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Abstract A sliding mode controller based on an
extended disturbance observer is investigated to con-
trol a class of underactuated system in this paper. By
using strict feedback technique, the underactuated sys-
tem is presented as a special cascade form. First, an
extended disturbance observer is designed to estimate
the unknown external disturbances and model uncer-
tainties of the underactuated system. Furthermore, a
sliding mode control strategy is proposed to stabilize
the underactuated part directly and drive the variables
to the sliding mode surface. Finally, combining the
sliding mode controller with the extended disturbance
observer, a sliding mode controller with disturbance
observer is designed. The stability of the overall sys-
tem is proved and a numerical example is presented to
illustrate the effectiveness of the proposed disturbance
observer and controller.
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1 Introduction

Underactuated systems aremechanical control systems
with greater number of degrees of freedom than the
controls, and the actuated degrees of freedom and the
underactuated degrees of freedom are usually non-
linear coupling. Some degrees of freedom cannot be
controlled but must be self-stabilized when the con-
trolled state variables converge to the desired value. In
resent years, there has been extensive interest among
the researchers in controlling underactuated systems
due to their extensive applications. Many control sys-
tems including the mobile robots [1,2], the acrobot [3],
the underactuated surface vessel [4,5] and the crane
systems [6,7] are underactuated. The study of under-
actuated systems ismeaningful and challenging in light
of these considerations.

Robust control has been widely used in nonlin-
ear systems [8,9], underactuated systems [11–17] and
time-delay systems [18,19]. So far, there is no general
control method for all underactuated systems except
feedback linearization methods, while work has been
done on a certain class or kind of underactuated sys-
tems. Fuzzy control [10], sliding mode control [2,11]
and intelligent backstepping control [12] are proposed
to control the wheeled inverted pendulum. Planning-
based adaptive control [6], adaptive fuzzy slidingmode
control [13], integral sliding mode control method [14]
and robust control [15] are applied to the crane sys-
tem. Since the sliding mode control (SMC) is robust
to the model uncertainties and less sensitive to distur-
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bances, it is widely applied to nonlinear underactuated
systems.

It has been proved that the SMC algorithm can
robustly stabilize a class of underactuated nonlinear
system such as a mobile robot and an underactuated
underwater vehicle [20]. Huang [21] proposed a veloc-
ity controller for the mobile wheeled inverted pendu-
lumbased on slidingmode. Tuan [7] proposed a control
strategy which combines the SMC and the partial feed-
back linearization for 3D overhead cranes. Much work
has been done based on benchmark cascade form for a
class of underactuated system by using the SMC. Saleh
[22] proposed a sliding mode controller for the control
of a class of underactuated systemswhich are described
in cascaded form with external disturbances. Mcninch
[23] proposed an optimizing slidingmode cascade con-
trol structure for the underactuated unmanned surface
vessel systems which look upon the physical limits of
the underactuated system as input saturations.

The conventional SMC loses the property of invari-
ance in the presence of unmatched uncertainties and
disturbances. The robustness of SMC controller can
be obtained by increasing the switch gain k of SMC
to suppress the disturbances and model uncertainties.
In some cases, it is difficult to obtain or estimate the
upper bounds of the unknown disturbances, or the esti-
mated upper bounds are too conservative. In order to
stabilize the system, the parameter of sliding mode
control k in the item ksgn(s) has to be significantly
increased. Unfortunately, with the increasing k, the
chattering phenomenon also becomes serious accord-
ingly. It is well known that the “chattering” is the
main drawback of the SMC. Combining the SMC with
other approaches which estimate the disturbances is
an attractive proposition to overcome this deficiency.
The disturbance observer (DO) technology might be a
candidate solution for this problem. The DO is orig-
inally proposed by Chen [24] to deal with the distur-
bances of nonlinear system. Recently, several results
using the disturbance observer combining with the
SMC approach for mismatched nonlinear system have
been reported in the researches [25–28]. It turns out
that theDO-based SMC strategies can enhance the con-
trol accuracies as well as reduce the “chattering” in the
above researches.

It should be noted that most of the DOs are based on
the assumption that the disturbance is bounded [29] and
its first-order derivative dies away gradually [24,30] or
is bounded [31–33], or the disturbance itself is of van-

ishing type in the steady states [25,26]. Whereas this
assumption is too restrictive for many practical sys-
tems. For example, this assumption cannot describe
the cases in which the control system is affected by
external disturbance which is a time varying such as
polynomials with respect to time t [34]. In these cases,
the derivative of disturbance does not converge to zero
in the steady states.

In this paper, we propose an extended disturbance
observer (EDO) which relaxes the aforementioned
assumption. To the best of our knowledge, this study
might be the first attempt to discuss the high-order
DO-based control design method for “general” under-
actuated systems. The main contribution of our work
includes: (1) the extension of DO technology to enable
the estimations of both the disturbance and its deriva-
tives for a class of underactuated systems; (2) a slid-
ing mode controller based on the extended disturbance
observer (SMCDO) which can both alleviate the chat-
tering and enhance the control accuracy for the under-
actuated systems; (3) the stability analysis for both the
proposed EDO and SMCDO approaches.

The rest of this paper is organized as follows. The
EDO for a class of underactuated system is proposed in
Sect. 2. Based on the EDO, a sliding mode controller
based on a cascade form of a general underactuated
system is derived in Sect. 3. An example is presented to
demonstrate the theoretical analysis in Sect. 4, followed
by a conclusion in Sect. 5.

2 Extended disturbance observer design for
underactuated systems

In this section, we propose an extended disturbance
observer (EDO) for a general second-order underactu-
ated system. The proposed EDO relaxes the conven-
tional assumption that the first-order derivatives of dis-
turbances go to zero or they are bounded.

2.1 Problem statement

A general second-order underactuated system is con-
sidered. The Lagrange equations of motion for the
underactuated system with disturbances can be writ-
ten as:

m11(q)q̈1 + m12(q)q̈2 + h1(q, q̇) = d1

m21(q)q̈1 + m22(q)q̈2 + h2(q, q̇) = u + d2 (1)
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where h1 and h2 contain the Coriolis, the centrifugal
and the gravity terms. d1 and d2 are lumped disturbance
terms containing the model uncertainties and distur-
bances of the system.

Consider the underactuated system described by (1)
with two degrees of freedom (q1, q2) and symmetry
property M(q) = M(q2). Obviously, the degree of
freedomq2 is actuated. Firstwe introduce the following
global transform of coordinate [35]

x1 = q1 + β(q2),

x2 = m11q̇1 + m12q̇2 = ∂L

∂q̇1
,

x3 = q2,

x4 = q̇2,

(2)

where β(q2) = ∫ q2
0 m−1

11 (s)m12(s)ds. L = Ek−Ep =
1
2 q̇

TM(q)q̇− Ep(q). Ek is the kinetic energy. Ep is the
potential energy.

Based on the global transform of coordinate (2), the
dynamic model (1) can be further transformed into a
special cascade nonlinear system in feedback form:

ẋ1 = q̇1 + m−1
11 m12q̇2 = m−1

11 x2,

ẋ2 = d(m11q̇1 + m12q̇2)

dt
= d

dt

∂L

∂q̇1
= f1 + d1,

ẋ3 = q̇2,

ẋ4 = f2 + bu + d12,

(3)

where
mm = m11m22 − m12m21, f1 = ∂L

∂q1
,

f2 = m21h1 − m11h2
mm

,

b = m11

mm
, d12 = −m21d1 + m11d2

mm
.

Remark 1 The dynamic model (1) is derived by
Lagrangian method, where f1 = ∂L/∂q1, L = Ek −
Ep = 1

2 q̇
TM(q)q̇ − Ep(q). Since q1 is the under-

actuated joint, we have M(q) = M(q2) and f1 =
−∂Ep/∂q1, which is related to the first-order partial
derivative of potential energy of the systemwith respect
to q1. In most cases, the potential energy Ep is only
related to the position variables (q1, q2) and has noth-
ing to do with the velocity variables (q̇1, q̇2). That is,
∂ f1/∂x2 and ∂ f1/∂x4 are usually equal to zero, and
∂ f1/∂x3 is invertible and bounded. In this paper, only
this situation is considered.

For simplicity, we rewrite (3) as the following vector
form:

Ẋ = F1(X) + G1(X)u + G2d, (4)

where

X = [x1 x2 x3 x4]T

F1(X) =

⎡

⎢
⎢
⎣

m−1
11 x2
f1
x4
f2

⎤

⎥
⎥
⎦ , G1(X) =

⎡

⎢
⎢
⎣

0
0
0
b

⎤

⎥
⎥
⎦ ,

G2 =

⎡

⎢
⎢
⎣

0 0
1 0
0 0
0 1

⎤

⎥
⎥
⎦ , d =

[
d1
d12

]

.

2.2 A second-order disturbance observer

Assumption 1 The disturbance d is continuous, and
its first-order derivative ḋ and second-order derivative
d̈ exist.

Assumption 2 d̈ is bounded and satisfies ||d̈|| ≤ μ1.
Here μ1 > 0 is a constant.

The second-order disturbance observer for the
underactuated system (4) is proposed as

d̂ = z1 + p1(X),

ż1 = L1

(
−F1(X) − G1(X)u − G2d̂

)
+ ˆ̇d,

ˆ̇d = z2 + p2(X),

ż2 = L2

(
−F1(X) − G1(X)u − G2d̂

)
,

(5)

where d̂ and ˆ̇d are the estimates of d and ḋ , respectively.
The disturbance observer constant gain matrix Li is
defined as

Li = ∂pi (X)/∂X, i = 1, 2, (6)

where

Li =
[
k2i−1,1 k2i−1,2 k2i−1,3 k2i−1,4

k2i,1 k2i,2 k2i,3 k2i,4

]

.

Theorem 1 Considering the underactuated system
(4), assume that the disturbance d and its first-order
derivative ḋ exist, and its second-order derivative can
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be negligible (i.e., d̈ = 0). Choosing proper Li sat-
isfying that A1 is negative definite, the disturbance
observer given in (5) with the auxiliary vector Li

defined in (6) ensures that the disturbance tracking
error converges exponentially to zero. If the distur-
bance d and its first-order derivative ḋ exist, and its
second-order derivative d̈ is bounded (i.e., ||d̈|| ≤ μ1),
choosing proper Li satisfying that A1 is negative def-
inite, then the disturbance observer given in (5) with
the auxiliary vector Li defined in (6) ensures that the
disturbance tracking error is globally uniformly ulti-
mately bounded.
Here

A1 =
[−L1G2 I

−L2G2 0

]

,

where I is a 2×2 identity matrix. 0 is a 2×2 zeromatrix.

Proof Let the estimation errors to be defined as

d̃ = d − d̂,

˜̇d = ḋ − ˆ̇d,
(7)

where d̃ is the estimation error between d and its esti-
mate d̂ , and ˜̇d is the estimation error between ḋ and its

estimate ˆ̇d.
Differentiating the first equation of (7), we can get:

˙̃d = ḋ − ˙̂d
= ḋ − L1

(
−F1 − G1u − G2d̂

)
− ˆ̇d − ṗ1

= ḋ − L1G2d̃ − ˆ̇d = ˜̇d − L1G2d̃.

(8)

According to the second equation of (7), we have:

˙̇̃
d = d̈ − ˙̇̂

d

= d̈ − L2

(
−F1 − G1u − G2d̂

)
− L2 Ẋ

= d̈ − L2G2d̃.

(9)

According to (8) and (9), the error vector D1 =
[
d̃ ˜̇d

]T
can be expressed as

Ḋ1 = A1D1 + B1d̈, (10)

where B1 = [01 I1]T. 01 is a 2 × 2 zero matrix. I1 is
a 2 × 2 identity matrix.

Since A1 is a negative definite matrix, the eigenval-
ues of A1 are negative. There exists a positive defined
matrix Q1 satisfying AT

1 P1 + P1AT
1 = −Q1.

Choose the following Lyapunov function

V1 = DT
1 P1D1,

where P1 is a positive defined matrix.
By differentiating V1, we have

V̇1 = DT
1 (AT

1 P1 + P1A
T
1 )D1 + 2D1

TP1B1d̈

= −D1
TQ1D1 + 2D1

TP1B1d̈

≤ −λ1min‖D1‖2 + 2‖DT
1 P1B1‖ · μ1

≤ −‖D1‖ (λ1min‖D1‖ − 2‖P1B1‖ · μ1) ,

where λ1min is the minimum eigenvalue of Q1.

V̇1 ≤ −‖D1‖(λ1min‖D1‖ − 2‖P1B1‖ · μ1).

That is, after a sufficiently long time, the norm of the
estimation error is bounded by

‖D1‖ ≤ 2‖P1B1‖ · μ1

λ1min
.

Thus, if the disturbance d and its first-order deriva-
tive ḋ exist, and its second-order derivative satisfies
d̈ = 0, the disturbance tracking error converges expo-
nentially to zero. If the disturbance d and its first-order
derivative ḋ exist, and its second-order derivative d̈ is
bounded, the tracking error is globally uniformly ulti-
mately bounded. ��

2.3 Extension of disturbance observer to nth-order
cases

Assumption 3 The disturbance d is continuous, and
its nth-order derivative exists.

Assumption 4 d(n) is bounded and satisfies ‖d(n)‖ ≤
μ. Here μ > 0 is a constant.

The extended disturbance observer for the underac-
tuated system (4) is proposed as:

d̂ = z1 + p1(X)

ż1 = L1(−F1(X) − G1(X)u − G2d̂) + ˆ̇d
...

d̂(i−1) = zi + pi (X)

żi = Li (−F1(X) − G1(X)u − G2d̂) + d̂(i)

...

d̂(n−1) = zn + pn(X)

żn = Ln(−F1(X) − G1(X)u − G2d̂), (11)
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where d̂(i) is the estimate of d(i). The disturbance
observer gain matrix Li is defined as:

Li = ∂pi (X)/∂X, i = 1, 2, . . . , n. (12)

Theorem 2 Considering the underactuated system
(4), assume that the disturbance d and its derivatives
d(i) exist, and its nth derivative can be negligible (i.e.,
d(n) = 0). Choosing proper Li satisfying that A is
negative definite, the extended disturbance observer
given in (11) with the auxiliary vector Li defined in
(12) ensures that the disturbance tracking error con-
verges exponentially to zero. If the disturbance d and
its derivatives d(i) exist, and its n-th derivative d(n)

is bounded (i.e., ||d(n)|| ≤ μ), choosing proper Li

satisfying that A is negative definite, the disturbance
observer given in (11) with the auxiliary vector Li

defined in (12) ensures that the disturbance tracking
error is globally uniformly ultimately bounded.
Here

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

−L1G2 I 0 · · · 0
−L2G2 0 I · · · 0

...
...

...
...

...

−Ln−1G2 0 0 · · · I
−LnG2 0 0 · · · 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

where i = 1, 2 . . . n. I is 2×2 identity matrix. 0 is 2×2
zero matrix.

Proof Let the estimation errors to be defined as

d̃ = d − d̂

...

d̃(i) = d(i) − d̂(i)

...

d̃(n−1) = dn−1 − d̂(n−1),

(13)

where i = 1, 2, . . . , n − 1. d̃(i) is the estimation error
between d(i) and its estimate d̂(i) .

Differentiate the first n − 1 equations of (13), and
substitute (11) into them. It follows that

˙̃d(i) = d(i+1) − ˙̂d(i)

= d(i+1) − Li+1(−F1 − G1u − G2d̂) − d̂(i+1) − ṗi+1

= d(i+1) − Li+1G2d̃ − d̂(i+1) = d̃(i+1) − Li+1G2d̃,

(14)

where i = 0, 1, . . . , n − 2.
According to the last two equations of (11), we

obtain

˙̂d(n−1) = żn + ṗn(X)

= Ln(−F1 − G1u − G2d̂) + Ln Ẋ .
(15)

Differentiating the last equation of (13) and substi-
tuting it to (15), we have

˙̃d(n−1) = dn − Ln

(
−F1 − G1u − G2d̂

)
− Ln Ẋ .

That is, we have:

˙̃d(n−1) = d(n) − LnG2d̃. (16)

According to (14) and (16), the error vector D =
[
d̃ ˜̇d, . . . , d̃(n−1)

]T
can be expressed as

Ḋ = AD + Bd(n), (17)

where B = [0(n−1) I1]T. 0(n−1) is a 2(n−1)×2 zero
matrix. I1 is a 2 × 2 identity matrix.

Since A is a negative definitematrix, the eigenvalues
of A are negative. There exists a positive definedmatrix
Q satisfying ATP + PAT = −Q.

Choose Lyapunov function

V = DTPD,

where P is a positive defined matrix.
In the light of the mathematical derivation in

Sect. 2.2, it is easy to obtain

V̇ ≤ −‖D‖(λmin‖D‖ − 2‖PB‖ · μ),

where λmin is the minimum eigenvalue of Q. That is,
after a sufficiently long time, the norm of the estimation
error is bounded by

‖D‖ ≤ 2‖PB‖ · μ

λmin
.

Based on the above inequality, we can easily draw
the conclusion of this theorem. ��

3 Sliding mode control with an extended
disturbance observer

Based on the obtained EDO in Sect. 2, we propose
a sliding mode controller with disturbance observer
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(SMCDO) for the general second-order underactuated
system (3) in this section.

For simplicity, we rewrite (3) as

ẋ1 = m−1
11 x2,

ẋ2 = f1(x1, x2, x3, x4) + d1,

ẋ3 = x4,

ẋ4 = f2(x1, x2, x3, x4) + b(x1, x2, x3, x4)u + d12.

(18)

The sliding surface is chosen as:

s = c1e1 + c2e2 + c3e3 + e4, (19)

where e1 = x1 − x1d , e2 = x2 − x2d , e3 = f1 + d1 −
f1d − d̂1, e4 = d f1

dt
+ d12 − d̂12 − ḟ1d . Here x1d , x2d ,

f1d , ḟ1d are the desired values.

Remark 2 Since we have ẋ3 = x4, and ẋ4 is related to
input u, then ṡ should include ẋ4. To meet the require-
ment, if f1 is related to x4, the sliding mode surface
is selected as s = c1e1 + c2e2 + e3. If f1 only has a
relationship with x3, the sliding mode surface is then
chosen as s = c1e1 + c2e2 + c3e3 + e4. As analyzed
in Remark 1, we have ∂ f1/∂x4 = 0. Then the sliding
mode surface is chosen as (19).

Differentiating the errors e1, e2, e3, it follows that

ė1 = ẋ1 − ẋ1d = m−1
11 x2 − m−1

11 x2d = m−1
11 (x2 − x2d)

= m−1
11 e2,

ė2 = ẋ2 − ẋ2d = f1 + d1 − ( f1d + d̂1) = e3,

ė3 = d f1
dt

− ḟ1d + ḋ1− ˙̂d1 = e4 − d12 + d̂12+ḋ1− ˙̂d1
= e4 − d̃12 + ˙̃d1. (20)

When the system state approaches the sliding mode
surface (19), it satisfies s = γ where |γ | ≤ κ , i.e.,

e4 = −c1e1 − c2e2 − c3e3 + γ. (21)

According to (20) and (21), the error E =
[e1 e2 e3]T can be expressed as

Ė = ME + ND1 + Υ, (22)

where

M =
⎡

⎣
0 m−1

11 0
0 0 1

−c1 −c2 −c3

⎤

⎦ , N =
⎡

⎣
0 0 0 0
0 0 0 0
0 −1 1 0

⎤

⎦ , Υ =
⎡

⎣
0
0
γ

⎤

⎦ .

Proper parameters c1, c2, c3 can be selected satisfy-
ing the condition that the real parts of eigenvalues of
M are negative.

Considering the sliding surface (19), the system
dynamics on the sliding surface is asymptotically sta-
ble if D1 and γ vanish as time goes by. That is, the
underactuated part of the system can be self-stabilized
on the sliding mode surface. And the system dynamics
is uniformly ultimately bounded on the sliding surface
if D1 and γ exist all the time.

Theorem 3 Considering a general nonlinear under-
actuated system (18), the state trajectories will be
driven to the sliding mode surface (19) and uni-
formly ultimately bounded when the SMCDO (23) is
applied:

u = −
(

∂ f1
∂x3

b

)−1

(K + ksgn(s) + λs) , (23)

where

K = c1m
−1
11 x2 + c2 f1 + c3

(
∂ f1
∂x1

m−1
11 x2 + ∂ f1

∂x3
x4

)

+ ∂ f1
∂x1

m−1
11 f1 + d

dt

(
∂ f1
∂x1

m−1
11

)

x2 + d

dt

∂ f1
∂x3

x4

+ ∂ f1
∂x3

f2 − c1 ẋ1d

− c2 ẋ2d − c3 ḟ1d − f̈1d +
(

c2 + ∂ f1
∂x1

m−1
11

)

d̂1

+ ∂ f1
∂x3

d̂12, k >

(

c2 + ∂ f1
∂x1

m−1
11

)

d̃1 + ∂ f1
∂x3

d̃12

+ c3
˜̇d1 + ˜̇d12, λ > 0.

Proof Choose the Lyapunov function as

V = 1

2
sTs.

Differentiating both sides of V and substituting (23)
into it, we have
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Sliding mode control with an extended disturbance observer 2577

V̇ = ṡs

= s

⎛

⎜
⎜
⎜
⎝
c1m

−1
11 x2 − c1 ẋ1d

︸ ︷︷ ︸
c1ė1

+ c2 f1 + c2d1 − c2 ẋ2d︸ ︷︷ ︸
c2 ė2

+ c3

(
∂ f1
∂x1

m−1
11 x2 + ∂ f1

∂x3
x4 − ḟ1d + ˜̇d1

)

︸ ︷︷ ︸
c3ė3

+ė4

⎞

⎟
⎟
⎟
⎠

.

The derivative of e4 can be calculated as follows:

e4 = d f1
dt

+ d12 − d̂12 − ḟ1d ⇒

ė4 = d

dt

(
d f1
dt

)

+ ˜̇d12 − f̈1d .

As analyzed in Remark 1 , we have ∂ f1/∂x2 = 0 .
It follows that

ė4 = d

dt

(
∂ f1
∂x1

ẋ1 + ∂ f1
∂x3

ẋ3

)

+ ˜̇d12 − f̈1d

= d

dt

(
∂ f1
∂x1

m−1
11 x2 + ∂ f1

∂x3
x4

)

+ ˜̇d12 − f̈1d .

Substituting (18) into it, we have

ė4 = d

dt

(
∂ f1
∂x1

m−1
11

)

x2 + ∂ f1
∂x1

m−1
11 ẋ2 + d

dt

(
∂ f1
∂x3

)

x4

+ ∂ f1
∂x3

ẋ4 + ˜̇d12 − f̈1d

= d

dt

(
∂ f1
∂x1

m−1
11

)

x2 + ∂ f1
∂x1

m−1
11 ( f1 + d1)

+ d

dt

(
∂ f1
∂x3

)

x4 + ∂ f1
∂x3

( f2+bu+d12) + ˜̇d12− f̈1d .

Thus, we have

V̇ = s

(

c1m
−1
11 x2 + c2 f1 + c3

(
∂ f1
∂x1

m−1
11 x2 + ∂ f1

∂x3
x4

)

+ ∂ f1
∂x1

m−1
11 f1 + d

dt

(
∂ f1
∂x1

m−1
11

)

x2 + d

dt

∂ f1
∂x3

x4

+ ∂ f1
∂x3

f2 − c1 ẋ1d − c2 ẋ2d − c3 ḟ1d − f̈1d

+
(

c2 + ∂ f1
∂x1

m−1
11

)

d1 + ∂ f1
∂x3

d12

+ c3
˜̇d1 + ˜̇d12 + ∂ f1

∂x3
bu

)

= s

((

c2 + ∂ f1
∂x1

m−1
11

)

d̃1 + ∂ f1
∂x3

d̃12 + c3
˜̇d1 + ˜̇d12

)

− λs2 − ks · sgn(s)
≤ |s|

((

c2 + ∂ f1
∂x1

m−1
11 + ∂ f1

∂x3
+ c3 + 1

)

‖D1‖ − λ|s| − k

)

≤ |s|
((

c2 + ∂ f1
∂x1

m−1
11 + ∂ f1

∂x3
+ c3 + 1

)

2‖PB‖ · μ

λmin
− λ|s| − k

)

.

It is easy to obtain that after a sufficiently long time,
|s| is bounded by

|s| ≤
2

(
c2 + ∂ f1

∂x1
m−1

11 + ∂ f1
∂x3

+c3+1
)

‖PB‖μ − kλmin

λλmin
.

It is worth to notice that |s| can be lowered by
increasing λ or k.

If the nth-order derivative of d can be negligible
(i.e., d(n) = 0, μ = 0), then the Lyapunov function V
is globally asymptotic convergent to 0, and the actuated
states are driven to the sliding mode surface. The effect
of the disturbance can also be eliminated completely.

On the other hand, ‖D‖ is uniformly ultimately
bounded if the nth-order derivative d(n) is bounded
(||d(n)|| ≤ μ). In this case, the magnitude of sliding
variable |s| and Lyapunov function V are uniformly
ultimately bounded. The actuated states move around
the sliding mode surface, and the bounds can be low-
ered by selecting proper control parameter k, λ. ��

4 Simulation results

In order to test and verify the proposed EDO and
SMCDO,we provide an example to illustrate the theory
analysis in this section.

4.1 The model of acrobot system

The acrobot is a two-link planar robot with two joints
and the elbow is the actuator,which is an inherent unsta-
ble, underactuated system, as shown in Fig. 1.

The dynamic model of acrobot is given by [36]

m11q̈1 + m12q̈2 + h1 + φ1 = d1,

m21q̈1 + m22q̈2 + h2 + φ2 = τ + d2, (24)
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Fig. 1 The mechanical structure of acrobot

where

m11 = a + b cos(q2), m12 = c + 0.5b cos(q2),

m12 = m21,m22 = c

a = m1l
2
c1 + m2

(
l21 + l2c2

)
+ I1 + I2,

c = m2l
2
c2, b = 2m2l1lc2

h1 = −m2l1lc2 sin(q2)q̇
2
2 − 2m2l2lc2 sin(q2)q̇1q̇2,

h2 = m2l1lc2 sin(q2)q̇
2
1 ,

φ1 = (m1lc1 + m2l1) g cos(q1)+m2lc2g cos(q1+q2),

φ2 = m2lc2g cos(q1 + q2).

d1, d2 are the disturbances including model uncertain-
ties and external disturbance.

Obviously, it satisfies that M(q) = M(q2) and q2 is
actuated. Choose new states and the global change of
the coordinate

x1 = q1 + β(q2),

x2 = m11q̇1 + m12q̇2 = ∂L/∂q̇1,

x3 = q2,

x4 = q̇2, (25)

where β(q2) = q2
2 + 2c−a√

a2−b2
arctan(

√
a−b
a+b tan(

q2
2 )).

The dynamic model (24) is then transformed into a
cascade nonlinear system in strict feedback form:

ẋ1 = m−1
11 x2,

ẋ2 = f1 + d1,

ẋ3 = x4,

ẋ4 = f2 + bu + d12, (26)

Table 1 The parameters of an acrobot

m1 1 kg lc2 1 m

m2 1 kg I1 0.083 kgm

l1 1 m I2 0.33 kgm

l2 2 m g 9.8 m/s2

lc1 0.5 m

where

f1 = − (m1lc1+m2l1) g cos(q1)−m2lc2g cos(q1+q2)

= − (m1lc1 + m2l1) g cos(x1 − β)

−m2lc2g cos(x1 − β + x3)

f2 = m21(h1 + φ1) − m11(h2 + φ1)

m11m22 − m12m21
,

b = m11

m11m22 − m12m21
,

d12 = (−m12d1 + m11d2)

m11m22 − m12m21
.

An obvious equilibrium of the acrobot system can
be easily obtained

X = [x1 x2 x3 x4]T = [π/2 0 0 0]T.

4.2 The simulation results of acrobot controlled by
the proposed method

In the simulation, the parameters of the acrobot are
given in Table 1. The initial conditions are chosen as:

q1 = π/2 + 0.2, q2 = −0.5, q̇1 = 0, q̇2 = 0.

The friction and model uncertainties will vanish as
the system gradually approaches the equilibrium. In
order to test the EDO and SMCDO, the external distur-
bance is also considered. Without loss of the general-
ity, the first-order, second-order, third-order and fourth-
order disturbance observers are discussed, respectively,
in the following. The equilibrium control of acrobot
will be discussed in the following cases.

Case 1 The situation that there is no disturbance is
considered.

d1 = 0, d2 = 0.

The simulation of the acrobot systemwithout distur-
bances controlled by sliding mode controller is shown
in Fig. 2. It is shown that the sliding mode controller
can drive the inherent unstable system to the sliding
surface, and it takes about 25 s.
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Fig. 2 The simulation result of sliding mode control for acrobot
with d1 = 0, d2 = 0
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Fig. 3 The simulation result of EDOswith d1 = 0.2(q1−π/2)+
0.1q2+0.3q̇1 and d2 = 0.2(q1−π/2)+0.5q2+0.3q̇1+0.5q̇2+
0.5t + 0.2t2

Case 2 In this case, the disturbances are assumed to
be

d1 = 0.2(q1 − π/2) + 0.1q2 + 0.3q̇1,

d2 = 0.2(q1 − π/2) + 0.5q2 + 0.3q̇1

+ 0.5q̇2 + 0.5t + 0.2t2,

where d1 dies away as the states tend to converge to
zero. d2 satisfies d2 → ∞, ḋ2 → ∞, |d̈2| ≤ μ and
d(3)
2 = d(4)

2 = 0.

The simulation results of EDOs are shown in Figs. 3
and 4. From the figures, it can be seen that the first-
order disturbance observer (DO(1st)) cannot estimate
the disturbance. The second-order disturbance observer
(DO(2nd)) tracks the disturbance with a steady-state

0 5 10 15 20 25 30 35 40
−0.05

0

0.05

t [s]

E
d1

DO(1st)
DO(2nd)
DO(3rd)
DO(4th)

0 5 10 15 20 25 30 35 40
−6

−4

−2

0

2

t [s]

E
d2

Fig. 4 The errors between disturbance and its estimations with
d1 = 0.2(q1 − π/2) + 0.1q2 + 0.3q̇1, d2 = 0.2(q1 − π/2) +
0.5q2 + 0.3q̇1 + 0.5q̇2 + 0.5t + 0.2t2

error. The third-order disturbance observer (DO(3rd))
and the fourth-order disturbance observer (DO(4th))
are able to track the disturbance accurately.

According to (17), for the DO(1st), the estimation
error satisfies Ḋ = AD + Bḋ . Since we have ḋ → ∞,
the stability of estimation error cannot be guaranteed.
This is why the DO(1st) cannot estimate the distur-
bance. For the DO(2nd), the estimation error satisfies
Ḋ = AD+ Bd̈ . Since we have ‖ḋ‖ ≤ μ, the DO(2nd)
estimates the disturbance with a steady error. For the
DO(3rd) and DO(4th), the estimation errors satisfy
Ḋ = AD + Bd(3) and Ḋ = AD + Bd(4), respec-
tively. Since we have d(3) = d(4) = 0, these DOs can
estimate the disturbance accurately, as shown in Fig. 3

The simulation results of the acrobot controlled by
SMCDO (23) are shown in Fig. 5. Obviously, the slid-
ing mode control with first-order disturbance observer
(SMCDO(1st)) cannot drive the states to the equi-
librium. The sliding mode control with second-order
disturbance observer (SMCDO(2nd)) drives the states
to the equilibrium with a steady error. The sliding
mode control with third-order disturbance observer
(SMCDO(3rd)) and fourth-order disturbance observer
(SMCDO(4th)) drives the states to the equilibrium.

Case 3 In this case, more complex disturbance which
is superimposed on types of bounded disturbance is
considered to test the EDO and the SMCDOs. Choose
d1 and d2 as

d1 = 0.1 sin(t + 1),

d2 = sin(0.5t),
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Fig. 5 The simulation result of SMCDO for acrobot with d1 =
0.2(q1 − π/2) + 0.1q2 + 0.3q̇1, d2 = 0.2(q1 − π/2) + 0.5q2 +
0.3q̇1 + 0.5q̇2 + 0.5t + 0.2t2
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Fig. 6 The simulation results of EDOs with d1 = 0.1 sin(t +
1), d2 = sin(0.5t)

where d1, d2 include the friction, model uncertainties
and external disturbance. Their nth-order derivatives
exist and are bounded (‖d(n)‖ ≤ μ).

The simulation results of the EDOs are shown
in Figs. 6 and 7. The tracking errors between sys-
tem states and the reference are globally uniformly
ultimately bounded. Because of the slow change of
disturbance( f1 = 1/2π, f2 = 1/4π), the higher order
of the derivative of d2, the smaller the upper bounded
of d(n). As analyzed in Theorem 2, we can get smaller
tracking error by using the disturbance observer of
higher order.
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Fig. 7 The errors between disturbance and its estimations with
d1 = 0.1 sin(t + 1), d2 = sin(0.5t)
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Fig. 8 The simulation results of SMC and SMCDOs for acrobot
with d1 = 0.1 sin(t + 1), d2 = sin(0.5t)

The simulation results of the acrobot controlled by
theSMCand theSMCDOsare shown inFig. 8.Both the
SMC and the SMCDOs cannot guarantee that the states
converge to the desired valuewhend(n) does not vanish.
As analyzed in Theorem 3, the effect of disturbance
cannot be eliminated completely. As shown in Fig. 8,
compared to the SMC, the proposedSMCDOs aremore
effective. Using the EDO of higher order, better control
performance can be obtained.

4.3 Comparison results

In order to verify the superiority of the proposed
method, a comparison study is carried out in this sub-
section.
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Fig. 9 The results of SMCDO(4th) compared with the method
in Ref. [33] for acrobot with d1 = 0.1 sin(t + 1), d2 = sin(0.5t)
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Fig. 10 The results of SMCDO(4th) compared with the method
in Ref. [33] for acrobot with d1 = 0.1 sin(t + 1), d2 = sin(0.5t)

The simulation results of proposed SMCDO con-
troller are compared with those of method in Ref. [33].
In Ref. [33], a global sliding mode control is presented
to improve the robustness and stability of the underac-
tuated system with external disturbances, and the con-
ditions of asymptotic stability are presented by linear
matrix inequalities. Based on the controller, states of
the system converge to the sliding mode surface expo-
nentially.

Considering the method in Ref. [33] applied to a
class of underactuated systems with bounded exter-
nal disturbances, the disturbance is chosen as given in
Case 3 in Sect. 4.2. In the comparison, the proposed

SMC with fourth-order DO is used. The system trajec-
tories with initial states q1 = π/2 + 0.2, q2 = −0.5
are illustrated in Fig. 9. The trajectories of slidingmode
motion and control signal are shown in Fig. 10. These
results verify that the proposed control approach has
better performance in comparison with the controller
in Ref. [33].

5 Conclusion

In this paper, we proposed an extended disturbance
observer which relaxes the assumption that the first-
order derivatives of disturbances go to zero or they
are bounded in steady states. The sliding mode surface
control is also generalized for a class of underactuated
systems based on the nth-order disturbance observer.
It is proved that the ultimate boundedness of the slid-
ing variable and disturbance estimation error can be
guaranteed. Compared to the conventional SMC, the
switching gain of proposed SMCDO is only required
to be designed greater than the bound of the disturbance
estimation error rather than that of the disturbance. The
SMCDOhas the ability to compensate the disturbances
and obtain more satisfactory control performance. An
example of acrobot is proposed to verify the effective-
ness of proposedmethod in comparisonwith the results
of the controller proposed in Ref. [33]. By using the
proposed method, both the chattering and the tracking
error are significantly reduced even there exist vari-
ous disturbances. The proposed technology also yields
better robust performance compared to the results pre-
sented in Ref. [33]. In the future, experiments will be
conducted to further validate the theory analysis.
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