on the interval
of the luffing angular response field of the crane 1.

Moreover, from Figs. 17, 18, 19 and 20, we can see
that the length of lifting arm A2B2 does not have any
impact on the lower and upper bounds of the luffing
angular response of the crane 1, but the length of A1A2,
the length of payloadC1C2 and the length of lifting arm
A1B1 have significant impact on the interval of the luff-
ing angular response field of the crane 1, which means
the main impact on the interval of the luffing angu-
lar response field of the crane 1 comes from interval
parameters D, d, L1.

From Figs. 21, 22, 23 and 24, we can see that the
length of lifting arm A1B1 does not have any impact
on the lower and upper bounds of the luffing angular
response of the crane 2, but the length of A1A2, the
length of payload C1C2 and the length of lifting arm
A2B2 have significant impact on the interval of the luff-
ing angular response field of the crane 2, which means
the main impact on the interval of the luffing angu-
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lar response field of the crane 2 comes from interval
parameters D, d, L2.

Furthermore, with the increase of the DD, the inter-
val luffing angular response field increases accordingly,
whichmeans theDACS response field has the feature of
interval variable due to the existence of interval param-
eters in the luffing angular response vectors of Eqs. (75)
and (78).

Taken together, from Figs. 17, 18, 19 and 20, the
results show the relative impact of factors on the luff-
ing angular response field of the crane 1, from most
significant to least significant: the length of lifting arm
A1B1 (L1), the length of A1A2 (D), the length of pay-
loadC1C2 (d). From Figs. 21, 22, 23 and 24, the results
show the relative impact of factors on the luffing angu-
lar response field of the crane 2, from most significant
to least significant: the length of A1A2 (D), the length
of lifting arm A2B2 (L2), the length of payload C1C2

(d).
To make the above results more clear, the impact of

different interval parameters on the bounds of the luff-
ing angular response of the crane 1 and crane 2 is listed
in Table 4, respectively. Here, the symbol “+,” “–” and

“×” represent the trend of the increasing, decreasing
and unchanging, respectively. We also take the interval
modelDD1 = DF = dF = L1F = L2F as a reference.

To illustrate the accuracy and computational cost
of FCFIPM for the luffing angular response field with
interval parametersmore clearly,we calculate the lower
and upper bounds of the luffing angular response vec-
tor of the crane 1 and crane 2 of the DACS, the relative
errors are also listed in Tables 5 and 6, respectively.
Here, we also take the interval model DD = DF =
dF = L1F = L2F as research object. The results
obtained by the Monte Carlo method are considered
as referenced solutions, simulations of the MCM and
FCFIPM for this interval luffing angular response field
are also carried out byMATLABR2014a on a 2.5 GHz
Intel(R) Core (TM) i7–4710MQ CPU computer.

From Tables 5 and 6, when the DD is no more than
0.50%, we can see that the relative errors of the lower
and upper bound of the luffing angular response vec-
tor of the crane 1 and crane 2 yielded by the FCFIPM
are no more than 10%, which means the intervals of
the luffing angular response of the crane 1 and crane
2 are close to those of the referenced values yielded

Table 4 The impact of interval parameters on the bounds of luffing angular response of the DACS

Interval of luffing angu-
lar response

Length of A1A2 (D) Length of payload
C1C2 (d)

Length of lifting arm
A1B1 (L1)

Length of lifting arm
A2B2 (L2)

DD1 DD2 DD1 DD2 DD1 DD2 DD1 DD2

Crane 1 Reference − Reference − Reference − Reference ×
Crane 2 Reference − Reference + Reference × Reference −

Table 5 Bounds of the luffing angular response vector of the crane 1

DD = DF = dF = L1F = L2F Bounds MCM FCFIPM Error (%)

Time (s) Value Time (s) Value

0.05% LB 1.5625 0.0454 0.0071 0.0457 0.66

UB 0.0461 0.0458 0.65

0.25% LB 1.6459 0.0440 0.0077 0.0454 3.18

UB 0.0475 0.0461 2.95

0.50% LB 1.5865 0.0421 0.0072 0.0451 7.12

UB 0.0491 0.0464 5.50

0.75% LB 1.5982 0.0400 0.0069 0.0448 12.00

UB 0.0457 0.0468 2.41

1.00% LB 1.5838 0.0379 0.0061 0.0444 17.15

UB 0.0521 0.0471 9.60
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Table 6 Bounds of the luffing angular response vector of the crane 2

DD = �DF = �dF = �L1F = �L2F Bounds MCM FCFIPM Error (%)

Time (s) Value Time (s) Value

0.05% LB 1.5786 4.5571 0.0071 4.6349 1.71

UB 4.5606 4.6705 2.35

0.25% LB 1.6312 4.5498 0.0077 4.5987 1.07

UB 4.5676 4.7417 3.81

0.50% LB 1.8933 4.5413 0.0072 4.4747 1.47

UB 4.5762 4.8307 5.56

0.75% LB 1.5355 4.5321 0.0069 4.3857 3.23

UB 4.5865 4.9197 7.26

1.00% LB 2.0764 4.5237 0.0061 4.2967 5.02

UB 4.5928 5.0087 9.06

by the MCM. In other words, the results calculated by
the FCFIPM are completely acceptable if the DD of
interval parameters is not high. When the DD starts
to increase from 0.50% to 1.00%, the DACS response
field produced by the FCFIPM significantly deviates
from those yielded by the MCM, which indicates that
the FCFIPM based on the differential property of com-
posite function, the first-order Taylor series expansion
and theNeumann series ismore appropriate for the pre-
diction of the DACS response field with narrowly inter-
val parameters; in other words, the effects of neglecting
the higher-order terms of Taylor series expansion and
the higher-order terms of Neumann series in Eqs. (43),
(46) and (50) are unpredictable and uncontrollable.
Computational cost is another index to evaluate the
performances of numerical methods, from the results
listed in tables we can see that the FCFIPM is much
more efficient and greatly reduce the executive time
when compared with the MCM.

7 Conclusions

By combining interval perturbation method with com-
posite function theory, this paper analyzes luffing angu-
lar response modeling and proposes a first-order com-
posite function interval perturbationmethod (FCFIPM)
to predict the luffing angular response field problem
of the dual automobile cranes system (DACS) with
narrowly interval structure parameters. The uncertain-
ties in structure parameters are fully considered, which
makes the equilibrium equation of luffing angular

response vector of the DACS with interval parameters
more objective. The uncertain interval structure param-
eters with certain lower and upper bounds are modeled
as dynamics-based nonsingular interval model. In the
FCFIPM, the luffing angular response vector expres-
sions of crane 1 and crane 2 of the DACS are approxi-
mated based on the first-order Taylor series expansion
and the Neumann series expansion. According to dif-
ferential property of composite function andmonotonic
analysis technique, the lower and upper bounds of the
interval luffing angular response vector of the crane 1
and crane 2 of the DACS are determined effectively.

Compared with MCM, numerical results on some
interval DACS luffing angular response field exam-
ples verify the feasibility and efficiency of the FCFIPM
when dealt with narrowly interval uncertainty. By treat-
ing uncertain structure parameters as narrowly inter-
val variables, from the investigation of the differ-
ent impacts of different interval parameters on the
intervals of the luffing angular response field of the
DACS, results show different effects of interval struc-
ture parameters (D, d, L1, L2) on the bounds of the
interval luffing angular response vector of the crane 1
and crane 2 of the DACS. To be more specific, the rel-
ative impact of factors on the luffing angular response
field of the crane 1, from most significant to least sig-
nificant: the length of lifting arm A1B1 (L1), the length
of A1A2 (D), the length of payload C1C2 (d). The rel-
ative impact of factors on the luffing angular response
field of the crane 2, from most significant to least sig-
nificant: the length of A1A2 (D), the length of lift-
ing arm A2B2 (L2), the length of payload C1C2 (d).
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From the investigation of the accuracy and computa-
tional cost of FCFIPM for the interval luffing angular
response field, the FCFIPM is demonstrated to bemuch
more superior than the MCM. However, it should be
noted that the proposedmethod, based on the first-order
Taylor series expansion and the first-order Neumann
series expansion, is not suitable to DACS luffing angu-
lar response field problem with large ranges of interval
variables or large uncertain levels of interval param-
eters. Although the accuracy of the proposed method
can be improved by considering high-order Neumann
series expansion, more computational efforts will be
required. Thus, the first-order composite function inter-
val perturbation method is a powerful tool for predict-
ing interval luffing angular response field problem of
the DACS with narrowly interval uncertainties.
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