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Abstract We consider ensembles of bistable ele-
ments with nonlocal interaction. It is shown that the
bistability of units in the case of nonlocal interaction
leads to the formation of chimera structures of a spe-
cial type, which we have called double-well chimeras.
Their distinctive feature consists in the formation of
incoherence clusters with an irregular distribution of
elements between two attractive sets existing in an indi-
vidual element (two “potential wells”). Ensembles of
different bistable units are considered, namely ensem-
bles of cubic maps, FitzHugh–Nagumo oscillators in
the regime of two stable equilibrium points and Chua’s
circuits. The spatiotemporal behavior of the ensembles
is studied in the cases of regular and chaotic dynamics
in time, and different types of chimera structures are
revealed.
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1 Introduction

Typically, a bistable system is characterized by two sta-
ble states. A system with two stable equilibrium points
is the simplest example of a bistable oscillator. The
bistable behavior is typical for many issues of physics
[1,2], radio-electronics [3], chemistry [4,5], biology
[6,7], and other scientific fields [8–11].

Coupled bistable oscillators can form an active
bistable medium, where an auto-wave process of the
switching type exists [12,13]. Stable traveling waves
have been observed in bistable systems and media for
specific conditions [14–17]. Bistablemedia and ensem-
bles of bistable elements are characterized by the for-
mation of spatial structures, both regular and irregu-
lar ones. Similar structures have been described, for
instance, in [13,18–21].

A new type of structures,whichwas called a chimera
state, has been found and intensively studied in recent
years (for instance, [22–28]). A chimera structure con-
sists of clusters with coherent and incoherent behavior.
These structures have been revealed for the cases of
nonlocal, local [32–34] and global [29–31] coupling
between the ensemble elements. Recently, chimeras
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have been found in systems with specific kinds of the
nonlocal coupling [35–37].

Chimera states are observed in ensembles which
consist of active dynamical systems of different types.
They can be phase oscillators [27,29,38,39], peri-
odic self-sustained oscillators [25,30,40,41], chaotic
self-sustained oscillators and maps [24,28,42–44], and
stochastic excitable oscillators [45].

The problem of how chimeras can be related to mul-
tistability is one of the important issues. It can be argued
that certain chimera types such as chimera “death”
[25,46] and a phase chimera in ensembles of chaotic
systems [24,28,42–44] appear as a result of the ele-
ment interaction. Probably, chimera structures are typ-
ical states for ensembles consisting of elements with
multistability. However, spatial structures in ensembles
of multistable oscillators with the nonlocal interaction
have not almost been studied. We can note the works
[47–49] where chimera states have been explored in
ensembles consisting of elements with the bistable
dynamics. However, the features of chimera structures,
which are exactly related to bistability, have not almost
been examined.

Our present paper is devoted to the study of complex
spatiotemporal structures in ensembles of bistable ele-
ments with the nonlocal coupling.We intend to explore
different types of bistable systems, namely a cubic
map, the FitzHugh–Nagumo oscillator in the bistable
regime, and Chua’s circuit. In our research we con-
sider two cases, namely the chaotic dynamics of par-
tial systems and the regime with two stable equilibrium
points. The objectives of this paper are to find the gen-
eral features of an ensemble, which can be related to
the bistable dynamics, and to analyze the peculiarities
of structure formation in dependence on the dynamics
of ensemble elements and the parameters of nonlocal
coupling. All the ensembles under study have periodic
boundary conditions. Each element of the ensembles
interacts with P neighbors both from the left and from
the right. We explore the systems with N = 300 ele-
ments.

2 Chimera states in ensembles of bistable elements
with regular dynamics

It is known that certain systems can demonstrate both
regular and chaotic bistable dynamics depending on
their parameters. Moreover, the chaotic attractor merg-

ing can be one of the possible dynamical regimes of
such systems. In this section, we explore spatial struc-
tures in ensembles of nonlocally coupled cubic maps
or FitzHugh–Nagumo (FHN) oscillators in the bistable
regime with two symmetrically located equilibrium
points.

2.1 Chimeras in an ensemble of bistable maps with
regular dynamics

We start with considering an ensemble where a partial
unit is a cubic map. This map is the simplest element
with the bistable dynamics (see, for example, [50]).
The model under study is described by the following
system of equations:

xi (n + 1) = fi (n) + σ

2P

i+P∑

k=i−P

( fk(n) − fi (n)) ,

fi (x) =
(
αxi − x3i

)
exp

[
− x2i

β

]
, i = 1, . . . , N ,

xi+N (n) = xi (n), xi+N (n) = xi (n), (1)

where the index i defines the element location. This
quantity can be considered as a discrete spatial coor-
dinate, n is the iteration number, α, β are the con-
trol parameters of a partial element, σ is the coupling
strength, and P is the number of neighbors coupled
with the i th element from each side. The parameter β

is fixed and equal to 10. The coupling radius is speci-
fied as r = P

N and characterizes the degree of spatial
interaction.

At the beginning of the ensemble Eq. (1) study, we
set the parameter α = 2. This case corresponds to the
regular dynamics of the partial element when the cubic
map has two stable equilibrium points. For simplicity,
we introduce the term of a “potential well” by analogy
with a bistable oscillator such as the Duffing oscillator
[2]. It is assumed that the stable equilibrium state in
the positive value region of xi corresponds to a posi-
tive well and the negative value region is relevant to a
negative well.

In order to illustrate the system behavior, we plot a
regime map in the (r , σ ) parameter plane in Fig. 1. The
regimes are considered for several realizations of initial
conditions randomly distributed in the interval [−1:1]
(i.e., the initial conditions are distributed roughly equal
between the two wells). If all the initial conditions
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Fig. 1 (Color online) Regime map for the system Eq. (1) in the
(σ, r ) parameter plane. Designations in the diagram: A—spatial
coherence, B—chimera “death”, C—spatio-incoherent station-
ary structures. Parameters: α = 2, β = 10, N = 300

belong to one of the wells, then only a spatially uni-
form regime is observed for any values of r and σ . The
boundaries of the system Eq. (1) regimes cannot be
exactly defined due to a high-level multistability. For
this reason, the same region in the diagram (Fig. 1) can
be pictured by both a solid tone and a line alternation.
The solid tone means that the regime is realized for
all the initial conditions under consideration. The line
alternation indicates that in this domain, there coexist
two different regimes corresponding to both the main
color region and the shaded region.

Only the motionless spatial structures are observed
in the ensemble Eq. (1) for the selected parameters and
for any values of r and σ . The spatial coherence is real-
ized in region A in the diagram (Fig. 1) for large values
of the coupling strength σ . This regime is characterized
by a smooth profile which indicates the spatial coher-
ence. At that the spatial structure can be both single-
well and double-well. All the elements have the same
values corresponding to one of the stable equilibrium
points for the single-well spatial structure. When the
structure is double-well, then the element values are
distributed in the vicinities of the two stable equilib-
rium points. The coordinates of the element states may
be different from the equilibrium point coordinate.

Two scenarios of the spatial structure evolution can
be realized when the coupling radius decreases. The
first one consists in the transition from region A to
region B, where chimera states are observed. Spatial
coherence and incoherence clusters can be revealed
(see the inset in Fig. 1). They exist only for relatively
small values of the coupling radius, which are lower

(a) (b)

Fig. 2 Stationary chimera structure in the system Eq. (1) for
σ = 0.31 and r = 0.097. a Snapshot of the system dynamics, b
realization of the initial conditions randomly distributed between
the wells. Parameters: α = 2, β = 10, N = 300

than � 0.15. When r is larger than 0.15, then this
regime is realized only for special initial conditions (the
region of alternating lines B) and completely disap-
pears with increasing radius r . The transition to region
C , which is relevant to irregular stationary spatial struc-
tures, occurs when the coupling strength decreases.
This is a well-known effect for ensembles of bistable
elements with the local coupling (see, for instance,
[13,19,20]). The spatial structures are simplified near
the region B boundary. The most part of the elements
are grouped in the same well. The structure becomes
simpler when reducing coupling strength. This behav-
ior is observed for any values of the coupling radius
and does not practically change qualitatively within the
whole range of r variation.

Wenowconsider region Bwhere stationary chimeras
exist. This structure formation is a direct consequence
of both the bistability of the system (1) elements and
the nonlocal character of coupling. A typical structure
which is observed in region B is shown in Fig. 2. Struc-
tures with two, four, and even six incoherence clusters
coexist for different initial conditions. The multistabil-
ity disappears with increasing r , and only the structures
with two incoherence clusters remain in the system (see
Fig. 2a).

2.2 Chimeras in an ensemble of FitzHugh–Nagumo
oscillators in the bistable regime

We are interested in whether similar spatial struc-
tures observed in the previous case will be formed in
an ensemble of continuous-time systems. In order to
resolve this issue, we consider an ensemble of coupled
FitzHugh–Nagumo oscillators in the bistable regime,
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which is described by the following system of differ-
ential equations:

εẋi = xi − x3i
3

− yi + ε
σ

2P

i+P∑
k=i−P

(xk − xi ) ,

ẏi = γ xi − yi − β,

xi+N (t) = xi (t), i = 1, . . . , N .

(2)

Here ε, γ , and β are the control parameters of ensemble
elements. The coupling is characterized by the coupling
strength σ and the coupling radius r = P

N . The Huen
method with the step h = 0.001 is used for integrat-
ing the system (2). The system parameters are selected
according to the bistable regime of a partial element,
namely ε = 0.2, γ = 0.7, and β = 0.001. In this case,
there are three equilibrium points in a partial oscilla-
tor. They are a saddle and two stable foci. The choice
of β = 0.001 enables one to avoid undesirable effects
which are related to the full symmetry of equilibrium
points for β = 0.0. There are no stationary oscillations
(both stochastic and periodic ones) in the ensemble ele-
ment without an external force.

The behavior of the ensemble (2) with the bistable
dynamics of the elements and the emergence of a spe-
cific type of chimera states have been described in [49].
We now characterize this briefly. Figure 3 illustrates a
regime map for the system (2) for fixed values of ε, γ ,
β in the (r , σ ) parameter plane. A set of random initial
conditions for the variables x and y within the interval
[-1:1] is used for plotting the regime map. This condi-
tion means that the oscillators are randomly distributed
between the wells in an initial time moment.

The main regimes in the ensemble (2) are periodic
traveling waves, a uniform regime (all the elements
are in one of the equilibrium states), chimera states,
and spatial incoherent stationary structures (regions
A, B, C, D in the regimemap in Fig. 3, respectively).
The typical regimes are shown by the snapshots in the
insets.

Periodic traveling waves are propagated in the ring
(2) for a strong coupling strength and relatively small
values of r . The spatial profile of this wave can be
slightly modified both for different initial conditions
and when the coupling parameters are varied. The
regime of traveling waves is not predominant, i.e.,
either the traveling wave regime or the equilibrium
states can be realized for fixed values of r and σ in
the system (2). Chimera structures become to occur for

Fig. 3 (Color online) Regime map in the (σ, r ) parameter plane.
Designations in the map: A—periodic traveling waves, B—
equilibrium state, C—chimera states, D—irregular stationary
structures. Parameters: ε = 0.2, γ = 0.7, β = 0.001, and
N = 300

the same coupling strength values and with growing
coupling radius r . Region B is characterized by the
equilibrium state regime for all the ensemble elements.
When r > 0.28 and σ > 0.1, this regime is most prob-
able for the majority of initial conditions.

RegionC corresponds to the chimera structure exis-
tence. In analogue with the previous case, both coher-
ence and incoherence clusters coexist. Moreover, all
the elements of the coherence clusters rest in the same
equilibrium state. However, the chimera structures in
the ensemble (2) significantly differ from the similar
structures in the system (1). The chimera structures in
the system (2) are not stationary, namely the elements
in the incoherence cluster oscillate either within the
well (around the cluster edges) or between the equi-
librium states (around the cluster center). The spatial
distribution of the system elements is irregular. Region
D is characterized by irregular spatial structures which
are similar to those in (1). The spatial structure is sim-
plified when increasing coupling strength σ . The sta-
tionary chimera structure occurs at the chimera region
boundaries.

We now consider chimera structures in region C in
detail. Coherence and incoherence clusters arewell vis-
ible in the snapshot of the system dynamics in Fig. 4(a).
A set of 30 snapshots at different time moments in
Fig. 4(b) demonstrates the temporal dynamics of the
ensemble (2).

The elements of coherence clusters are in a resting
state and do not oscillate. At least two coherence clus-
ters always exist in a chimera structure. The elements
of the first cluster are distributed in one well, and the
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(a) (b)

(c) (d)

Fig. 4 Chimera structure in the system (2).aSnapshot of the sys-
tem dynamics; b set of 30 snapshots at different time moments; c
root-mean-square deviation of adjacent element states; d cross-
correlation of the 30th element with the others. The transient
time is equal to 104 units; the calculation time is equal to 20,000.
Parameters: r = 0.1, σ = 0.34, ε = 0.2, γ = 0.7, β = 0.001,
and N = 300

elements of the second cluster are in the other well.
Oscillations in the incoherence cluster elements can be
only periodic for the value β = 0.001. Characteristics
of the setting regime in region C (Fig. 3) are almost
independent of initial conditions unlike the regime in
region D.

In order to quantify chimera states, the root-mean-
square deviation Δi (i) of element states is calculated
by the following formula:

Δi =
〈
(2xi (t) − xi+1(t) − xi−1(t))

2
〉
, (3)

where the angle bracketsmean the time averaging. This
enables one to estimate the average difference between
the instantaneous states of adjacent elements and, thus,
to detect the boundaries of coherence and incoherence
clusters. The spatial distribution of this characteristic
for the chimera state is shown in Fig. 4c. Significant
local maxima of Δi are observed for the incoherence
clusters.

We also calculate the normalized cross-correlation
Rn(i) of oscillations of the nth element with other ones
by the following formula:

Rn(i) = 〈x̃i (t)x̃1(t)〉√
〈x̃2n (t)〉〈x̃2i 〉(t)

,

x̃i (t) = xi − 〈xi (t)〉.
(4)

Figure 4d represents a distribution plot for Rn(i)
for the 30th oscillator of the chimera structure. The
30th oscillator is located in the incoherence cluster
and oscillates with a small amplitude within the posi-
tive well. The cross-correlation values are considered
equal to ±1 in regions without oscillations. A cross-
correlation sign corresponds to a well where the ele-
ment is located. Elements around the coherence cluster
edges oscillate periodically within a relevant potential
well without switchings between the wells. The abso-
lute cross-correlation value decreases for these oscilla-
tions. Oscillators from the incoherence cluster switch
between the wells. Their Rn(i) values are in the neigh-
borhood of zero due to a very weak interaction between
these oscillators and the 30th element. Thus, both char-
acteristics, Δi and Rn(i), show well the difference in
the behavior between oscillators from both coherence
and incoherence clusters. They enable one to clearly
detect the cluster boundaries as well as to find regions
with different dynamics.

Similar chimera structures are observed when β is
close to zero (for instance, β = 0.0001). However, the
behavior of incoherence cluster oscillators can be also
chaotic [49]. Thus, the nonlocal interaction leads not
only to the occurrence of temporal oscillations in cer-
tain localized spatial clusters (as in the case of local
coupling [21]) but also to the chimera state formation.
This effect is not observed for the case of local inter-
action.

It can be argued that certain regularities take place
in the behavior of ensembles which consist of bistable
elementswith the regular dynamics. The (r, σ ) parame-
ter region, where chimera-like structures are observed,
exists for ensembles of different bistable elements. This
is characterized by the existence of stable clusters with
both regular and irregular spatial distributions. The
multistability of chimera states is a feature for both sys-
tems. However, there is a significant difference in the
behavior of the two systems 2 and 2. The ensemble of
cubic maps 2 demonstrates the simplest dynamics, i.e.,
there are no oscillations for any values of the coupling
parameter after a transient process. Stationary struc-
tures are only possible. This is the reason of absence of
the traveling wave region in the regime map (Fig. 1).
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But this region exists in the diagram for the system
(2) (Fig. 3). Considerable differences are detected in
the element dynamics of both systems in the chimera
state region. Stationary chimera structures can only be
observed in the system (1).At the same time, one part of
the FHNoscillators in the ensemble (2) rests in an equi-
librium state and the other part oscillates with different
amplitudes. The cluster boundaries are not practically
changed in time.

3 Chimeras in an ensemble of bistable elements
with chaotic dynamics

We study here two ensembles of bistable elements with
chaotic dynamics in analoguewith the previous section.
The first one is the ensemble of cubic maps described
above. However, the element behavior is chaotic in
this case. The second model is an ensemble of oscilla-
tors which are a radioelectronic device being known as
Chua’s circuit [3]. The attractor merging bifurcation is
a characteristic for both systems and accompanies the
transition from bistability to monostability. In this rea-
son, we use initial conditions as a random distribution
of the variable values in the interval [0, 1]. Thus, all the
elements of the considered ensembles are located only
in the positive well at the initial time moment. These
initial conditions lead to oscillations only in the posi-
tive well, when the regime is bistable. But if a system
demonstrates the merged chaotic attractor regime, then
the ensemble elements switch between the two wells.

3.1 Chimeras in an ensemble of bistable maps with
chaotic dynamics

We now consider the ensemble of nonlocally coupled
cubic maps (1). However, we now fix the parameter
value α = 3 that corresponds to a merged chaotic
attractor in a partial map. Other parameters are the
same as in the previous case. The effective value of α

decreases with increasing coupling strength (see [28]).
When we vary the coupling strength, either the merged
chaotic attractor regime or bistability is observed in the
system. The regime map for the system (1) in the (r, σ )
parameter plane is shown in Fig. 5 for α = 3, β = 10.
It should be noted that the system has a high-level mul-
tistability and sometimes the regime boundaries can
have a complex structure.

Fig. 5 (Color online) Regime map for the system (1) in the
(r, σ ) parameter plane. Designation in the map: A—the region
of complete chaotic synchronization; B—partial coherence with
predominant double-well structures; B′—partial coherence with
predominant single-well structures; C—double-well chimeras;
C′ – single-well chimeras; D—incoherence double-well struc-
ture; D′—incoherence single-well structure. Parameters: α =
3, β = 10, N = 300

The regime map demonstrates many types of the
spatiotemporal dynamics, which are observed in the
ensemble (1) when the parameters r, σ are varied.
Some regions in the regimes map (Fig. 5) intersect
due to the high-level multistability. These regions are
illustrated by alternating lines with different colors
according to the color scheme of the regimes. There
are also regions with single-well or double-well struc-
tures with the same form of oscillations. For simplic-
ity, the regions of the double-well structure existence
are denoted by letters without a prime mark and are
painted by lighter tones. The regions with single-well
structures are marked by letters with a prime mark and
are painted by darker tones. Snapshots of the system
dynamics demonstrate some typical structures from
different regions in Fig. 5.

We now explore the basic types of the spatiotem-
poral dynamics. They are marked in the regime map
(Fig. 5) and in the phase-parametric diagram (Fig. 6).
The regions in the phase-parametric diagram are
denoted by colors and letters according to the regime
map in Fig. 5.

Region A (red color online) corresponds to the
complete chaotic synchronization of the elements.
The oscillations are chaotic and are associated with
the merged attractor. The partial coherence regime
is observed in regions B and B ′ (gray color). Spa-
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Fig. 6 Phase-parametric diagram of the 50th element in the
ensemble (1) for r = 0.37 and when varying σ . The regions are
indicated by roman numerals (top) and colors according to the
same regimes in Fig. 5. Parameters: α = 3, β = 10, N = 300

tial structures in these regions are represented smooth
profiles and can be either single-well (region B ′) or
double-well (region B). In these regimes, each element
demonstrates the single-well chaotic dynamics, even
in the case of double-well structures in the ensemble
(1) (region B). The partial coherence regime is simi-
lar to the complete synchronization near the boundary
with region A. The value of σ ≈ 0.81 corresponds
to the merging of both chaotic attractors. Each partial
map becomes bistable and is in the single-well regime.
When the coupling strength decreases up to σ ≈ 0.7,
the dynamics of the elements turns out to be periodic.

Regions C and C ′ are related to chimera structures
which can be either double-well (region C) or single-
well (region C ′). These structures will be considered
below. The ensemble elements demonstrate the inco-
herent behavior in regions D and D′ and irregular spa-
tial structures emerge. They are double-well in region
D (light-blue color online). At the same time, when
σ > 0.05, each ensemble (1) element oscillates chaot-
ically only in one well. Such a behavior is observed
within a wide range of r, σ values. Single-well spatial
structures are realized in region D′ (dark-blue color
online). The ensemble elements behave like uncoupled
ones for any values of r and when σ < 0.05.

We now consider the chimera structures in regions
C and C ′. Region C ′ is characterized by the spatially
and temporally single-well dynamics. This structure is
exemplified in Fig. 7.

A snapshot of the system dynamics xi (i) is shown
in Fig. 7(a). There are clusters with different types

(a) (b)

(c) (d)

Fig. 7 Single-well chimera structure for σ = 0.43, r = 0.42
(region C ′ in the regime map in Fig. 5). a Snapshot of the sys-
tem dynamics; b time realizations xi (n) for the 55th and 56th
elements from the incoherence cluster; c cross-correlation of
the first element with the others; d root-mean-square deviation
of the adjacent element states. The transient time is equal to
105 iterations and the calculation time is equal 105. Parameters:
α = 3, β = 10, N = 300

of the dynamics. The elements behave synchronously
in the coherence cluster. The oscillations are shifted
by one iteration within the incoherence cluster. This
corresponds to a shift by one half of the period in
continuous-time systems. Such a behavior is typical
for phase chimeras (see [28,44]).

The ensemble (1) dynamics can be quantified by
calculating the following characteristics. At first, the
cross-correlation R1(i) of the first element with the
others is estimated by the formula (4). The calculation
results are shown in Fig. 7c. Secondly, the root-mean-
square deviation Δi of the adjacent element states is
evaluated by the expression (3) and the corresponding
results are presented in Fig. 7d. As can be seen from
Fig. 7c, the cross-correlation R1(i) values are switched
between ±1, i.e., the adjacent elements demonstrate
antiphase oscillations. All the elements from the coher-
ence clusters have the same values of R1(i), which can
be either + 1 or − 1 depending on their position. The
root-mean-square deviation Δi also shows differences
in the behavior of the elements from the coherence and
incoherence clusters. Δi ≈ 0 in the coherence cluster
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where the elements behave synchronously. At the same
time, the values of Δi are very large in the incoherence
cluster. These characteristics enable one to detect the
boundaries of the coherence and incoherence clusters.
The cross-correlation and the root-mean-square devia-
tion indicate that this chimera state is a phase chimera.

Double-well chimeras represent a special interest.
These regimes dominate in regionC in the regime map
in Fig. 5. The double-well chimeras are characterized
by the following features. The elements of the coher-
ence cluster are located in the same well while ones of
the incoherence cluster are in different wells. These
structures can appear only in ensembles of bistable
elements. Double-well chimeras are not realized for
ensembles of another chaotic elements. For instance,
this regime cannot be implemented in ensembles of
Rössler oscillators or logistic maps. A double-well
chimera is exemplified in Fig. 8.

The snapshot of the system dynamics xi (i) in Fig. 8a
exemplifies both double-well and amplitude chimeras.
A set of 30 snapshots at different time moments
(Fig. 8b) demonstrates the spatiotemporal dynamics
of the ensemble (1). All its elements oscillate in one
of the wells, without switchings between them. The
elements from the amplitude chimera “head” oscillate
with a large amplitude in the positive well. The element
phases are the same but their instantaneous amplitudes
differ from each other. Time realizations for two adja-
cent elements with the indexes i = 88, 89 are plotted in
Fig. 8c. As can be seen from the figure, both elements
behave chaotically. Figure 8d shows time realizations
for two adjacent elements from different wells of the
double-well chimera cluster. These elements oscillate
irregularly with a small amplitude in the relevant wells.

As before, we calculate the cross-correlation R1(i)
and the root-mean-square deviation Δi to quantify
the ensemble dynamics. The corresponding plots are
shown in Fig. 8e, f. In this case, both characteris-
tics are needed to detect the behavior of the elements
from the incoherence clusters. As follows from Fig. 8e,
there is a region of R1(i) values where the amplitude
chimera exists and which is characterized by reducing
|R1(i)| < 1. The spatial distribution of the Δi values
(Fig. 8f) indicates a significant difference for the ele-
ments from the coherence and incoherence clusters of
the double-well chimera. Δi is approximately equal to
0 inside the coherence cluster.However,Δi � 0 for the
elements from the double-well chimera “head”. At the
same time, Δi is slightly more than 0 in the amplitude

(a) (b)

(c) (d)

(e) (f)

Fig. 8 Double-well chimera for σ = 0.43, r = 0.42 (region C ′
in the regimemap inFig. 5).aSnapshot of the systemdynamics;b
set of 30 snapshots at different time moments; c time realizations
xi (n) for the 88th (solid line) and 89th (dotted line) elements from
the incoherence cluster; d time realizations xi (n) for the 208th
(top solid line) and 209th (bottom dotted line) elements from
the incoherence cluster; e cross-correlation of the 1st element
with the others; f root-mean-square deviation of the adjacent
element states. The transient time is equal to 105 iterations and the
calculation time is equal 105. Parameters: α = 3, β = 10, N =
300

chimera “head”. Thus, both characteristics, R1(i) and
Δi , are very useful for detecting double-well chimeras.

Eventually, the ensemble of nonlocally coupled
chaotic cubic maps demonstrates chimera states. One
part of them is already known and has been obtained in
ensembles of coupled maps with the Feigenbaum sce-
nario (e.g., the logistic map and the Henon map). The
other chimera type is new, and its occurrence is related
to the bistable character of ensemble elements. Can
similar structures exist in ensembles of continuous-
time systems? Inorder to answer this question,we study
an ensemble of nonlocally coupled Chua’s oscillators.
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3.2 Chimera states in an ensemble of Chua’s
oscillators with chaotic dynamics

Chua’s circuit (Chua’s oscillator) can be served as
an analogue of the cubic map with chaotic dynamics
for continuous-time systems. This circuit represents a
radiophysical device. Its features arewell explored both
numerically and experimentally.We study the behavior
of an ensemble of nonlocally coupled Chua’s oscilla-
tors [51], which is described as follows:

ẋi = α(yi − xi − H(xi )) + σ

2P

i+P∑

k=i−P

(xk − xi ) ,

ẏi = xi − yi − zi + σ

2P

i+P∑

k=i−P

(yk − yi ) ,

żi = −βyi ,

H(x) = Bx + 1

2
(A − B)(|x + 1| − |x − 1|),

xi+N (t) = xi (t), yi+N (t) = yi (t),

zi+N (t) = zi (t), i = 1, . . . , N , (5)

where the index i defines the element location in the
ring and can be considered as a discrete spatial coordi-
nate. t is a time moment, α, β, A, and B are the con-
trol parameters. σ defines the coupling strength, P is
the number of neighbors for the i th element from each
side. The following parameters are fixed as β = 14.28,
A = − 1.143, B = − 0.714.

Thenonlocal interaction leads to the shift of an effec-
tive value of the parameter α in an analogue with the
ensemble (1). Consequently, the behavior of the system
(5) is similar to the cubic map ensemble (1) when the
coupling strength increases. As in the previous case, we
use the definition of positive and negative wells which
correspond to positive and negative values of the vari-
able x , respectively. The definitions of single-well and
double-well structures also save the same meaning.

We plot a regime map for the ensemble (5) in the
(r , σ ) parameter plane for the fixed parameter values
α = 9.4, β = 14.28, A = − 1.143, B = − 0.714.
This is shown in Fig. 9. The boundaries of regimes
are obtained by averaging the calculation results for
different random initial conditions.

The regimemap represents the basic types of the spa-
tiotemporal dynamics which is observed in the ensem-
ble (5) when σ and r are varied. Some regimes in the
system (1) coexist due to the high-level multistability.
Regions of these regimes are illustrated by alternating

Fig. 9 (Color online) Regime map for the system (5) in the
(r , σ ) parameter plane. Designations in the map: A—complete
chaotic synchronization; B—partial coherence;C—double-well
chimera structures;C ′—single-well chimera structures; D—full
incoherence in double-well structures; D′—full incoherence in
single-well structures. Parameters: α = 9.4, β = 14.28, A =
− 1.143, B = − 0.714, and N = 300

lines with tones (color online) relevant to the coexisting
regimes. A similar behavior can be observed in both
the single-well and double-well structures. For sim-
plicity, the regions of double-well structure existence
are denoted by letters without a prime mark and are
painted by a lighter tone. The domains of single-well
structures are marked by letters with a prime mark and
are painted by a darker tone. Snapshots of the system
dynamics demonstrate some typical structures which
are relevant to different regions in the diagram (Fig. 9).

We now describe the basic types of the spatiotempo-
ral dynamics, which are represented in Fig. 9. A phase-
parametric diagram is plotted in Fig. 10 for the 1st ele-
ment at the fixed coupling radius r = 0.37 and when
the coupling strength σ is varied. The regions with dif-
ferent regimes in Fig. 10 are denoted by colors and
letters in accordance with the regime map in Fig. 9.

The regime which is denoted by letter A (red
color) represents complete chaotic synchronization and
is implemented only for large values of r . Double-
well structures with a smooth profile occur when σ

decreases. Thus, there is a partial coherence regime
(region B of gray color in the regime map Fig. 9). The
chaotic dynamics of the ensemble elements is observed
near the complete chaotic synchronization region. The
system variables can have both positive and negative
values. The dynamics becomes periodic with decreas-
ing σ . Each element oscillates only within its well.
However, the spatial distribution remains double-well.
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Fig. 10 (Color online) Phase-parametric diagram for the 1st
oscillator of the ensemble (5) for r = 0.37 and when varying σ .
The regionswhich correspond to different regimes aremarked by
letters and colors according to the regime map (Fig. 9). Param-
eters: α = 9.4, β = 14.28, A = − 1.143, B = − 0.714, and
N = 300

It should be noted that this regime always coexists
with the complete chaotic synchronization and chimera
regimes in the case of very large values of the coupling
radius (r > 0.45).

Chimera states (yellow regions C and C ′ in the
regime map Fig. 9) appear in the ensemble (5) when
the coupling strength decreases further. There are both
single-well (region C ′) and double-well (region C)
chimera structures. The oscillator dynamics is pre-
dominantly regular or slightly chaotic in the region
of double-well chimeras, while it is highly chaotic for
most of the single-well structures. At that, the dynam-
ics can be regular around the boundary of regions C
and C ′ (see Fig. 10). The single-well and double-well
chimeras coexist in a wide range of parameter r, σ val-
ues (alternating lines of light-yellow and dark-yellow
colors in regions C and C ′).

The incoherence regime (desynchronization) is real-
ized in regions D and D′ for small values of the cou-
pling strength. There are irregular spatial structures.
They can be both single-well (region D′) and double-
well (region D). The oscillator dynamics is signifi-
cantly changed with decreasing coupling strength. All
the ensemble elements oscillate chaotically in the same
well and never switch between the wells. The struc-
tures become double-well when σ decreases further.
However, the elements remain to oscillate within one
well. It is important that there is a narrow range of
σ values where the oscillations are periodic. When

σ < 0.29, the temporal oscillations of the elements rep-
resent switchings between the wells (the double-scroll
regime).

We now consider the ensemble behavior for two
cases, namely when the coupling radius values are
large, r > 0.45, and small, r < 0.03. When the inter-
action between the oscillators is almost global, then it
is impossible to detect the region of chimera existence
due to the high-level multistability. Both the chimeras
and fully irregular structures coexist in the ensemble
(5). This region is shown in the diagram (Fig. 9) by
alternating lines of blue and yellow colors. If the cou-
pling is almost local, then only double-well irregular
structures exist in the system (5). They coexist with
partly coherence structureswhich have complicated but
smooth spatial profiles for large values of the coupling
strength.

Thus, we can argue that the ensemble of Chua oscil-
lators (5) demonstrates the behavior which is similar to
that one of the cubic map ensemble (1).

We now turn to study the chimera states which are
realized in the ensemble of chaoticChua oscillators.We
can observe them for both the double-well and single-
well structures. At first, we consider the chimera states
which exist in region C ′ in the regime map (Fig. 9). A
typical chimera structure is shown in Fig. 11a.

The snapshot of the system dynamics in Fig. 11a
shows that clusters with the coherent and incoherent
distribution coexist in the ring (5). Oscillations in the
coherence cluster are synchronouswith the samephase.
The structure visibly corresponds to a phase chimera.
We now consider the time realization in Fig. 11b for
the adjacent elements with indexes 275 and 276 from
the chimera “head”. Oscillations are periodic, but their
phases are shifted on a quarter of the period from each
other. In contrary, phase shifts of adjacent oscillators in
the incoherence cluster demonstrate an irregular distri-
bution between 0 and π/2. However, this chimera state
is different from the phase chimera which is observed
in the ensemble of cubic maps (1), where the phase
shift is equal to π .

The cross-correlation (4) and the root-mean-square
deviation (3) of the adjacent element states are calcu-
lated to quantify the system (5) dynamics. The corre-
sponding plots are shown in Fig. 11c, d. The cross-
correlation is calculated for the 1st oscillator from the
coherence cluster of the chimera state. Figure 11c indi-
cates that R1(i) values are equal to 1 inside the coher-
ence cluster. The elements in this cluster oscillate in

123



Chimera states in ensembles of bistable elements 2327

(a) (b)

(c) (d)

Fig. 11 Single-well chimera structure for σ = 0.75, r = 0.37
(region C ′ in the regime map in Fig. 9). a Snapshot of the sys-
tem dynamics; b time realization xi (t) for the 275th and 276th
elements from the incoherence cluster; c cross-correlation of the
first element with the others; d root-mean-square deviation of the
adjacent element states. The transient time is chosen to be 10,000
units, and the calculation time is equal to 5000. Parameters:
α = 9.4, β = 14.28, A = − 1.143, B = − 0.714, N = 300

phase with the first element. Ri (i) are negative but
not equal to − 1 for elements from other coherence
clusters, which oscillate almost in antiphase with the
first element. These values are not exactly equal to − 1
because the oscillation amplitudes of elements are dif-
ferent. The values of R1(i) are irregularly switched
between 1 and − 1 in the incoherence cluster due to
the irregular alternation of oscillation phases. The root-
mean-square deviation of the adjacent element states
also demonstrates a significantly different behavior
of the elements from the coherence and incoherence
clusters.

As can be seen in the regime map in Fig. 9, double-
well chimeras also exist in the ensemble (5). This
chimera type is of special interest because it has not
been observed in ensembles of continuous-time sys-
tems. A double-well chimera structure from region C
in the regime map is shown in Fig. 12a.

Two incoherence clusters which correspond to the
phxxxase and double-well chimeras coexist in the
same structures. They are shown in Fig. 12a. The first
chimera type is located only in one well. The double-
well chimera is characterized by an irregular distribu-

(a) (b)

(c) (d)

(e) (f)

Fig. 12 Double-well chimera for σ = 0.89, r = 0.37 (regionC
in the regimemap inFig. 9).aSnapshot of the systemdynamics;b
set of 30 snapshots at different time moments; c time realizations
xi (t) for the 109th (solid line) and 110th (dotted line) elements
from the incoherence cluster of the phase chimera; d time real-
izations xi (t) for the 1st (top solid line) and 2nd (bottom dotted
line) elements from the incoherence cluster of the double-well
chimera; e cross-correlation of the 200th element with the others;
f root-mean-square deviation of the adjacent element states, the
enlarged fragmentary is Δi for the phase chimera. The transient
time is equal to 10,000 units, and the calculation time is equal
5000. Parameters: α = 9.4, β = 14.28, A = − 1.143, B =
−0.714, N = 300

tion of the oscillators between thewells in the boundary
of two adjacent coherence clusters which are located
in different wells. Both regimes coexisting in the same
structures have already been observed in the ensem-
ble of cubic maps in the previous section. However,
the regime in this case has its own distinct features.
Figure 12b shows a set of 30 snapshots of the sys-
tem dynamics over each 10 time units. It is clear that
the oscillators are not switched between the wells. The
spatial profile does qualitatively change in time. The
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time realizations in Fig. 12c, d are plotted for two
adjacent elements from incoherence clusters in order
to detect the character of chimera states. The adja-
cent elements from the phase chimera “head” oscil-
late slightly chaotically in the same well (see Fig. 12c).
Moreover, the phases of element oscillations are shifted
by π/2. The oscillations in the incoherence cluster
of the double-well chimera differ from those in the
ensemble (1). The corresponding time realization is
represented in Fig. 12d. The two adjacent elements
oscillate in different wells without switchings between
the wells. Their amplitudes in various wells differ
from each other. The double-well chimera structure
in the ring (5) is different from the that one in the
ensemble of cubic maps (1). The phases of oscilla-
tors from different wells are shifted by π/2 in the
case of the double-well chimera in the ring of Chua’s
oscillators.

We now calculate the cross-correlation Rn(i) for
the 210th element, which is located in the coherence
cluster, and the root-mean-square deviation Δi of the
adjacent element states. Relevant plots are represented
in Fig. 12e, f. The cross-correlation enables us to
detect both types of chimera states. Positive and nega-
tive cross-correlation values are alternated in the inco-
herence clusters for both the phase and double-well
chimera states. The alternating sign Rn(i) is observed
due to the phase shift of oscillations from the opposite
wells. As in the case of single-well chimera structures,
the values of Rn(i) are not exactly equal to ±1 due
to the differences of oscillation amplitudes in various
wells. The variance of Rn(i) values for the elements
of the double-well chimera is larger than in the case
of the phase chimera. The root-mean-square deviation
Δi of the adjacent element states also enables us to
detect incoherence cluster boundaries of double-well
chimeras. At the same time, the values of Δi for the
elements of the phase chimera are less by two orders of
magnitude than for the double-well chimera. For this
reason, the change is not almost visible in the plot on
its scale.

Thus, we indicate that the behavior of the ring of
nonlocally coupled Chua’s oscillators (5) is qualita-
tively similar to the dynamics of the ensemble of cou-
pled cubic maps (1). The comparison of two regime
maps (see Figs. 9, 5) shows that the basic dynami-
cal regimes of both systems are qualitatively the same.
Both systems demonstrate the same chimera structure
types including double-well chimeras.

4 Conclusion

We have considered several different models of oscil-
lator ensembles with nonlocal coupling and periodic
boundary conditions. The main feature of all the mod-
els is the bistable dynamics of ensemble elements. It has
been shown that the bistability for the nonlocal inter-
action leads to the emergence of a special type of the
chimera state, whichwe have referred to as double-well
chimera structures. Their feature is the incoherence
cluster formation. Ensemble elements inside these clus-
ters are irregularly distributed between the neighbor-
hoods of two attractors (two “potential wells”) which
exist in a partial element. Coherence clusters coexist
with the incoherence ones. Elements from them are in
the same “well”.

Double-well chimera structures are observed both
in ensembles of discrete-time systems (maps) and
continuous-time systems. The bistability character of a
partial element can be different. For the simplest case,
a bistable element has two stable equilibrium points.
Motionless chimera-like states can be observed for cer-
tain values of the coupling parameters in an ensemble
which consists of such elements. There are no oscilla-
tions in time. These structures are similar to the chimera
“death” [25,46] and noticeably differ from irregular
spatial structures which exist in ensembles of bistable
oscillators with the local coupling [13]. Another dif-
ference is the cluster width stability of a double-well
chimera toward the change in initial states, in the con-
trary with the case of irregular structures in ensem-
bles of locally coupled bistable oscillators. This can be
explained by the nonlocal interaction and a finite num-
ber of ensemble elements. The same chimera state is
realized for a sufficiently wide interval of initial con-
ditions. In contrary, the spatial profile structure is fully
defined by an initial distribution of ensemble elements
between wells in the case of local coupling. A similar
behavior is observed in the case of nonlocal coupling
when the coupling radius is relatively small. Appar-
ently, there is no clear boundary between the described
structure types. These types evolve smoothly one in the
other with varying the coupling parameter values.

The ensemble of bistable FHN oscillators shows
a more complicated dynamics than the ensemble of
bistable maps. Double-well chimeras can be observed
in this ensemble. They are not fully motionless, i.e.,
elements of incoherence clusters oscillate in time.
Moreover, these oscillations can be both periodic and

123



Chimera states in ensembles of bistable elements 2329

chaotic. The oscillation occurrence in certain element
groups in the ensemble of bistable FHN oscillators has
been found earlier for the case of local coupling [21].
However, therewas noquestion concerning the chimera
structure formation.

In the case of chaotic dynamics of ensemble ele-
ments, many different spatiotemporal regimes, includ-
ing chimera states, can be realized when the cou-
pling parameters are varied. Moreover, the intrawell
dynamics becomes possible. This enables us to observe
double-well chimeras with the periodic or chaotic tem-
poral behavior, besides motionless ones. It should be
noted that single-well chimera structures can occur for
certain values of the couplingparameters. They are sim-
ilar to amplitude and phase chimeras which have been
described for ensembles of both continuous-time and
discrete-time systems with the Feigenbaum scenario of
transition to chaos [24,28,42,44]. This is clear since
a sequence of period-doubling bifurcations for each
of two coexisting sustainable states is realized in the
bistable systems under study. Two samples of ensem-
bles of bistable chaotic elements have been considered
in our work, namely the ensemble of cubic maps and
the ensemble of Chua’s systems. The important fact
is that the results obtained for both models coincide.
This indicates a universal character of the evolution of
similar systems with varying the coupling parameters
as well as of the realized types of the spatiotemporal
dynamics.
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