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Abstract The y-nonlocal Davey–Stewartson II equa-
tion is an extension of the usual DS II equation
involving a partially parity-time-symmetric potential
only with respect to the spatial variable y. By using
the Hirota bilinear method, families of n-order ratio-
nal solutions are obtained, which include lumps in
the (x, y)-plane and the (y, t)-plane, growing-and-
decaying linewaves in the (x, t)-plane, andhybrid solu-
tions of interacting line rogue waves and lumps in the
(x, y)-plane.

Keywords Parity-time-symmetry · Nonlocal Davey–
Stewartson equation · Hirota method · Rogue wave

1 Introduction

Non-Hermitian physical systems have been on the rise
since the pioneering work of Bender and Boettcher
[1], which proved that a wide class of non-Hermitian
Hamiltonians can possess entirely real spectra as long
as these Hamiltonians obey the conditions of parity and
time (PT) symmetry. Since then, a lot of PT-symmetric
non-Hermitian Hamiltonian systems and their physical
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implementations have attracted a lot of attention during
the past three decades [2–10]; for a recent review on
this topic, see Ref. [11].

It is worth mentioning that the very active research
field of optics and photonics has provided a test bed for
the experimental observation of the unique phenomena
related to PT symmetry, e.g., in specially designed opti-
cal waveguide structures and optical lattices [12–17].
Moreover, a series of works [18–23] have proved that if
the complex-valued potential is not fully PT symmet-
ric but is partially PT symmetric, it may also have new
and interesting applications in optics and photonics and
in other related areas. In a seminal work, Yang [18]
introduced multidimensional complex optical poten-
tials with partial PT symmetry. It is well known that
the standard PT symmetry demands that the complex-
valued external potential must be invariant under the
complex conjugation of the corresponding physical
field and the simultaneous reflection in all spatial coor-
dinates. By using both analytical and numerical tech-
niques, Yang [18] has demonstrated that if the external
potential is only partially PT symmetric, i.e., it is invari-
ant under complex conjugation and reflection in only
a spatial coordinate, then it can also possess all real
eigenvalues and continuous families of soliton solu-
tions. Thus, further investigations in the area of par-
tially PT-symmetric physical systems are both worth-
while and necessary.

In order to get a better understanding of a PT-
symmetric physical system, it is necessary to find out
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the associated integrable model for it. We recall that a
nonlocal nonlinear Schrödinger (NLS) equation with
a PT-symmetric potential was proposed in a seminal
work by Ablowitz and Musslimani [24]. This work
immediately stimulated extensive studies on the nonlo-
cal (1 + 1)-dimensional integrable equations including
the obtaining of various types of exact solutions and
the construction of other nonlocal integrable equations
[25–36]. Later, Fokas extended the nonlocal NLS equa-
tion to (2 + 1)-dimensional space and introduced two
new integrable nonlocal Davey–Stewartson (DS) equa-
tions [37]. Recently, a new nonlocal Davey–Stewartson
II (DS II) equation was introduced by Ablowitz and
Musslimani [38] in the form of

i At = Axx − Ayy + (εV − 2Q)A,

Qxx + Qyy = (εV )xx , (1)

where

V = A(x, y, t) [A(x,−y, t)]∗, (2)

the asterisk denotes complex conjugate, A is a complex-
valued function of spatial variable x and y, and tem-
poral variable t , and Q is a function of x , y, and t .
Here V is a PT-symmetric potential with respect to the
y-direction, and thus, Eq. (1) is called the y-nonlocal
DSII equation from now on. Obviously, the y-nonlocal
DS II equation can be reduced to the usual DS II equa-
tion [39,40] by setting V = A(x, y, t) [A(x, y, t)]∗.

Note that rogue waves of the usual DS II equation
have been derived by Ohta and Yang [40]. It is worth
mentioning that rogue waves (or freak waves), a term
coined to provide the adequate description of the high-
amplitude ocean waves [41], have recently attracted
much attention in the study of their complex dynamics
in different physical systems [42–65]. The most recent
theoretical and experimental results in this fast devel-
oping area were summarized in Refs. [66–69].

In recent works [70,71], the (2 + 1)-dimensional
breather, rational, and semirational exact solutions of
partially PT-symmetric nonlocal DS equations (of type
I and type II) with respect to the spatial variable x (the
so-called x-nonlocal DS equations of type I and type II)
have been reported. Thus, it is natural to seek various
exact solutions of the partially PT-symmetric nonlocal
DS II equation with respect to the spatial variable y
(the so-called y-nonlocal DS II equation) by using the
Hirota bilinear method and then show the key features
of the evolution Eq. (1), characterized by a partially
PT-symmetric complex-valued potential V .

This paper is organized as follows. In Sect. 2, the
main theorem on the rational solutions is provided. In
Sect. 2.1, the fundamental rational solutions are derived
and their dynamics is studied. The unique dynamics of
higher-order rational solutions is discussed in Sect. 2.2.
Our results are summarized in Sect. 3.

2 Rational solutions of the y-nonlocal DS II
equation

In this section, we derive rational solutions of the y-
nonlocal DS II equation, which can be transformed into
the bilinear form as follows:(
D2
x − D2

y − i Dt

)
g · f = 0,

(
D2
x + D2

y

)
f · f = 2ε

(
f 2 − gh

)
, (3)

and with the variable transformation

A = √
2
g

f
, Q = ε − 2(log f )xx , (4)

the function g and f satisfy the following conditions:

[ f (x,−y, t)]∗ = f (x, y, t) , [g(x,−y, t)]∗
= h(x, y, t) . (5)

Here the operator D is the Hirota’s bilinear differential
operator[72] defined by

P(Dx , Dy, Dt , . . .)F(x, y, t, . . .) · G(x, y, t, . . .)

= P(∂x−∂x ′ , ∂y−∂y′ , ∂t − ∂t ′ , . . .)F(x, y, t, . . .)

×G(x
′
, y

′
, t

′
, . . .)|x ′=x, y′=y, t ′=t,

where P is a polynomial of Dx , Dy , Dt , . . ..
With the bilinear transform method [72], the N th-

order periodic solution of the nonlocal DS II equation
can be derived. It can be written in the following form:

f =
∑

μ=0,1

exp

⎛
⎝

(N )∑
j<k

μ jμk A jk +
N∑
j=1

μ jη j

⎞
⎠ ,

g =
∑

μ=0,1

exp

⎛
⎝

(N )∑
j<k

μ jμk A jk+
N∑
j=1

μ j (η j + iφ j )

⎞
⎠ ,

(6)

where

η j = Pj x + i Q j y + � j t + η0j ,

� j =
(
P2
j + Q2

j

) √
−1 + 4ε

P2
j − Q2

j

,
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exp(A jk)=− 2ε cos(φ j − φk) + (Pj − Pk)2 − (Q j − Qk)
2 − 2ε

2ε cos(φ j +φk)+(Pj +Pk)2 − (Q j + Qk)2−2ε
,

cos(φ j ) = 1 − P2
j − Q2

j

2ε
, sin(φ j )

= −

(
P2
j − Q2

j

)√
−1 + 4ε

P2
j −Q2

j

2ε
, (7)

and j , k , N are arbitrary positive integers, Pj and
Q j are real constants, and η0j is an arbitrary com-
plex constant. The notation

∑
μ=0 indicates summa-

tion over all possible combinations ofμ1 = 0, 1 , μ2 =
0, 1 , . . . , μN = 0, 1, and the

∑(N )
j<k summation is over

all possible combinations of the N elements with the
specific condition j < k.

In order to derive line rogue waves of the y-nonlocal
DS II equation (1), we use long wave limits on the f
and g functions. Putting

N = 2n, Q j = λ j Pj , η0j = iπ (8)

in Eq. (6), then using the limit Pj → 0, the functions
A and Q are translated from exponential functions to
pure rational functions.

By the gauge freedom of f and g functions, the
rational solutions of the y-nonlocal DS II equation can
be presented in the following Theorem.

Theorem The Nth-order rational solutions A and Q
of the y-nonlocal DS II equation can be generated by
Eq. (4) with the help of the following

f =
N∏
j=1

θ j + 1

2

(N )∑
j,k

α jk

N∏
l �= j,k

θl + · · ·

+ 1

M !2M
(N )∑

j,k,...,m,n

M︷ ︸︸ ︷
α jk · · ·αmn

N∏
p �= j,k,...,m,n

θp + · · · ,

g =
N∏
j=1

(θ j + b j ) + 1

2

(N )∑
j,k

α jk

N∏
l �= j,k

(θl + bl) + · · ·

+ 1

M !2M
(N )∑

j,k,...,m,n

M︷ ︸︸ ︷
α jk · · ·αmn

N∏
p �= j,k,...,m,n

(
θp + bp

) + · · · ,

(9)

with

θk = λk x + i y + 2γk

√
ε

λ2k − 1

(
1 + λ2k

)
t ,

bk = −
iγk

√
ε
(
λ2k − 1

)

ε
,

a jk =
(
λ2j − 1

) (
λ2k − 1

)

2γ jγk

√
1(

λ2j−1
)(

λ2k−1
)

(
λ2jλ

2
k−λ2j −λ2k + 1

)
− λ jλk + ε

,

(10)

where the two positive integers j and k are not larger
than N, λ j are arbitrary complex constants, and γ j =
±1.

Remark By using the above Theorem, we can obtain
the rational solutions of the nonlocal DS II equa-
tion, which are different from rational solutions of the
classical DS II equation [73]. In addition, if we set
ε = −1, λ j = −λ j+n �= 0, |λ j | < 1, γ jγ j+n = −1
in Eq. (10), we can obtain lump solutions. These solu-
tions are non-singular; this property has been proved
in [73,74], and thus, we omit the proof in the present
paper.

2.1 Dynamics of fundamental rational solutions

The first-order lump solutions of the y-nonlocal DS II
equation can be derived if we choose the parameters

N = 2, γ1 = −γ2 = −1,

λ1 = −λ2 = 1

2
, ε = −1 (11)

in the rational solutions (9). According to the above
Theorem, this exact solution has the form

A(x, y, t) = √
2
(θ1 + b1)(θ2 + b2) + a12

θ1θ2 + a12

=
√
2
(
48x2+(96i

√
3−320

√
3t)x−960i t+1600t2+192y2−117

)

(4
√
3x−40t)2+192y2+27

,

Q(x, y, t) = ε − 2(log(θ1θ2 + a12))xx

= 1

((4
√
3x − 40t)2 + 192y2 + 27)2

(
− 2304x4 + 30720

√
3t x3

+ (−460800t2 − 18432y2+6624)x2

+(1024000
√
3t3 + 122880

√
3t y2 − 44160

√
3t)x − 36864y4

+(−614400t2 − 47232)y2 − 2560000t4 + 220800t2 − 5913
)
.

(12)

As shown in Fig. 1, these rational solutions look
as permanent lumps moving on the constant back-
ground in either the (x, y)-plane or the (y, t)-plane.
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(a) t = 0 (b) y = 0

Fig. 1 The lump solutions |A| in (12) of the y-nonlocal DS
II equation in the (x, y)-plane (a) and the (y, t)-plane (b). The
parameters are given by (11)

From a careful analysis of the rational solution |A|
given in (12), it must be a bright lump in either the
(x, y)-plane or the (y, t)-plane.

Interestingly, in the (x, t)-plane, as shown in Fig. 2,
the exact solution A given by Eq. (12) is a typical line
wave solution. When |y| → ∞, these line waves dis-

appear to the constant background. When |y| → 0, the
amplitudes of these linewaves increase, and for |y| = 0
the amplitude of the linewave reaches the highest value.
Moreover, these line waves are not always bright-type
waves (see the panels fot y = ± 1,± 2, 3 in Fig. 2).
Thus, they feature remarkably different profiles when
comparing the variety of line rogue wave profiles plot-
ted in Fig. 2 to the corresponding ones for the standard
DS II equation [40,75].

It is also interesting to note that the nonlocal DS II
equation can be reduced to the nonlocal NLS equation
[24], i.e.,

i At = −Ayy + [2 − A(y, t)A∗(−y, t)]A, (13)

by setting A to be independent of x and Q = ε =
−1. This equation is a special reduction in the third-
order nonlocal Schrödinger equation; see Ref. [27] for
a detailed study of this issue. Further, setting N =

Fig. 2 The line rogue wave
solution |A| given by (12) of
the y-nonlocal DS II
equation. The line waves are
plotted in the (x, t)-plane
for different values of the
spatial variable y

(a) y = −4 (b) y = −2 (c) y = −1

(d) y = 0 (e) y = 1
2 (f) y = 1

(g) y = 2 (h) y = 3
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Fig. 3 A Peregrine-type solution |A(y, t)| of the nonlo-
cal NLS Eq. (13), obtained by a reduction from a two-
spatially dimensional W-shaped rogue wave A(x, y, t) defined
in (4), (9), and (10), with parameters N = 2, γ1 = −γ2 =
−1, λ1 = λ2 = 0, ε = −1. The right panel is a density plot of
the left panel

2, γ1 = − γ2 = − 1, λ1 = λ2 = 0, ε = − 1 in the
rational solutions (4), (9), and (10), the fundamental
(Peregrine) rogue wave of the nonlocal NLS Eq. (13)
can be given in an analytical form and is plotted in
Fig. 3; see also the recent work [27].

2.2 Dynamics of high-order rational solutions

In this subsection, we construct the high-order rational
solutions according to Theorem. Setting ε = −1 and
N = 2n (n > 1), where n is an integer number, and
taking the following set of parameters in Theorem,

λ j = − λ j+n, |λ j | < 1, γ jγ j+n = −1,

j = 1, 2, . . . , n, (14)

then the nth-order rational solutions of the y-nonlocal
DS II Eq. (1) can be derived. If λ j �= 0, we can derive
higher-order lump solutions in the (x, y)-plane; see
Fig. 4 for the evolution of two lump solutions in the
(x, y)-plane. In the (x, t)-plane, the second-order solu-
tions can describe the interaction of two line waves,
namely the growing-and-decaying process of line wave
amplitudes; see Fig. 5. Ifλ j = 0, λk �= 0,where j �= k,
thenwe can derive hybrid solutions composed of lumps
and line rogue waves in the (x, y)-plane; see Fig. 6.

For instance, we set n = 2 (i.e., N = 4) in Theorem,
then the functions f and g can be derived as follows:

f = θ1θ2θ3θ4 + α12θ3θ4 + α13θ2θ4 + α14θ2θ3

+α23θ1θ4 + α24θ1θ3 + α34θ1θ2

+α12α34 + α13α24 + α14α23,

g = (θ1 + b1)(θ2 + b2)(θ3 + b3)(θ4 + b4)

+α12(θ3 + b3)(θ4 + b4)

+α13(θ2 + b2)(θ4 + b4)

+α14(θ2 + b2)(θ3 + b3)

+α23(θ1 + b1)(θ4 + b4)

+α24(θ1 + b1)(θ3 + b3)

+α34(θ1 + b1)(θ2 + b2)

+α12α34 + α13α24 + α14α23, (15)

Fig. 4 The time evolution
in the (x, y) plane of the
two lump solution |A|,
which is given by Eq. (4), of
the nonlocal DS II Eq. (1).
The parameters are given in
Eq. (16)

(a) t = −2 (b) t = −1 (c) t = 0

(d) t = 1 (e) t = 3
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Fig. 5 The second-order
line rogue wave solution A
of the y-nonlocal DS II
equation, plotted in the
(x, t)-plane. The parameters
are given in Eq. (16)

(a) y = −4 (b) y = −2 (c) y = −1

(d) y = 0 (e) y = 1
2 (f) y = 1

(g) y = 2 (h) y = 3

where the parameters θ j , α jk, b j are given by Eq. (10).
As we discussed above, if λ j �= 0, the functions f and
g given by Eq. (15) generate the second-order lumps
in the (x, y)-plane or the (y, t)-plane. For example, as
shown in Fig. 4, we can obtain the solutions describing
the interaction of two first-order lumps in the (x, y)-
plane, if we consider the parameter conditions

λ1 = −λ3 = 1

2
, λ2 = −λ4 = − 1

2
,

γ1 = −γ3 = 1, γ2 = −γ4 = 1, (16)

in Eq. (10). There are two first-order lumps interacting
with each other in Fig. 4. Interestingly, when t = 0
(see Fig. 4), these two lumps merge into a single one,
but the amplitude of the emerging lump is much lower
than the corresponding amplitudes of the two separate
interacting lumps.

Then, we consider this solution in the (x, t)-plane.
Similar to the case of N = 2 (see Fig. 2), there are two

line waves in Fig. 5 that arise from the constant back-
ground and disappear into the constant background
again. Depending on the special values of the spa-
tial coordinate y, these line waves can be either bright
waves or dark ones.

Moreover,we consider the hybrid solutions of lumps
and line rogue waves according to Theorem. We set

λ1 = −λ3 = 0, λ2 = −λ4 = − 1

2
,

γ1 = −γ3 = 1, γ2 = −γ4 = 1 (17)

in Eq. (10) of Theorem. The corresponding rational
solutions generated by Theorem are shown in Fig. 6.
For −3 < t , we see a lump moving on the constant
background (the height of the background is

√
2). At

the intermediate time, a line rogue wave arises (see the
panel corresponding to t = − 1 in Fig. 6) and then
interacts with the lump (see the panel corresponding to
t = 0 in Fig. 6). Finally, the line rogue wave disappears
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Families of rational solutions 2451

Fig. 6 The interaction of a
lump with a line rogue wave
solution in the (x, y)-plane.
The parameters are given in
Eq. (17)

(a) t = −3 (b) t = −1 (c) t = 0

(d) t = 1 (e) t = 3

into the constant background, and the moving lump is
preserved eventually. Interestingly, the interaction of
these two very different types of waves implies a slight
downward deformation of the line rogue wave (see the
panel corresponding to t = 0 in Fig. 6).

For larger values of N , the dynamics of these higher-
order rational solutions is qualitatively similar. We can
also obtain two types of rational solutions. One of
them is the nth-lump solution, the second one is a
hybrid (compound) solution composed of lumps and
line rogue waves. If we set N = 6 and

λ1 = −λ4 = 1

2
, λ2 = −λ5 = − 1

2
, λ3 = −λ6 = 1

3
,

γ1 = −γ4 = 1, γ2 = −γ5 = 1, γ3 = −γ6 = 1

(18)

in Eq. (10), then Theorem generates a third-order lump
solution. As shown in Fig. 7, there are three lumps
moving on the constant background. The paired lumps
are moving together from the right-hand side to the
left-hand side, while the third lump is moving from the
left-hand side to the right-hand side. The two soliton
complexes will collide at a certain time. The collision
of lumps implies the fusion and fission of them. At
t = −1, the third lump merges into the left one of the
paired lumps, and then at t = 0 it is moving further
into the middle of paired lumps. Next, at t = 1, the

third lump merges the right one of the paired lumps,
and then at t = 2 the third lump is split from the right
one of the paired lumps. Finally, at t > 4, the third
lump is passed through the paired lumps. In order to
get the hybrid solutions of lumps and line rogue waves
in Theorem, we set

λ1 = −λ4 = 1

2
, λ2 = −λ5 = −1

2
, λ3 = λ6 = 0,

γ1 = −γ4 = 1, γ2 = −γ5 = 1, γ3 = −γ6 = 1

(19)

in Eq. (10). The associated solution is plotted in Fig. 8,
and for t � −3we see twomoving lumps sitting on the
constant background. In the intermediate time range, a
line rogue wave arises (see the panel corresponding to
t = −1 in Fig. 8), and then, this linewave interactswith
the two lumps. At t = 0, the two lumps merge into a
single one and a high-amplitude line rogue wave arise.
As we can see in the panel corresponding to t = 0,
the line rogue wave reaches the highest amplitude as a
result of its interaction with the two lumps. After inter-
action, the line rogue wave disappears into the constant
background again, while the single lump is divided into
two lumps (see the panels corresponding to t = 3

2 and
t = 7

2 in Fig. 8).
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Fig. 7 The time evolution
in the (x, y)-plane of a
third-order lump A of the
y-nonlocal DSII equation.
The parameters are given in
Eq. (18)

(a) t = −5 (b) t = −4 (c) t = −2

(d) t = −1 (e) t = 0 (f) t = 1

(g) t = 2 (h) t = 4

Fig. 8 The interaction
dynamics in the (x, y)-plane
of a second-order lump and
a line rogue wave of the
y-nonlocal DS II equation.
The parameters are given in
Eq. (19)

(a) t = −3 (b) t = −1 (c) t = 0

(d) t = 3
2 (e) t = 7

2
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3 Summary and discussion

In this paper, a general formula for the nth-order ratio-
nal solutions of the y-nonlocalDS II equation is derived
by using the Hirota bilinear method, which yields two
types of rational solutions. The first type of rational
solutions is the lump solution that has permanent peaks
moving on the constant background in either the (x, y)-
plane or the (y, t)-plane. In the (x, t)-plane, we found
line wave solutions that arise from a constant back-
ground and then disappear into the same background
again. For the nth-order solutions, there are n lumps
moving in either the (x, y)-plane or the (y, t)-plane and
n line waves growing and decaying in the (x, t)-plane.
The second type of rational solution is a hybrid solution
composed of both lumps and line rogue waves.

In addition, if we compare the key features of the
families of rational solutions of the y-nonlocal DS II
equation,which are reported in this paper,with the fam-
ilies of rational solutions of the fully PT-symmetric DS
II equation and with the corresponding solutions of the
x-nonlocal DS II equation [70], we see the following
essential differences:

– In the (x, y)-plane, the rational solution of the fully
PT- symmetric DS II equation behaves as a line
rogue wave, but the rational solution of the y-
nonlocal DSI II equation is a lump (see Fig. 1).
In the (x, t)-plane, the former solution is a local-
ized lump-shaped wave, while the latter solution is
a growing- and-decaying line wave (see Fig. 2).

– In the (x, t)-plane, the rational solution of the x-
nonlocal DS II equation is a localized lump-shaped
wave, but the rational solution of the y-nonlocal DS
II equation is a growing- and-decaying line wave
(see Fig. 2). In the (y, t)-plane, the former solu-
tion is a growing-and-decaying line wave, while
the latter solution is a localized lump-shaped wave
(see Fig. 1). What is more, the solutions of the x-
nonlocal DS II equation [70] cannot simply trans-
form into the solutions of the y-nonlocal DS II
equation by interchanging of the spatial variables
x and y.

– The unique patterns shown in Figs. 4, 5, 6, 7 and
8 are typical for the families of rational solutions
of the y-nonlocal DS II equation, and they have
not been found in the study of rational solutions
of the fully PT-symmetric DS II equation and of

the corresponding solutions of the x-nonlocal DS
II equation; see [70].

Thus, the above-listed differences between the
essential features of families of rational solutions of
the fully PT-symmetric DS II equation, the partially
symmetric x-nonlocal DS II equation, and the partially
symmetric y-nonlocal DSII equation suggest us that
these nonlinear evolution equations deserve to be fur-
ther studied. We expect new results in this area helping
us to understand the unique properties of PT-symmetric
nonlinear systems in the multidimensional space.
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