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Abstract We investigate the generalized (2 + 1)
Nizhnik–Novikov–Veselov equation and construct its
linear eigenvalue problem in the coordinate space from
the results of singularity structure analysis thereby dis-
pelling the notion of weak Lax pair.We then exploit the
Lax pair employing Darboux transformation and gen-
erate lumps and rogue waves. The dynamics of lumps
and rogue waves is then investigated.

Keywords Lumps · Rogue waves · Singular manifold
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1 Introduction

The identification of dromions [1,2] in the Davey–
Stewartson I (DSI) equation which has given a fillip to

P. Albares · P. G. Estevez
Departamento de Física Fundamental, Universidad de
Salamanca, 37008 Salamanca, Spain

P. G. Estevez
e-mail: pilar@usal.es

R. Radha (B) · R. Saranya
Centre for Nonlinear Science (CeNSc), Post-Graduate and
Research Department of Physics, Government College for
Women (Autonomous), Kumbakonam 612001, India
e-mail: vittal.cnls@gmail.com

R. Saranya
Post-Graduate and Research Department of Mathematics, Gov-
ernment College for Women (Autonomous), Kumbakonam
612001, India

the investigation of (2+1) dimensional integrable non-
linear partial differential equations (pdes) [3] has vir-
tually triggered a renewed interest toward other local-
ized structures like lumps [4], breathers [5] etc. Recent
identification of rogue waves [6,7] in nonlinear pdes
which appear from nowhere has once again prompted
a deeper investigation of integrable (2 + 1) nonlinear
pdes in an effort to unearth similar structures in them. It
should also be mentioned that even though the integra-
bility of (2 + 1) dimensional nonlinear pdes has been
well established in terms of the abundance of local-
ized solutions, there exists no systematic approach to
unearth other signatures of integrability like Lax pair
[4], Bäcklund transformation [8], Hamiltonian Struc-
tures [9], conservation laws [10] etc. In this connection,
Boiti et al. [11,12] had pointed out that (2+ 1) dimen-
sional nonlinear pdes like Nizhnik–Novikov–Veselov
(NNV) equation [13] admits only weak Lax pair in the
subspace of coordinate space. In other words, the lax
operators commute at least on the functional subspace
of the eigenfunction and they should be compatible at
least for one eigenvalue. Even though the concept of
weak lax pair has yielded several (2 + 1) integrable
nonlinear pdes and facilitated their investigation from
the viewpoint of localized coherent structures [14,15],
a closer look at the investigation of integrable (2 + 1)
nonlinear pdes may yield other richer structures and
would enable us to get a deeper understanding of inte-
grability.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11071-017-3804-7&domain=pdf


2306 P. Albares et al.

The Painlevé property [16] has been proved to be a
powerful test for identifying the integrability as well as
a good basis for the determination of many of the prop-
erties derived of the integrability of a given pde [4]. In
this paper, we investigate the (2+ 1) dimensional gen-
eralized Nizhnik–Novikov–Veselov equation [14] and
generate the Lax pair in the coordinate space employ-
ing the singular manifold method [17] based on the
Painlevé analysis.We then exploit the Lax pair employ-
ing Darboux transformation approach, and construct
lumps and rogue waves. We then discuss their dynam-
ics.

The present paper is structured as follows: in Sect. 2,
we drive the linear eigenvalue problem of the NNV
equation by using the results of Painlevé analysis. We
then exploit the Lax pair and employ Darboux transfor-
mation in Sect. 3, to derive lumps in Sect. 4 and rogue
waves in Sect. 5. After studying the dynamics of lumps
and rogue waves, the results are summarized at the end.

2 Singular manifold method for the
Nizhnik–Novikov–Veselov equation

The generalized Nizhnik–Novikov–Veselov (NNV)
equation is a symmetric generalization of the KdV
equation to (2 + 1) dimensions and is given by

ut + auxxx + buyyy + c ux + d uy − 3 a(uv)x

− 3 b(uw)y = 0 (1)

ux = vy (2)

uy = wx (3)

where a, b, c and d are parameters. This equation,
which is also known to be completely integrable, has
been investigated in [14,15] where exponentially local-
ized solutions have been generated and their dynam-
ics has been investigated. Introducing the following
change of variables,

u = −2 mxy, v = c

3 a
− 2 mxx , w = d

3 b
− 2 myy

(4)

Equations (1)–(3) get converted to the following equa-
tion:

mxyt + a (mxxxy + 6 mxxmxy)x + b (myyyx

+ 6 myymxy)y = 0 (5)

According to the singularmanifoldmethod [17,18], the
truncated Painlevé expansion for m should be

m[1] = m[0] + ln(φ1) (6)

where m[1] and m[0] are both solutions of Eq. (5) and
φ1 is the singular manifold for the seed solution m[0].
Furthermore, Eq. (6) also implies an iterative method
of constructing solutions where the super index [0]
denotes a seed solution and [1] the iterated one. Sub-
stitution of Eq. (6) into (5) yields an expression in neg-
atives powers of φ1. Equation (5) is symmetric under
the interchange of (x, a) and (y, b) and hence it is rea-
sonable to suggest the ansatz,

φ1,t = a Ga(x, y, t) + b Gb(x, y, t) (7)

such that the terms in a and b cancel independently.
Substituting Eq. (7) into the expression in negatives
powers of φ1, we obtain two polynomials(one for the
terms in a and other for the terms in b) in negative pow-
ers ofφ1. If we require all the coefficients of these poly-
nomials to be zero, we obtain the following expressions
after some algebraic manipulations [usingMaple]. The
result can be summarized as follows:

Ga = −φ1,xxx − 6 φ1,xm
[0]
xx ,

Gb = −φ1,yyy − 6 φ1,ym
[0]
yy (8)

The rest of the terms can be independently integrated
as,

φ1,xy + 2 φ1m
[0]
xy

φ1,x
+ K2(y)

+ K1(y)
∫ (

φ1

φ1,x

)2

dx = 0 (9)

φ1,xy + 2 φ1m
[0]
xy

φ1,y
+ H2(x)

+ H1(x)
∫ (

φ1

φ1,y

)2

dy = 0 (10)

where Hi (x) and Ki (y) are arbitrary functions. Com-
parison of Eqs. (9), (10) yields (with H1 = H2 = K1 =
K2 = 0) and therefore,

φ1,xy + 2 φ1m
[0]
xy = 0 (11)

and the combination of Eqs. (7) and (8) yields,

φ1,t + a
(
φ1,xxx + 6 φ1,xm

[0]
xx

)

+ b
(
φ1,yyy + 6 φ1,ym

[0]
yy

)
= 0 (12)

Equations (11) and (12) constitute the Lax pair for the
NNV Eq. (5). The above Lax pair is in sharp contrast
to the notion of weak Lax pair postulated by Boiti et
al. [11,12] in the subspace of coordinate space.
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3 Darboux transformations

The truncated expansion given byEq. (6) can be consid-
ered as an iterative method [4,18] such that an iterated
solution m[1] can be obtained from the seed solution
m[0], if we know a solution φ1 for the Lax pair of this
seed solution. This means that if we denote φ1,2 as the
eigenfunction for the iterated solution m[1], it should
satisfy the following Lax pair,

(φ1,2)xy + 2 φ1,2m
[1]
xy = 0 (13)

(φ1,2)t + a
[
(φ1,2)xxx + 6(φ1,2)xm

[1]
xx

]

+ b
[
(φ1,2)yyy + 6(φ1,2)ym

[1]
yy

]
= 0 (14)

The Lax pair can also be considered as a nonlinear
system between the fields and eigenfunction together
[4,18]. It means that the truncated Painlevé expansion
given by Eq. (6) should be combined in Eqs. (13), (14)
with a similar expansion for the eigenfunction such as,

φ1,2 = φ2 − �1,2

φ1
(15)

where φi , (i=1,2) are eigenfunctions for the seed solu-
tion m[0] and therefore,

φi,xy + 2 φim
[0]
xy = 0 (16)

φi,t + a
(
φi,xxx + 6 φi,xm

[0]
xx

)

+ b
(
φi,yyy + 6 φi,ym

[0]
yy

)
= 0 (17)

Substitution of Eqs. (6) and (15) into Eqs. (13), (14)
yields �i, j as the exact derivative

d�i, j = 2 φ j φi,xdx + 2 φ j,yφidy

+ 2a
(
φ j,xφi,xx − φi,xφ j,xx − φ jφi,xxx

−6 m[0]
xxφ jφi,x

)
dt

+ 2 b
(
φi,yφ j,yy − φ j,yφi,yy − φiφ j,yyy

− 6 m[0]
yyφiφ j,y

)
dt (18)

where

�i, j = 2 φiφ j − � j,i (19)

The Painlevé expansion given by Eqs. (6) and (15) can
be also considered as a binary Darboux transformation
that relates the Lax pairs given by Eqs. (13), (14) and
Eqs. (16), (17).

3.1 Iterated solution

In the previous section, we have introduced a singular
manifold φ1,2 which allows us to iterate Eq. (6) again
in the following form:m[2] = m[1]+ln(φ1,2) = m[0]+
ln(τ1,2), where τ1,2 is the τ - function defined as,

τ1,2 = φ1,2 φ1 = φ1 φ2 − �1,2 (20)

From Eq. (19), �1,2 = 2 φ1 φ2 − �2,1. If τ 212 =
det (�i, j ) where i, j = 1, 2. Therefore, we can con-
struct the solutionm[2] for the second iterationwith just
the knowledge of two eigenfunctions φ1 and φ2 for the
seed solution m[0].

4 Lumps

In this section, we obtain lumps for the generalized
NNV Eq. (5).

4.1 Seed solution and eigenfunction

We consider a seed solution of the form,

m[0] = q0xy (21)

where q0 is an arbitrary constant. Solutions of
Eqs. (16), (17) can be obtained through the following
form,

φi (ki ) = expki (x+J (ki ))Pn(ki ), J (ki )

= −2
q0
k2i

y +
(

−ak2i + 8bq30
k4i

)
t (22)

Pn(ki ) =
n∑
j=0

a j (ki )ψ(ki )
j , ψ(ki )

= k2i

(
x + 2q0

k2i
y − 3

(
ak2i + 8bq30

k4i

)
t

)
(23)

such that Pn(ki ) is a polynomial in x of degree n
whose coefficients ai can be obtained by substituting
Eqs. (22), (23) into Eqs. (16), (17). We obtain after
some algebraic calculation,

∂a j

∂y
= −ki ( j + 1)

∂a j+1

∂y
− 2q0ki ( j + 1)( j + 2)a j+2 (24)

∂a j

∂t
= ( j + 1)

(
bki

∂3a j+1

∂y3
− 12bq0

∂2a j+1

∂y2
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+36bq20
ki

∂a j+1

∂y

)

+ ( j + 1)( j + 2)

(
2bq0ki

∂2a j+2

∂y2

− 24bq20
∂a j+2

∂y
− 3

ki

(
ak6i − 16bq30

)
a j+2

)

−( j + 1)( j + 2)( j + 3)(ak6i + 8bq30 )a j+3

(25)

where we can set an = 1, an−1 = 0. From the above, it
is obvious that there are an infinite number of possible
eigenfunctions characterized by an integer n and awave
number ki .

4.2 Case-I: n = 1

The simplest case can be obtained by taking n = 1, in
which case the eigenfunction given by Eqs. (22), (23)
is of the following form,

φi (ki ) = expki (x+J (ki ))ψ(ki ),

J (ki ) = −2q0y

k2i
+

(
−ak2i + 8bq30

k4i

)
t (26)

ψ(ki ) = k2i

(
x + 2q0y

k2i
− 3

(
ak2i + 8bq30

k4i

)
t

)
(27)

According to Eq. (18), we can calculate �i, j as,

�i, j = 2ki
ki + k j

[(
ψ(ki ) + ki k j

ki + k j

) (
ψ(k j )

− k2j
ki + k j

)
+ k2i k

2
j

(ki + k j )2

]

expki (x+J (ki ))+k j (x+J (k j )) (28)

It is important to note that, 2φiφ j = �i, j + � j,i

τ − f unction

A second iteration provides,

m[2] = m[0] + ln(τ1,2) (29)

Substituting Eq. (21) into (29), we obtain,

m[2] = q0xy + ln(τ1,2)

From Eq. (4), we have

u[2] = −2m[2]
x,y = −2

(
q0 +

(
(τ1,2)x

τ1,2

)
y

)

where τ1,2 = φ1φ2 − �1,2 = 1
2

(
�2,1 − �1,2

)
, which

after simplification can be written as,

τ1,2 = −k1 − k2
k1 + k2

expk1(x+J (k1))+k2(x+J (k2))Ω1,2

Ω1,2 = (ψ(k1) + g(k1, k2))(ψ(k2)

+ g(k2, k1)) + d(k1, k2) (30)

where g(ki , k j ), d(ki , k j ) are

g(ki , k j ) = 2k j k2i
k2i − k2j

, d(ki , k j ) = 2k2i k
2
j (k

2
i + k2j )

(k2i − k2j )
2

(31)

and therefore u[2] = −2

(
q0 +

(
(Ω1,2)x
Ω1,2

)
y

)
. In order

to have real expressions, we set k2 as the complex con-
jugate of k1 which means

k1 = A + i B, k2 = A − i B (32)

Using Eq. (32) in (30), we obtain

Ω1,2 =
[
(A2 − B2)x + 2q0y +

(
3a(6A2B2 − A4

−B4) − 24q30
A2 − B2

(A2 + B2)2

)
t + A2 + B2

2A

]2

+
[
2ABx + 12AB

(
−a(A2 − B2)

+ 4bq30
(A2 + B2)2

)
t − A2 + B2

2B

]2

+(B2 − A2)

[
A2 + B2

2AB

]2
(33)

which for B2 > A2 has no zeros which means that
Eq. (33) does not have singularities. Actually, it is pos-
sible to define a Galilean transformation of the follow-
ing form,

x = X + X0 + vx t, y = Y + Y0 + vyt,

X0 = A2 + B2

4AB2 , Y0 = − (A2 + B2)2

8q0AB2 ,

vx =
[
6a(A2 − B2) − 24bq30

(A2 + B2)2

]
,

vy = 1

q0

[
−3a

2
(A2 + B2)2 + 24bq30

(A2 − B2)

(A2 + B2)2

]

(34)
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Fig. 1 Lump for n = 1 when q0 = 0.3, A = 0.5, B = 1

such that in the new coordinates,Ω1,2 reads as the static
solution

Ω1,2 =
[
(A2 − B2)X + 2q0Y

]2 + [2ABX ]2

+ (B2 − A2)

[
A2 + B2

2AB

]2
(35)

Similarly, one can define v[2] and w[2]. The lump solu-
tion for u[2] is represented in Fig. 1. It is interesting to
note that one gets a similar lump profile for v[2] and
w[2].

4.3 Case-II: n = 2

Substituting n = 2 into Eqs. (22), (23), we have

φi (ki ) = expki (x+J (ki ))
(
ψ(ki )

2 + a0(ki )
)

,

J (ki ) = −2q0y

k2i
+

(
−ak2i + 8bq30

k4i

)
t,

ψ(ki ) = k2i

(
x + 2q0y

k2i
− 3

(
ak2i + 8bq30

k4i

)
t

)
(36)

From Eqs. (24), (25),

a0(ki ) = −4q0ki y − 6

ki

(
ak6i − 16bq30

)
t (37)

Wecan calculate thematrix�i, j through the integration
of Eq. (18) as,

�i, j

(
k1 + k2
2k1

)
exp−ki (x+J (ki ))−k j (x+J (k j ))

= ψ(k1)
2ψ(k2)

2 − 2k22
k1 + k2

ψ(k1)
2ψ(k2)

+ 2k1k2
k1 + k2

ψ(k1)ψ(k2)
2

+
(
a0(k2) + 2k42

(k1 + k2)2

)
ψ(k1)

2

+
(
a0(k1) − 2k2k

3
1

(k1 + k2)2

)
ψ(k2)

2 + 2k1k2
k1 + k2

(a0(k2)

+2k32(k2 − 2k1)

(k1 + k2)2

)
ψ(k1)

− 2k22
k1 + k2

(
a0(k1) + 2k31(k1 − 2k2)

(k1 + k2)2

)
ψ(k2)

+ a0(k1)a0(k2) + 2k2
(k1 + k2)2

(
k32a0(k1) − k31a0(k2)

)

+4k22k1(k1 − k2)

(k1 + k2)2
ψ(k1)ψ(k2) + 12k31k

4
2(k1 − k2)

(k1 + k2)4
(38)

τ − f unction

A second iteration provides, m[2] = q0xy + ln(τ1,2)

u[2] = −2(m[2]
x,y) = −2

(
q0 +

(
(τ1,2)x

τ1,2

)
y

)
(39)

where τ1,2 = φ1φ2 − �1,2 = 1
2

(
�2,1 − �1,2

)
, which

after simplification can be written as,

τ1,2 = −k1 − k2
k1 + k2

expk1(x+J (k1))+k2(x+J (k2))Ω1,2,

Ω1,2 =
[
(ψ(k1) + g(k1, k2))

2 + a0(k1)

−k1
k2

g(k1, k2)
2
] [

(ψ(k2) + g(k2, k1))
2

+ a0(k2) − k2
k1

g(k2, k1)
2)

]

+ 4d(k1, k2) [(ψ(k1) − c(k1, k2))(ψ(k2)

− c(k2, k1))] + p(k1, k2) (40)

where g(ki , k j ), d(ki , k j ) are defined in Eq. (31) and

c(ki , k j ) = k2i
k2i − ki k j + 2k2j

(ki + k j )(k2i + k2j )
,

p(ki , k j ) = 8k4i k
4
j (k

2
i + k2j + ki k j )

(k2i + k2j )(ki + k j )4
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Since c(ki , k j ), p(ki , k j ) are constants,we have u[2] =
−2

(
q0 +

(
(Ω1,2)x
Ω1,2

)
y

)
. If we select k1 = A+i B, k2 =

A − i B, we obtain the real expression for Ω1,2 as

Ω1,2 =
[(

A2 − B2)X + 2q0Y
)2 − 4A2B2X2 − 4Aq0Y

+ 8A2B2h1t + (3A2 − B2)(A4 − B4)

4A2B2

]2

+
[
4(A2 − B2)ABX2 + 8q0ABXY − 4q0BY

− 8A2B2h2t + (3A2 − B2)(A2 + B2)

2AB

]2

+ (B2 − A2)

[
A2 + B2

2AB

]2 [
(A2 − B2)X

+ 2q0Y − 2A4 − A2B2 − B4

2A(A2 − B2)

]2

+ (B2 − A2)

[
A2 + B2

2AB

]2 [
2ABX

+ A4 − A2B2 + 2B4

2B(A2 − B2)

]2

+ B2 − 3A2

B2 − A2

[
(A2 + B2)2

2A2

]2

(41)

where h1 and h2 are constants defined by

h1 = 3

A(A2 + B2)2

[
8bq30

+ a
(
3A6 − B6 + 5A4B2 + A2B4

)]
,

h2 = 3

B(A2 + B2)

[
8bq30

− a
(
3B6 − A6 + 5B4A2 + B2A4

)]
(42)

and X,Y are the coordinates defined in Eq. (34). From
Eq. (41), it is easy to see that Ω1,2 does not have zeros
when B2 > 3A2. If we wish to study the behavior of
the solution when t → ±∞, we need to perform the
transformation, X = X∞±√

ct , Y = Y∞±z
√
ct and

fix c and z to cancel the higher powers in t of Eq. (41).
The result is

c2 − 2h1c − h22 = 0 ⇒ c = h1 ±
√
h21 + h22,

z = B2 − A2

2q0
+ ABh2

q0c

In this case, at t → ±∞, Ω1,2 behaves as

Ω1,2 ∼
[(

2h2(A
2 − B2) − 4ABc

)
X∞

+ 4q0h2Y∞ − 2Ah2 +
(
A2 − B2

B

)
c

]2 [ (
4ABh2

+ 2(A2 − B2)c
)
X∞ + 4q0cY∞ − 2Bh2

+
(
A2 − B2

A

)
c

]2

+(h22 + c2)(B2 − A2)

[
A2 + B2

2AB

]2
(43)

which corresponds to a static lump. Let us consider the
two possible solutions of Eq. (43) separately.
• At t −→ −∞
c− = −

√
h21 + h22 + h1 < 0 ⇒ c−t > 0,

z− = B2 − A2

2q0
− ABh2

q0(
√
h21 + h22 + h1)

There are two lumps approaching along the line, X =
X−∞ ± √

c−t , Y = Y−∞ ± z−
√
c−t , Y − Y−∞ =

tan(θ−)(X − X−∞)

tg(θ−) = z− = B2 − A2

2q0
− ABh2

q0

(
−

√
h21 + h22 + h1

)

• At t −→ ∞
c+ =

√
h21 + h22 + h1 > 0 ⇒ c+t > 0

There are again two lumps moving away along the
line, X = X+∞ ± √

c+t , Y = Y+∞ ± z+
√
c+t , Y −

Y+∞ = tan(θ+)(X − X+∞) and therefore,

tan(θ+) = z+ = B2 − A2

2q0
− ABh2

q0

(√
h21 + h22 + h1

)

The scattering angle between the lumps is given by,

tan(θ) = tan(θ+ − θ−)

=
8q0AB

√
h21 + h22

4q20h2 + 4ABh1(A2 − B2) + h2(A4 − 6A2B2 + B4)

Similarly, one can define v[2] andw[2]. The lump solu-
tion for u[2] is shown in Fig. 2. It is again interesting
to note that one gets the same lump profile for v[2] and
w[2]. From Fig. 2, one understands that there is only a
rotation of lumps without any interaction (or exchange
of energy). Figure 2b shows the coalesced state of two
lump solution, wherein the two lumps just pass through
each other.
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Fig. 2 Lump for n = 2, when q0 = 0.5, a = 1, b = 66, A = 0.5, B = 1. a t < 0, b t = 0 and c t > 0

4.4 Two lump solution

As we have seen in the previous section, the one lump
solution is obtained through the second iteration. It
obviously means that for the two lump solution, we
need to go to the fourth iteration. If we start with the
singular manifold φ1, we can generalize Eqs. (15) and
(19) as:

φ1, j = φ j − �1, j

φ1
, �i, j = �(φi , φ j )

From the fourth iteration, we have

φ1,i, j,k = φ1,i,k − �1,i, j,k

φ1,i, j
,

�1,i, j,k = �(φ1,i, j , φ1,i,k) = �i, j,k − �1, j,i�1,i,k

φ2
1,i

The solution becomes

m[4] = m[3] + ln(φ1,2,3,4) = m[2] + ln(φ1,2,3)

+ ln(φ1,2,3,4)

= m[1] + ln(φ1,2) + ln(φ1,2,3) + ln(φ1,2,3,4)

= m[0] + ln(φ1) + ln(φ1,2)

+ ln(φ1,2,3) + ln(φ1,2,3,4)

which reads

m[4] = m[0] + ln(τ1,2,3,4) (44)

where τ1,2,3,4 = φ1,2,3,4φ1,2,3φ1,2φ1. With the pre-
vious definition, we can construct the τ function for
the fourth iteration from the eigenfunctions of the seed
solution m[0] in the following form:

τ1,2,3,4 = 1

4
(�2,1 − �1,2)(�4,3 − �3,4)

−1

4
(�4,2 − �2,4)(�3,1 − �1,3)

+1

4
(�4,1 − �1,4)(�3,2 − �2,3)

where we have used, φiφ j = 1
2 (� j,i + �i, j ). One can

write τ1,2,3,4 in a more compact form as: τ 21,2,3,4 =
det (�i, j ), if i, j = 1..4. We shall consider the sim-
plest case in which we have the seed solutions with
n = 1.

4.4.1 Solution for two lumps with n = 1

The simplest case can be obtained by taking n = 1. The
eigenfunction given by Eqs. (22), (23) again taking the
form given by Eqs. (26), (27). We can calculate the
matrix �i, j again taking the form given by Eq. (28).
We have,

u[2] = −2

(
q0 +

(
(τ1,2,3,4)x

τ1,2,3,4

)
y

)
(45)

and we choose

k1 = A1 + i B1, k2 = k∗
1 = A1 − i B1,

k3 = A2 + i B2, k4 = k∗
3 = A2 − i B2

It is convenient to define a center of mass coordinate
system as

x = Xcm + 1

2
(v1x + v2x )t,

y = Ycm + 1

2
(v1y + v2y)t (46)

where (vix , v
i
y) are the individual velocities of each soli-

ton (see Eq. (34))
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vix =
(
6a(A2

i − B2
i ) − 24bq30

(A2
i + B2

i )
2

)
,

viy = 1

q0

(
−3a

2

(
A2
i + B2

i

)2 + 24bq30
(A2

i − B2
i )

(A2
i + B2

i )
2

)

(47)

Using the change of variables given in Eqs. (46), (47)
in Eq. (27), we have

ψ(k1) = k21(Xcm − Vx t) + 2q0(Ycm − Vyt),

ψ(k2) = k22(Xcm − Vx t) + 2q0(Ycm − Vyt),

ψ(k3) = k23(Xcm + Vx t) + 2q0(Ycm + Vyt),

ψ(k4) = k24(Xcm + Vx t) + 2q0(Ycm + Vyt)

where, Vx = 1
2 (v

1
x − v2x ), Vy = 1

2 (v
1
y − v2y). In

the center of mass system, the solution asymptotically
yields two lumps that move with equal and opposite

velocities. To clarify this point, we can consider the
asymptotic behavior of each lump
• Let us define

Xcm = X1 − X1
0 + Vx t, Ycm = Y1 − Y 1

0 + Vyt

which (the tedious calculation has been made with
MAPLE) allows us to write the limit of the τ -function
when t → ±∞ as the static lump

τ1,2,3,4 ∼
[
(A2

1 − B2
1 )X1 + 2q0Y1

]2

+ [2A1B1X1]
2 + (B2

1 − A2
1)

[
(A2

1 + B2
1 )

2A1B1

]2

where

X1
0 = − A21 + B2

1

4A1B
2
1

−
4A2

[
(A22 + B2

2 )3 + (A22 − 3B2
2 )(A21 + B2

1 )2 + 2(A22 + B2
2 )2(B2

1 − A21)
]

[(A1 + A2)2 + (B1 − B2)2][(A1 − A2)2 + (B1 − B2)2][(A1 + A2)2 + (B1 + B2)2][(A1 − A2)2 + (B1 + B2)2]

q0Y
1
0 = A21 + B2

1

8A1B
2
1

− 2A2(A
2
1 + B2

1 )2[(A21 + B2
1 )2 + (A22 − 3B2

2 )(A22 + B2
2 ) + 2(A22 + B2

2 )(B2
1 − A21)]

[(A1 + A2)2 + (B1 − B2)2][(A1 − A2)2 + (B1 − B2)2][(A1 + A2)2 + (B1 + B2)2][(A1 − A2)2 + (B1 + B2)2]

• If we now define

Xcm = X2 − X2
0 − Vx t, Ycm = Y2 − Y 2

0 − Vyt

the limit of the τ -function when t → ±∞ as the static
lump becomes

τ1,2,3,4 ∼
[
(A2

2 − B2
2 )X2 + 2q0Y2

]2 + [2A2B2X2]
2

+(B2
2 − A2

2)

[
(A2

2 + B2
2 )

2A2B2

]2

where

X2
0 = − A22 + B2

2

4A2B
2
2

−
4A1

[
(A21 + B2

1 )3 + (A21 − 3B2
1 )(A22 + B2

2 )2 + 2(A21 + B2
1 )2(B2

2 − A22)
]

[(A1 + A2)2 + (B1 − B2)2][(A1 − A2)2 + (B1 − B2)2][(A1 + A2)2 + (B1 + B2)2][(A1 − A2)2 + (B1 + B2)2]

q0Y
2
0 = A22 + B2

2

8A2B
2
2

− 2A1(A
2
2 + B2

2 )2[(A22 + B2
2 )2 + (A21 − 3B2

1 )(A21 + B2
1 ) + 2(A21 + B2

1 )(B2
2 − A22)]

[(A1 + A2)2 + (B1 − B2)2][(A1 − A2)2 + (B1 − B2)2][(A1 + A2)2 + (B1 + B2)2][(A1 − A2)2 + (B1 + B2)2]

In this system of reference, the asymptotic behavior of
the solution for t −→ ±∞ corresponds to two lumps
moving with equal and opposite velocities along paral-
lel lines as shown in Fig. 3a, c, Fig. 3b again represents
the coalesced state of two lump solution where again
the lumps which seem to merge move away in opposite
directions later. Similarly, one can define v[2] andw[2].

123



Lumps and rogue waves of generalized Nizhnik–Novikov–Veselov equation 2313

Fig. 3 Two Lump solution for n = 1, when a = 1, b = 0.2, q0 = 0.5, A1 = 0.5, B1 = 1, A2 = 0.5, B2 = 4
3 . a t < 0, b t = 0 and c

t > 0

5 Rogue waves

In the section, we will focus on the construction of
rogue waves for Eq. (5).

5.1 Solution

Taking the easiest choice of the variable m(x, y, t) as,

m = A(x, t) + B(y, t) (48)

where A and B are arbitrary functions in the indicated
variables,wenowsubstitute equationEq. (48) inEq. (4)
to obtain

u[0] = −2m[0]
xy = 0 (49)

v[0] = c

3a
− 2m[0]

xx = c

3a
− 2Axx = v(x, t) (50)

w[0] = d

3b
− 2m[0]

yy = d

3b
− 2Byy = w(y, t) (51)

One possibility is to choose

φ1 = F(x, t), φ2 = G(y, t) (52)

where F(x, t) andG(y, t) are again arbitrary functions.
Substituting Eqs. (48) and (52) in Eqs. (13), (14), we
have

Ft + Gt = −a (Fxxx + 6Fx Axx ) − b
(
Gyyy + 6Gy Byy

)

where

Axx = − Ft + aFxxx
6aFx

, Byy = −Gt + bGyyy

6bGy

From Eq. (19), we have �1,2 = 2F(x, t)G(y, t) +
c0, where c0 is an arbitrary constant. Hence, Eq. (20)
now yields

τ1,2 = − (F(x, t)G(y, t) + c0)

Now, the solution for u[2], v[2] and w[2], can be written
as,

m[2] = m[0] + ln(τ1,2)

u[2] = −2m[2]
xy

= −2
(
m[0] + ln (− (F(x, t)G(y, t) + c0))

)
xy

v[2] = c

3a
− 2m[2]

xx = c

3a

−2
(
m[0] + ln (− (F(x, t)G(y, t) + c0))

)
xx

w[2] = d

3b
− 2m[2]

yy = d

3b

−2
(
m[0] + ln ((−(F(x, t)G(y, t) + c0))

)
yy

where

F = f (x, t) + c3
c4

, G = g(y, t) + c2
c4

,

c0 = c1
c4

− c2c3
c24

5.2 Case-I

To construct a single rogue wave, we choose

f (x, t) = 1

1 + t2 + (x − 1)2
, g(y, t) = 2y2

Rogue waves for u[2], v[2] andw[2] are shown in Fig. 4.
The time evolution of the rogue waves indicates their
unstable nature.

5.3 Case-II

To obtain a multi rogue waves, we choose,

f (x, t) = cos(x) + sin(x),
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Fig. 4 Rogue waves for u[2], v[2] and w[2] with c1 = 0.06, c2 = 0.01, c3 = 0.01, c4 = 0.1, a = 1, b = 1, c = 1, d = 1 at t = 0

Fig. 5 Multi rogue waves for u[2], v[2] and w[2] with c1 = 0.06, c2 = 0.01, c3 = 0.1, c4 = 0.1, a = 15, b = 10, c = 10, d = 10,
k = 0.01 at t = 0

g(y, t) = 1

(1 + (y − 1)2 + kt2)2

Multi rogue waves for u[2], v[2] and w[2] are shown in
Fig. 5.

6 Discussion

In this paper, we have analyzed the generalized NNV
equation (GNNV) and derived its Lax pair in the coor-
dinate space destroying the myth of weak Lax pair.
We have then generated lumps and rogue waves of the
GNNVequation and studied their dynamics. The lumps
do not interact and they merely pass through each other
or move away from each other, while the rogue waves
generated are found to retain their unstable nature. We
believe that a deeper investigation may unearth other
elusive localized solutions.
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