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Abstract In this paper,we study avariable-coefficient
nonlinear Schrödinger (vc-NLS) equation with fourth-
order effects describing an inhomogeneous one-dimen-
sional continuum anisotropic Heisenberg ferromag-
netic spin chain or alpha helical protein. The first-
order nonautonomous breather solution of the fourth-
order vc-NLS equation is derived. The state transition
between nonautonomous breather and nonautonomous
multi-peak soliton can be realized when group veloc-
ity dispersion (GVD) coefficient is proportional to the
fourth-order dispersion (FOD) coefficient.We also dis-
play how the higher-order effects influence the nonau-
tonomousmulti-peak solitons.Our results show that the
velocity and localization of the nonautonomous multi-
peak soliton are affectedby theFODcoefficient, and the
peak number is controlled by the GVD coefficient. Fur-
ther, we also show the compression effect and motion
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with variable velocity of nonautonomous multi-peak
soliton in two kinds of dispersion management sys-
tems. Finally, we reveal the relation between the state
transition and the modulation instability (MI) analysis.
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1 Introduction

There are two types of breathers, i.e., the Kuznetsov–
Ma breathers (KMBs) [1,2] and Akhmediev breathers
(ABs) [3,4]. The ABs are periodic in space and local-
ized in time. On the contrary, the KMBs are periodic in
time and localized in space. Taking the limit of these
two solutions, we obtain the Peregrine soliton (PS)
solution [5], which is regarded as a prototypical rogue
wave (RW) profile in a series of experimental fields [6–
8]. RWs, which are originally used to explain the
extreme wave events in deep oceans [9], have recently
been the subject of investigations in a wide range of
complex nonlinear models with different mechanisms
and physical backgrounds [10–16]. It appears from
nowhere and disappears without a trace [17]. RW has
a peak amplitude generally more than twice the sig-
nificant wave height. In various models for describ-
ing RWs, the nonlinear Schrödinger (NLS) equation
with the rational solution is considered to be the most
accepted one.However, it has some restrictions inmany
physical backgrounds.
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Various factors such as the variation in the lattice
parameters of the fiber medium and variation of the
fiber geometry lead to some nonuniformities in the
fiber. Therefore, the effects including the fiber gain or
loss, self-phase modulation (SPM) and variable dis-
persion are produced [18]. In order to describe the
effects of nonlinear effects on the propagation of optical
pulses, we often consider the variable-coefficient non-
linear Schrödinger (vc-NLS) equation and other types
of variable-coefficient models [19,20]. Such models,
which offer more realistic description than their con-
stant coefficient counterpart [21–26], have obtained
extensive attention owing to the potential applications
in dispersion management [27] and pulse compres-
sion [28]. Moreover, recent publications have shown
that the RWs in nonautonomous systems provide cer-
tain novel characteristics such as the nonlinear tun-
neling effect, recurrence, annihilation and sustain-
ment [29–32], to name a few. Besides, the studies of
the control andmanipulation of the RWs in the vc-NLS
equations are useful to manage them experimentally in
inhomogeneous optical fibers [32,33].

It is well known that the standard NLS equation can
be used to describe the propagation of a picsecond
optical pulse. However, the higher-order effects such
as the third-order dispersion (TOD), higher-order non-
linearities and self-steepening (SS) are indispensable
for describing the propagation of ultrashort pulses [34–
39]. These effects may contribute to certain novel prop-
erties for the wave propagation behaviors [36,40,41].
Compared with the standard NLS equation, the higher-
order NLS ones characterize the nonlinear wave phe-
nomena more accurately in reality [36,37]. Addition-
ally, a series of studies have shown that the higher-
order effects account for the state transition between
the breathers (or RWs) and other nonlinear waves on a
continuous wave background [37,42–49]. These tran-
sitions do not exist in the standard NLS equation.
For instance, Akhmediev et al. have indicated that a
breather solution can be converted into a soliton one
in the third- and fifth-order equations [50,51]. Wang
et al. have discovered that the breathers can be trans-
formed into various nonlinearwaves in the fourth-order
NLS equation [44]. Moreover, such state transitions
have also been found in some higher-order coupled
systems, i.e., the Hirota–Maxwell–Bloch (HMB) sys-
tem [42], NLS-MB system [43] and coupled Hirota
equation [47].

Currently, it is the most acceptable concept that
the RW appears as a result of MI [52]. Interestingly,
with certain higher-order perturbation terms such as
the TOD and delayed nonlinear response term, the MI
growth rate shows a non-uniform distribution charac-
teristic in the low perturbation frequency region. In par-
ticular, it opens up a stability region as the background
frequency changes [37,47]. In addition, using the RW
eigenvalue, one can find that the modulation stability
(MS) condition is consistent with the state tranisition
condition, which converts RWs into solitons on con-
stant backgrounds [44–46].

In this paper, we study the vc-NLS equation with the
fourth-order [53–56],

iut + α(t)uxx + β(t)u|u|2
+γ1(t)uxxxx + γ2(t)|u|2uxx
+γ3(t)u

2u∗
xx + γ4(t)u

∗u2x
+γ5(t)|ux |2u + γ6(t)|u|4 = 0, (1.1)

where x is the propagation variable, t is the trans-
verse variable, u(x, t) represents the coherent ampli-
tude in Glaubers coherent-state representation for the
Heisenberg ferromagnetic spin chain or the probabil-
ity amplitude of the excitation in the protein molecu-
lar chain[53], α(t), β(t), γi (t) (i =1, 2, …, 6) are all
the real functions of t . Equation (1.1) can be used to
describe an inhomogeneous one-dimensional contin-
uum anisotropic Heisenberg ferromagnetic spin chain
or alpha helical protein [53–55]. In order to ensure
the integrability of Eq. (1.1), all of these functions
satisfy the linear relations, i.e., γ2(t) = 4κγ1(t),
γ3(t) = κγ1(t), γ4(t) = 3κγ1(t), γ5(t) = 2κγ1(t),
γ6(t) = 3

2κγ1(t), β(t) = κα(t). The coefficients α(t)
and γ1(t) describe the GVD and FOD effects, respec-
tively. The terms proportional to α(t) and γ1(t) repre-
sent the elementary spin excitations related to the low-
est order of continuum approximation and octupole–
dipole interaction, respectively [53]. Yang et al. have
discussed the dynamics of soliton solution for Eq. (1.1)
via the bilinear method [53]. They have shown the
interactions between a bound state and a single soli-
ton [53]. In addition, they have found that the RWs
can be divided into many similar components when
the variable coefficients are the polynomial functions,
while the RWs can be divided into many different com-
ponents when the variable coefficients are the hyper-
bolic secant functions [54]. Xie et al. have found that
the directions of two solitons change and the elastic
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interactions occur when the variable coefficients are
functions [55]. Su et al. have reported the influences of
the GVD, TOD, FOD and gain or loss coefficient on
the propagation and interaction of the nonautonomous
breathers and RWs for Eq. (1.1) [56]. To the best of
our knowledge, the dynamics of nonautonomousmulti-
peak solitons and MI characteristic for Eq. (1.1) have
not been reported in the existing papers, which are the
main results of this paper.

The arrangement of this paper is as follows: In
Sect. 2, we will discuss the dynamics of nonau-
tonomous multi-peak soliton for Eq. (1.1). The state
transition condition between nonautonomous breathers
and nonautonomous multi-peak solitons will be given.
Further, the characteristics of multi-peak solitons will
be studied. The relation between the MI and state tran-
sition condition will be revealed in Sect. 3. Finally,
Sect. 4 will give the conclusions of this paper.

2 The dynamics of the nonautonomous multi-peak
soliton

In this section, by using the Darboux transformation
(DT), the expression of the first-order nonautonomous
breather solution of Eq. (1.1) can be given by

q[1]
B =

(
c + 8β1

G[1]
B + i H [1]

B

D[1]
B

)
ei ρ, (2.1)

with

ρ = r x + s(t),

s(t) =
∫

((−r2 + c2 κ)α(t) + 1

2
(2 r4 − 12 r2 c2 κ

+ 3 c4 κ2)γ1(t))dt,

G[1]
B = k1 k2 χ1 cos(t VH + x ωR)

+ c (2 + κ) M cosh(tVT + x ωI )

+ c (−2 + κ) M sinh(t VT + x ωI ),

H [1]
B = c (−2 + κ) N cosh(t VT + x ωI )

+ k1 k2 χ2 sin(t VH + x ωR)

+ c (2 + κ) N sinh(t VT + x ωI ),

D[1]
B = 8 κ c k1 k2 M cos(tVH + xωR)

+ (2 + κ) χ1 cosh(t VT + x ωI )

+ (−2 + κ) χ1 sinh(t VT + x ωI ),

ω = 2

√
κ

2
c2 +

( r
2

+ λ
)2 = (ωR + iωI ),

h = [x + (α(t)(2 λ − r) + γ1(t)(r
3 − 2 r2 λ

+ 2 c2 κ λ − 8 λ3 − 3 c2 κ r + 4 λ2 r))t]ω
2

= [x + (hR + ih I )t]ω
2

,

χ1 = r2 + h2I − 2 r hR + h2R + 4 r α1 − 4 hR α1

+ 4α2
1 − 4 hI β1 + 4β2

1 + 2 c2 κ,

χ2 = r2 + h2I − 2 r hR + h2R + 4 r α1 − 4 hR α1

+ 4α2
1 − 4 hI β1 + 4β2

1 − 2 c2 κ,

k1 = 1, k2 = −1,

M = hI − 2 β1, N = r − hR + 2α1,

VT = 2(hR ωI + hI ωR),

VH = 2(hR ωR − hI ωI ).

We note that Eq. (2.1) contains two variable coeffi-
cients, i.e., the GVD coefficient α(t) and FOD coeffi-
cient γ1(t), which can be flexibly manipulated accord-
ing to different physical backgrounds. For example,
Fig. 1 displays the periodic accelerating and decelerat-
ing motions of the first-order nonautonomous breather
with α(t) = 1, γ1(t) = cos(t). Further, from Eq. (2.1),
we can calculate two significant physical quantities,
namely the phase velocity Vp = hR + hI ωR

ωI
and

group velocity Vg = hR − hI ωI
ωR

. Generally speaking,
Eq. (2.1) describes the dynamics of nonautonomous
breather when Vp �= Vg (or hI �= 0). In this case, the
expression (2.1) contains both hyperbolic functions and
trigonometric functions. However, if the phase velocity
and group velocity have same value, i.e., Vp = Vg (or
hI = 0), the state transition between nonautonomous
breather and nonautonomous multi-peak soliton can be
achieved. From Eq. (2.1), one can find that the phase
velocity and group velocity can be controlled by initial
wave number r . Therefore, we can get some special
values of r by solving Vp = Vg. Figure 2 describes
the locus of Vp and Vg. When r = 2.32337 and
r = −1.12337, we have Vp = Vg, shown by the wine
red dots in Fig. 2. Additionally, it should be pointed out
that the case Vp = Vg is equivalent to

VT
ωI

= VH

ωR
, (2.2)

i.e.,

α(t)

γ1(t)
= 1

r2 − 4rα1 + 12α2
1 − 4β2

1 − c2κ
. (2.3)
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Fig. 1 First-order nonautonomous breather with r = 0.3, c =
0.9, γ1(t) = cos(t), α(t) = 1, α1 = −0.15, β1 = 1, κ = 2

Fig. 2 Locus of phase velocity and group velocity with c = 1,
γ1(t) = 4, α(t) = 1, α1 = 0.3, β1 = −0.6, κ = 2

Equation. (2.2) [or Eq. (2.3)] implies the extrema of
trigonometric and hyperbolic functions in the solution
Eq. (2.1) is located along the same straight lines in
the (x, t) plane, which leads to the transformation of
the breather into a continuous soliton. Moreover, we
should point out that GVD and FOD coefficients need
to meet a directly proportional relationship to achieve
the state transition. Otherwise, Eq. (2.3) has no solution
with respect to r . This is different from the constant
coefficient case in Ref. [44].

In order to exhibit the dynamical properties of
Eq. (1.1), we discuss the effects of the FOD coefficient
γ1(t) and GVD coefficient α(t) on the nonautonomous
multi-peak soliton.

Firstly, we consider the effects of higher-order
terms on the velocity of the multi-peak soliton. From
Eq. (2.1), we can see that the group velocity contains
the FOD coefficient. Selecting two different values of
γ1(t) [γ1(t) = 0.58 and γ1(t) = 0.32] will lead to
different values of the group velocity Vg. As shown
in Fig. 3a, b, the nonautonomous multi-peak soliton
have negative velocity (hR < 0 ) and positive velocity
(hR > 0), respectively. In otherwords, the higher-order
terms have the effect on the direction of the nonau-
tonomous multi-peak soliton. Additionally, the simi-
lar influence of higher-order effects on the velocity of
other nonlinear structures such as the standard solitons,
breathers and RWs, have also been found in different
higher-order NLS models [57–59].

Secondly, we study the effects of higher-order terms
on the localization of the multi-peak soliton. Fixing the
valueofα(t),we change thevalueofγ1(t). By choosing
γ1(t) = 0.029 and γ1(t) = 0.089, Fig. 4a, b, respec-
tively, shows a strong localization and a weak localiza-
tion of the multi-peak solitons along the x-direction.
This reflects the second significant effect of the FOD
term on the multi-peak soliton, in addition to the veloc-
ity. However, the effects of FOD term have no obvious
effects on the peak number and amplitude of the multi-
peak soliton. In particular, the localization of the wave
vanishes completely with γ1(t) = 0.298. In this case,
the multi-peak soliton is transformed into a periodic
wave with vanishing localization, which is displayed
in Fig. 4c. Correspondingly, the exact expression of
the periodic wave reads as

q[1]
p =

(
c + 8β1

G[1]
p + i H [1]

p

D[1]
p

)
ei ρ, (2.4)

with

G[1]
p = k1 k2 χ11 cos(ωR(x + 2 t hR)) + c (2 + κ) M1,

H [1]
p = c (−2 + κ) N1 + k1 k2 χ12 sin(ωR(x + 2 t hR)),

D[1]
p = 8 κ c k1 k2 M1 cos(ωR(x + 2 t hR)) + (2 + κ) χ11,

χ11 = r2 − 2 r hR + h2R + 4 r α1 − 4 hR α1 + 4α2
1

+ 4β2
1 + 2 c2 κ,

χ12 = r2 − 2 r hR + h2R + 4 r α1 − 4 hR α1 + 4α2
1

+ 4β2
1 − 2 c2 κ,

M1 = − 2 β1, N1 = r − hR + 2α1.

Thirdly, we investigate the effects of GVD term on
themulti-peak soliton.Unlike the previous discussions,
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Fig. 3 Effects of FOD term on the velocity of nonautonomous multi-peak soliton with γ1(t), a γ1(t) = 0.58, b γ1(t) = 0.32. Other
parameters are c = 1, α1 = 0.7, β1 = −0.3, α(t) = 1, κ = 2

Fig. 4 Effects of FOD term on the localization of nonautonomous multi-peak solitons with γ1(t), a γ1(t) = 0.029, b γ1(t) = 0.089, c
γ1(t) = 0.298. Other parameters are c = 1, α1 = 0.5, β1 = −0.4, α(t) = 1, κ = 2

we adjust the value of α(t) while fixing the value of
α(t). As depicted in Fig. 5, we find that increasing the
values ofα(t) leads to a stronger localization and a sam-
ller oscillation period for the multi-peak soliton. More-
over, the GVD coefficient α(t) can change the num-
ber of peaks of the soliton. We observe that the wave
described by the dashed purple curve [α(t) = 3.47]
has nine humps, while the wave described by the solid
blue curve [α(t) = 4.45] has fifteen humps. In other
words, as the value of α(t) increases, the number of
peaks of soliton increases. However, the amplitude of
the main peak remains unchangeable. This suggests
that the GVD coefficient α(t) not only affects the local-
ization of the soliton, but also controls its peak number.

Fourthly, we consider an exponential fiber system,
letting γ1(t) and α(t) as two linearly related functions.

Fig. 5 Effects of GVD term on the peak number of nonau-
tonomous multi-peak solitons with γ1(t) = 0.29, c = 1,
α1 = 0.5, β1 = −0.4, κ = 2
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Fig. 6 aCompression effect of nonautonomousmulti-peak soli-
tons with r = 0.5, c = 1, σ1 = −4.328, σ2 = 1, α1 = 0.504,
β1 = −0.36, κ = 2, ε = 0.1. b Periodic variable motion of

multi-peak solitons with r = 0.5, c = 1, σ1 = −2.157, σ2 = 1,
α1 = 0.48, β1 = −0.36, κ = 2, ε = 0.1

For instance,

γ1(t) = σ1 exp(εt), α(t) = σ2 exp(εt). (2.5)

where the variable parameters σ1 and σ2 are connected
with the FOD and GVD effects, the parameter ε is a
constant. In Fig. 6a, we observe that the velocity and
width of themulti-peak soliton change during the prop-
agation. The case ε < 0 causes the multi-peak soliton
to be compressed, whereas ε > 0 results in the multi-
peak soliton to be amplified.

Finally, we consider a soliton management system,
which is similar to that of Ref. [60], i.e., the periodic
distributed system

γ1(t) = σ1 cos(εt), α(t) = σ2 cos(εt). (2.6)

where trigonometric functions are physically relevant
because they provide opposite (positive and negative)
dispersion and nonlinearity with alternating regions.
As shown in Fig. 6b, the multi-peak soliton is periodic
acceleration and deceleration in the propagation.

From the above analysis, we can find that when the
GVD coefficient α(t) and FOD coefficient γ1(t) sat-
isfy the condition (2.3), the nonautonomous breather
can be transformed into nonautonomous multi-peak

soliton in a one-dimensional continuum anisotropic
Heisenberg ferromagnetic spin chain or alpha helical
protein. In addition, we find that the lowest order of
continuum approximation and octupole–dipole inter-
action in a Heisenberg ferromagnetic spin chain do not
influence the amplitude of the soliton, but they influ-
ence the velocity, localization and peak number of the
nonautonomous multi-peak soliton, respectively. For
the detailed discussions of relation between the inter-
actions between/among the two and three solitons and
the ferromagnetism, one can refer to [53,61].

3 MI characteristics

In this section, we reveal the explicit relation between
the state transition and MI characteristic for Eq. (1.1)
by linear stability analysis. The plane-wave solution of
Eq. (1.1) is presented as

u(x, t) = c ei (r x+s(t)), (3.1)

where c and r are two real parameters. The perturbation
solution can be expressed as

u(x, t) = (c + ε û(x, t)) ei (r x+s(t)), (3.2)

where û(x, t) is the small-amplitude perturbation [62].
Substituting Eq. (3.2) into Eq. (1.1) yields the evolution
equation for the perturbation û(x, t) as
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κ c2 α(t) û(x, t) − 6κ r2 c2 γ1(t )̂u(x, t)

+ 3κ2 c4 γ1(t )̂u(x, t)

+ κ c2 α(t )̂u∗(x, t) − 6κ c2 r2 γ1(t )̂u
∗(x, t)

+ 3κ2 c4 γ1(t )̂u
∗(x, t)

+ i û(0,1)(x, t) + 2 i r α(t )̂u(1,0)(x, t)

− 4 i r3 γ1(t )̂u
(1,0)(x, t)

+ 12κ i r c2 γ1(t) û
(1,0)(x, t) + α(t )̂u(2,0)(x, t)

− 6 r2 γ1(t )̂u
(2,0)(x, t) + 4κ c2 γ1(t )̂u

(2,0)(x, t)

+ κ c2 γ1(t )̂u
∗(2,0)(x, t) + 4 i r γ1(t )̂u

(3,0)(x, t)

+ γ1(t) û
(4,0)(x, t) = 0. (3.3)

Noting that the linearity of Eq. (3.3) with respect to
û(x, t), we introduce

û(x, t) = U1 ei (Q x−
(t)) + V1 e−i (Q x−
 ∗ (t)), (3.4)

which is characterized by the frequency
(t) andwave
number Q. Using Eq. (3.4) into Eq. (3.3) gives a linear
homogeneous system of equations for U1 and V1:

− 2 r Q U1α(t) − Q2 U1α(t) + κ c2 U1α(t)

+ κ c2 V1α(t) + 4 r3 Q U1γ1(t) + 6 r2 Q2 U1γ1(t)

− 6 κ r2 c2 U1γ1(t) − 12 κ r c2 Q U1γ1(t)

− 4 κ c2 Q2 U1γ1(t) − 6 κ r2 c2 V1γ1(t)

− κ c2 Q2 V1γ1(t) + 3 κ2 c4 U1γ1(t)

+ 3 κ2 c4 V1γ1(t) + U1
 ′(t) = 0,

(3.5)

2 r Q V1α(t) − Q2 V1α(t) + κ c2 U1α(t)

+ κ c2 V1α(t) − 4 r3 Q V1γ1(t) + 6 r2 Q2 V1γ1(t)

− 6 κ r2 c2 V1γ1(t) + 12 κ r c2 Q V1γ1(t)

− 4 κ c2 Q2 V1γ1(t) − 6 κ r2 c2 U1γ1(t)

− κ c2 Q2 U1γ1(t) + 3 κ2 c4 U1γ1(t)

+ 3 κ2 c4 V1γ1(t) − V1
 ′(t) = 0.

(3.6)

From the determinant of the coefficient matrix of
Eqs. (3.5)–(3.6), the dispersion relation for the lin-
earized disturbance can be determined as


 2(t) + J1 
(t) + J0 = 0, (3.7)

with

J1 = − 4 r Q
(
4 r2 γ1(t) + 3 κ c2γ1(t) + Z

)
,

J0 = Q2(α(t)2(4 r2 − Q2 + 2 κ c2 )

+ 4(−4 r4 + κ c2(−2 Q2 + 3 κ c2))α(t)γ1(t)

+ (16 r6 − 12 r4(3 Q2 + 2 κ c2)

+ 24 κ r2 c2(2 Q2 + 3 κ c2)

+ 3 κ2 c4(−5 Q2 + 6 κ c2))γ1(t)
2),

Z = α(t) − 6 r2γ1(t) + 3 κ c2 γ1(t).

Solving the above equation, we have


(t) = 2 r Q(4 r2 γ1(t) + 3 κ c2γ1(t) + Z)

± Q
√

Z(Q2(2 κ c2 γ1(t) + Z) − 2 κ Z c2),

(3.8)

In this case, the frequency 
(t) becomes complex and
the disturbance will grow with time exponentially if
and only if Q2 < Q2

c = 2 κ Z c2

2 κ c2 γ1(t)+Z
, and the growth

rate of the instability is given by

Γ = |Q|
√

Z
(−Q2

(
2 κ c2 γ1(t) + Z

) + 2 κ Z c2
)
.

(3.9)

To obtain the maximum growth rate of the instability,
we take the derivative of Eq. (3.9) with respect to Q,
and set it to zero. Then, we obtain

Qmax = ±
√

κ c2 Z

2 κ c2 γ1(t) + Z
, (3.10)

and the following maximum growth rate of the insta-
bility:

Γmax = κ c2 |Z |√
2 κ c2 γ1(t)/Z + 1

. (3.11)

From Fig. 7, we can see that the distribution charac-
teristic of MI gain is impacted by the FOD coefficient
in the region −√

2 κ c < Q <
√
2 κ c, and it has two

symmetric modulation stability (MS) region where the
MI growth rate is vanishing in the low perturbation fre-
quency region. The MS regions are characterized by
the two dashed orange lines in Fig. 7. Moreover, the
expression of the MS regions is given by

r = rs = ±
√

α(t)

6 γ1(t)
+ κc2

2
, (3.12)
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Fig. 7 Characteristics ofMI growth rate
 on (Q, r) plane with
c=0.5, κ = 2, α(t) = 1, γ1(t) = 0.02. Here the dashed orange
lines represent the stability region in the perturbation frequency
region −√

2 κ c < Q <
√
2 κ c, which is presented as r = rs =

±
√

α(t)
6 γ1(t)

+ κc2
2 . (Color figure online)

i.e.,

γ1(t) = α(t)

6 r2 − 3 κ c2
. (3.13)

We note that theMS condition (3.13) requires a spe-
cial coefficient relationship where γ1(t) is proportional
to α(t). This is consistent with the soliton management
system described by Eqs. (2.5) and (2.6). Further, using

the RWeigenvalue λ0 = − r
2 +i

√
2κ
2 c, we find the state

transition (2.3) is consistent with the MS region con-
dition (3.13). Our results show that the state transition
between the RWs and multi-peak solitons can exist in
the MS region with low frequency perturbation.

4 Conclusions

We have presented the first-order nonautonomous
breather solution for Eq. (1.1) and the state transition
between nonautonomous breather and nonautonomous
multi-peak soliton. We have discussed the effects of
higher-order terms on the nonautonomous multi-peak
soliton, including the velocity, localization, peak num-
ber and width. We have also shown that the state tran-
sition condition is consistent with the MS region con-
dition when the RW eigenvalue is taken.
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