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Abstract In this paper, we address the problem of the
bifurcation control of a delayed fractional-order dual
model of congestion control algorithms. A fractional-
order proportional–derivative (PD) feedback controller
is designed to control the bifurcation generated by the
delayed fractional-order congestion control model. By
choosing the communication delay as the bifurcation
parameter, the issues of the stability and bifurcations
for the controlled fractional-order model are studied.
Applying the stability theorem of fractional-order sys-
tems, we obtain some conditions for the stability of the
equilibrium and the Hopf bifurcation. Additionally, the
critical value of time delay is figured out, where a Hopf
bifurcation occurs and a family of oscillations bifurcate
from the equilibrium. It is also shown that the onset of
the bifurcation can be postponed or advanced by select-
ing proper control parameters in the fractional-order
PD controller. Finally, numerical simulations are given
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1 Introduction

Past several years have witnessed the wide applications
of fractional calculus, involving biology [1–3], physics
[4,5], psychology [6], engineering [7,8], etc. Com-
pared with integer-order derivatives, fractional deriva-
tives have the superiority of accuracy and flexibility
when they are used to describe the mathematical mod-
els of phenomena in the real world. From the perspec-
tives of the mathematical and systematical science, the
fractional-order systems depicted by dynamical equa-
tions with fractional orders will emerge many dynam-
ical behaviors, which are of great value to be investi-
gated.

The rapid growth of Internet has brought a series of
drawbacks in the past two decades, among which the
congestion problem has been intriguingmany scholars.
To overcome that, some congestion control schemes
were studied deeply [9–11]. Especially, many results
were given about the dynamic properties of the con-
gestion control systems, including the stability [12–
15], Hopf bifurcations [16–20], and chaos [21–23]. For
a single resource and single-user system, some crite-
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ria for the local stability and the rate of convergence
were proposed in [12]. Then, the congestion control
systems with multiple sources, which are more com-
mon in Internet networks, were discussed also from
the view of stability [14]. On the other hand, it was
also shown in [17] that the variations of some system
parameters would lead to the loss of stability, which
causes the bifurcation and chaos.

In various kinds of dynamic systems like congestion
control systems, bifurcations are not always desired and
probably do harm to our systems. Thus, some control
schemes are designed to change the bifurcation charac-
teristics of systems, which are often referred to bifurca-
tion control. In general, bifurcation control means the
control of bifurcation properties of nonlinear dynamic
systems, thereby inducing some desired output behav-
iors of the systems [24]. Different from other con-
trol schemes, bifurcation control usually aims to delay
the onset of an inherent bifurcation, change the criti-
cal values of an existing bifurcation, and stabilize an
unstable bifurcated solution or branch [24]. In addition,
unlike many control schemes, most bifurcation control
schemes will not change the properties of the original
system.

Especially, to improve the bifurcation characteris-
tics for congestion control systems, various bifurcation
control schemes were proposed, such as the time-delay
feedback control [25–27], the state feedback control
[24,28,29], and the hybrid control strategy [30,31]. It
is shown that under these control strategies, the sta-
bility regions of congestion systems are extended and
the occurrences of undesired Hopf bifurcations are
delayed.

It is known that conventional integer-order dynami-
cal systems will turn to fractional-order ones when we
replace the integer-order derivatives with fractional-
order derivatives. It is noted that fractional-order
dynamical systems are quite different from integer-
order counterparts [32,33]. For instance, a main differ-
ence is that the fractional-order derivatives of a peri-
odic function with a specific period cannot be a peri-
odic function with the same period [33]. However,
current studies about fractional-order dynamical sys-
tems are insufficient and many characteristics of these
fractional-order systems have not been revealed.

Moreover, fractional-order derivatives are non-local,
integro-differential operators, while integer-order ones
are local operators [34]. Therefore, fractional-order
derivatives are suitable for simulating infinite mem-

ory effects and long-range dispersion processes. Con-
sidering that congestion control systems include round
trip communication delays, the application of mem-
orymodule will bring great improvement to congestion
control systems [35]. Additionally, the introduction of
fractional calculus can make the congestion control
models more accurate than conventional integer-order
systems in depicting realistic systems.Hence, it ismore
meaningful to investigate fractional-order congestion
control systems than integer-order counterparts.

However, nearly all efforts on the stability and Hopf
bifurcations are limited to the integer-order model of
congestion control systems. Moreover, the qualitative
theory for bifurcations in fractional-order systems is
still an open problem. Thus, it is of great significance to
investigate the bifurcations for fractional-order conges-
tion control system. To the best of the authors’ knowl-
edge, few work on the bifurcations has been reported
for fractional-order congestion control systems.

As a category of typical proportional–integral–
derivative (PID) control, proportional–derivative (PD)
control has been widely applied, especially in robotic
systems [36–38]. Dupont [37] studied the question of
how to achieve steady motion at very low velocities
using PD control and figured out that stick-slip can
be avoided only through velocity feedback. From the
view of bifurcation and bifurcation control, the effects
of PD controller on the bifurcations of dynamic sys-
tems have been investigated in [39–41]. Bucklaew et
al. [39] studied Hopf bifurcations in a parametrically
forced pendulum or manipulator with a PD controller.
It is noted that a PD control strategy was recently
used in a small-world network to improve its dynamic
behaviors [40]. The results show that one can easily
advance or delay the onset of Hopf bifurcations just
by changing the control parameters, including the pro-
portional control parameter and the derivative control
parameter.

In the past few years, some kinds of fractional-order
proportional–integral–derivative (PID) controllers,
which own fractional-order integral and derivative
terms, have been designed to improve fractional-order
systems [42–46]. Using a fractional-order P I λDμ con-
troller, Hamamci [42] stabilized a delayed fractional-
order system and determined a set of global stabil-
ity domains in the control parameter space. In [45], a
fractional-order PID controller with the employment of
particle swarm optimization was designed to improve
the robustness of an automatic voltage regulator. Based
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on user-specified peak overshoot and rise time, the
fractional-order closed-loop transfer function of the
designed plant was realized in [44], where the Tustin
operator-based continuous fraction expansion scheme
was adopted. To optimize the multi-objective functions
for an automatic voltage regulator system, Pan and
Das [46] proposed a fractional-order P I λDμ controller
with an improved evolutionary non-dominated sorting
genetic algorithm, where a chaotic map was adopted
for greater effectiveness.

Motived by theworks on bifurcation controlwith the
application of conventional PDcontrollers and themas-
sive applications of fractional-order PID controllers,
in this paper, we adopt a fractional-order PD control
strategy as a bifurcation control method to control the
Hopf bifurcations in fractional-order congestion con-
trol systems. The superiorities of the fractional-order
PD controller over the fractional-order congestion con-
trol system are obvious. The onset of Hopf bifurca-
tions of fractional-order congestion control system is
adjustable; namely, the stability domain of the sys-
tem is flexible. Thus, by choosing proper values of
control parameters, fractional-order congestion con-
trol systems will work stably even under strict con-
ditions. Moreover, the fractional-order PD controller
is more universal than its conventional integer-order
counterpart, due to its flexible fractional-order parame-
ter. Therefore, investigating the effects of the fractional-
order PD controller over fractional-order dynamic sys-
tems is of great value, and fractional-order conges-
tion control systems are such typical fractional-order
dynamic systems.

It is also worth mentioning that the problems of
bifurcation control in fractional-order dynamical sys-
tems have been investigated recently [47–49]. A novel
incommensurate fractional-order predator–prey sys-
tem with time delay was discussed in [48], and the
investigation showed that time delay can heavily influ-
ence the dynamics of the proposed system and each
order has a major influence on the creation of bifur-
cation simultaneously. Chen et al. [47] successfully
applied an innovative bifurcation control method by
using a weakly fractional-order feedback controller to
eliminate the stochastic jump in the forced response for
a bounded noise excited Duffing oscillator. A dynamic
state feedback was applied to control Hopf bifurcations
arising from a fractional-order Van Der Pol oscillator,
the stability domain is extended, and the system pos-
sesses the stability in a larger parameter range [49].

Although some results have emerged, the bifurcation
characteristics of controlled systems and the effects of
bifurcation control are far from totally understood. In
addition, many kinds of dynamic systems and bifurca-
tion control methods have not been covered yet. Thus,
bifurcation control in fractional-order dynamical sys-
tems is still an open problem. In this paper, we extend
the conventional PD controller into a novel fractional-
order PD controller and use it to control the bifur-
cations of a category of fractional-order congestion
control systems. To the best of the authors’ knowl-
edge, such bifurcation control method has not been
reported.

This paper is dedicated to studying the stability and
bifurcation control in a delayed fractional-order con-
gestion control system under the fractional-order PD
controller. Some conditions of the stability and Hopf
bifurcation are derivedwhere the communication delay
is chosen as a bifurcation parameter. Then, for the con-
trolled fractional-order model, we identify the critical
value where a Hopf bifurcation occurs and a family of
oscillations bifurcate from the equilibrium. It is also
shown that, by choosing proper control parameters in
our fractional-order PD controller, the critical value can
be adjusted in a large area and the stability domain
for the controlled system is flexible. Thus, the original
fractional-order congestion control system is improved
in dynamic behaviors.

The paper is organized as follows. Section 2 presents
some preliminaries and some pioneering results. The
target congestion control system and some pioneering
results about it are introduced in Sect. 3. In Sect. 4,
a fractional-order PD controller is designed and the
controlled system is studied in respect of the stability
and Hopf bifurcation, where the stability condition is
derived and the existence of Hopf bifurcation is proved.
Section 5 provides some numerical results to verify the
effectiveness of the controller. Finally, some conclu-
sions are drawn in Sect. 6.

2 Preliminaries

It is known that three main fractional derivative def-
initions have been proposed, including the Riemann–
Liouville fractional derivative, theGrunwald–Letnikov
fractional derivative, and the Caputo fractional deriva-
tive [34]. Considering that theCaputo fractional deriva-
tive only needs initial conditions which can be easily
obtained in physical situations, it is more applicable
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in engineering. Therefore, we discuss the Caputo frac-
tional derivative merely.

The Caputo derivative can be defined as follows:

C
a D

α
t f (t) = 1

� (n − α)

∫ t

a
(t − τ)n−α−1 f (n) (τ ) dτ,

(1)

where n − 1 < α ≤ n, n ∈ N and � (·) is the Gamma
function. The value of the fractional order is denoted
by α and is generally in the domain of (0, 1] in engi-
neering.

Deng et al. [50] introduced a category of n-dimens-
ional linear fractional-order systemswithmultiple time
delays which can be expressed as follows:
dα1x1
dtα1

= a11x1 (t − τ11) + a12x2 (t − τ12) + . . .

+ a1nxn (t − τ1n) ,

dα2x2
dtα2

= a21x1 (t − τ21) + a22x2 (t − τ22) + . . .

+ a2nxn (t − τ2n) ,

dαn x2
dtαn

= an1x1 (t − τn1) + an2x2 (t − τn2) + . . .

+ annxn (t − τnn) , (2)

where 0 < αi ≤ 1 for i = 1, 2, . . . , n, and the nota-
tion dαi /dtαi is chosen as the Caputo fractional deriva-
tive (1). We choose the initial values xi (t) = ϕi (t)
in the domain −τmax ≤ t ≤ 0, i = 1, 2, . . . , n,

where τmax = max
1≤i, j≤n

{
τi j

}
. The associated charac-

teristic equation for system (2) is displayed as follows:

det

⎛
⎜⎜⎜⎝

sα1 − a11e−sτ11 −a12e−sτ12 · · · −a1ne−sτ1n

−a21e−sτ21 sα2 − a22e−sτ22 · · · −a2ne−sτ2n

.

.

.
.
.
.

. . .
.
.
.

−an1e−sτn1 −an2e−sτn2 · · · sαn − anne−sτnn

⎞
⎟⎟⎟⎠=0.

(3)

Then, we state some stability results for (2) obtained in
[50].

Theorem 1 ([50]) Given that all the roots of the char-
acteristic equation (3) have negative real parts, the zero
solution of system (2) is Lyapunov globally asymptoti-
cally stable.

Corollary 1 ([50]) Suppose that τi j = 0, i, j =
1, 2, . . . , n and αi = α ∈ (0, 1] , i = 1, 2, . . . , n. If
|arg (λ)| > απ/2 is satisfied for all roots of the char-
acteristic equation det (λI − A) = 0 , the zero solution

of system (2) is Lyapunov globally asymptotically sta-
ble, where A = (ai j )n×n is the coefficient matrix and
λ = sα.

Corollary 2 ([50]) Given αi = α ∈ (0, 1]. If all
the characteristic equation (3) has no purely imag-
inary roots for any τi j > 0, i, j = 1, 2, . . . , n and
|arg (λ)| > απ/2 is satisfied for all the eigenvalues λs
of A, then the zero solution of system (2) is Lyapunov
globally asymptotically stable.

Although the conclusions for Hopf bifurcations in
integer-order dynamical systems are well known, we
cannot simply extend most of them to fractional-order
systems due to huge substantial differences between
these two kinds of systems. Since most corresponding
investigations have beenmade only based on numerical
simulations, the Hopf bifurcation theory for fractional-
order dynamical systems is still an open problem. Next,
we will introduce some conditions of Hopf bifurca-
tion for a typical n-dimensional fractional-order system
with the time delay as a bifurcation parameter.

Theorem 2 ([35]) Consider the following system:

dαxi
dtα

= fi (x1, x2, . . . , xn; τ) , i = 1, 2, . . . , n, (4)

where 0 < α ≤ 1 and the time delay τ ≥ 0. A Hopf
bifurcation will occur at the equilibrium when τ = τ0
if the following conditions are satisfied:

(1) The inequality |arg (λ)| > απ/2 is satisfied for
all the eigenvalues of the coefficient matrix of the
linearized system of (4).

(2) The characteristic equation of system (4) has a
purely imaginary root ±iω when τ = τ0.

(3) The transversality condition [dRe(s(τ ))/dτ ]τ=τ0 >

0 is satisfied, where Re(·) represents the real part
of the complex eigenvalue.

3 Model descriptions

As a kind of congestion mechanisms, the dual algo-
rithms have been analyzed in many aspects, involving
the stability and bifurcations. It is noted that a typical
fair dual congestion control model was introduced in
[17], which can be represented as the following differ-
ential equation:

d

dt
p (t) = κp (t) (x (t − τ) − C) , (5)
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where the variable p represents the price at the link, τ
is the communication delay, κ > 0 is the gain param-
eter and the scalar C is the capacity. Additionally,
x (t) = D (p (t)) is a nonnegative continuous, strictly
decreasing demand function.

The integer-order system (5) has been investigated
by some scholars from the aspects of stability and bifur-
cations in past few years [17,18,30]. Choosing the non-
dimensional parameter κ as the bifurcation parameter,
Raina [17] studied the local stability and Hopf bifurca-
tion for the integer-order system (5). Some conditions
of the stability andHopf bifurcationwere obtained, and
the direction of Hopf bifurcations was determined. The
local Hopf bifurcation for system (5) was also analyzed
when the communication delay τ was selected as the
bifurcation parameter [18]. It was shown that when τ

passes through a threshold, system (5) loses its stability
and a Hopf bifurcation occurs.

It is also noted that some control strategies will help
improve the characteristics of system (5), such as delay-
ing the occurrence of Hopf bifurcations and extending
the stability domain. Applying a hybrid control strat-
egy, Ding et al. [30] investigated the local Hopf bifurca-
tion for the controlled congestion system and the effec-
tiveness of the hybrid controller was validated.

Substituting the fractional-order Caputo derivative
(1) for the usual integer-order derivative, the integer-
order congestion system (5) was extended into the fol-
lowing fractional-order congestion system:

dα p (t)

dtα
= κp (t) (x (t − τ) − C) , (6)

whereα ∈ (0, 1] and other system parameters share the
same meanings with those in system (5). It easy to see
that system (6) has a nonzero equilibrium p∗ satisfying
the following equation:

D(p∗) = C.

It should be mentioned that the fractional-order system
(6) has the same equilibrium to that of the integer-order
system (5).

Theorem 3 ([35]) The equilibrium p∗ of system (6) is
Lyapunov asymptotically stable if the following condi-
tion holds:

[−κp∗D′ (p∗)]1/α �= 1

τ
[(2k + 1) π − απ/2] ,

where k ∈ Z.

Theorem 4 ([35]) The equilibrium p∗ of system (6) is
asymptotically stable when τ ∈ [0, τ0) and is unstable
if τ > τ0. A Hopf bifurcation occurs at the equilibrium
p∗ when τ = τ0. Here,

τ0 = (1 − α/2) π

[−κp∗D′ (p∗)]1/α
,

and τ0 is the critical value of the communication delay
for system (6).

4 Analysis for controlled system via a
fractional-order PD controller

In this section, a novel fractional-order PDcontrol strat-
egy is used to control the bifurcation in the fractional-
order system (6). It is worth mentioning that when it
comes to engineering, the fractional-order derivative
part in an electronic circuit is usually realized by a
generalized capacitor called fractance [51]. Using this
method, we can freely adjust the controller to improve
the parameters and characteristics of the controlled sys-
tems. For the convenience of calculation, we will use
the fractional order α of system (6) to set the fractional
order of the differentiator. Then, we will study the sta-
bility and Hopf bifurcation for the controlled model.

For the delayed fractional-order system (6), we pro-
pose a fractional-order PD controller with single input
and single output as follows:

u = kp
(
p (t) − p∗) + kd

dα

dtα
(
p (t) − p∗) , (7)

where kp is the proportional control parameter and kd
is the derivative control parameter.

Remark 1 It is known that a traditional PD control
scheme usually consists of a proportional term, which
is related to the current error value, and a derivative
term, which helps limit the high-frequency gain and
noise. In this paper, we choose kp < 1 and kd < 1 as
[40].

Applying the fractional-order PD controller (7) to
the fractional-order congestion system (6), we get the
controlled fractional-order system as follows:

dα p (t)

dtα
= κp (t) (x (t − τ)−C)+kp

(
p (t)− p∗)

+ kd
dα

dtα
(
p (t) − p∗) ,
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which is equivalent to

dα p (t)

dtα
= 1

1 − kd
[κp (t) (x (t − τ) − C)

+ kp
(
p (t) − p∗)] . (8)

Remark 2 It is obvious that in the controlled fractional-
order system (8), the application of the controller will
not carry an influence in the equilibrium, which is still
located in p∗. Thus, the bifurcation control can be real-
ized without destroying the properties of the original
system (6).

Remark 3 Although various controllers have been
designed for the problems of the bifurcation control
in integer-order systems [21,24], only few control
schemes have been reported to control the bifurcations
embedded in fractional-order systems [3]. In this paper,
we have first introduced a novel fractional-order PD
controller to improve the bifurcation characteristics of
the fractional-order congestion control system (6).

4.1 Stability analysis

Letting u (t) = p (t) − p∗, we can expand (8) by the
Taylor expansion around the equilibrium point p∗, and
obtain the corresponding linear equation:

dαu

dtα
= 1

1 − kd

(
kpu (t) + κp∗D′ (p∗) u (t − τ)

)
,

(9)

whose characteristic equation is

sα − 1

1 − kd

(
kp + κp∗D′ (p∗) e−sτ ) = 0. (10)

Then, let us make the following hypothesis:
(H1) : kp < κp∗D′ (p∗) .

Theorem 5 If (H1) holds, then the equilibrium p∗ of
the controlled fractional-order system (8) is Lyapunov
asymptotically stable.

Proof Let s = iω = ω
(
cos π

2 + i sin π
2

)
(ω > 0) be a

root of (10). We can get

ωα
(
cos

απ

2
+ i sin

απ

2

)

− 1

1 − kd

(
kp + κp∗D′ (p∗) (cos (ωτ)

− i sin (ωτ))) = 0. (11)

Separating the real and imaginary parts, we get

ωα cos
απ

2
− a1 = a2 cosωτ,

ωα sin
απ

2
= −a2 sinωτ, (12)

where

a1 = kp
1 − kd

, a2 = κp∗D′ (p∗)
1 − kd

.

Taking square on both sides of (12) and summing up
the results, we obtain

(
ωα

)2 − 2a1 cos
απ

2
· ωα + a21 − a22 = 0. (13)

Note that κ > 0, p∗ > 0, D′ (p∗) < 0. This implies
that a21 − a22 > 0 and a1 cos απ

2 < 0 when (H1) holds.
Thus, (13) has no positive roots, meaning that (10)
has no purely imaginary roots with positive imaginary
parts. �	

Similarly, (10) has no purely imaginary roots with
negative imaginary parts under the hypothesis (H1).
Therefore, if (H1) holds, then the characteristic equa-
tion (10) has no purely imaginary roots.

On the other side, it is obvious that when (H1) holds,
the coefficient matrix of the linearized system (9) has
one eigenvalue λ = 1

1−kd

(
kp + κp∗D′ (p∗)

)
< 0,

which satisfies |arg (λ)| > απ/2.
Then, using Corollary 2, we obtain that the equi-

librium p∗ of system (8) is Lyapunov asymptotically
stable.

For the illustration of Theorem 5, according to [35]
and [40], we suppose D (p) = 1/p and choose the
parameters κ = 0.01,C = 50, kp = −0.8, kd =
−0.5, and τ = 1. Then, we have the equilibrium
p∗ = 0.02 and κp∗D′ (p∗) = −0.5. Obviously, (H1)

is satisfied. Figure 1 shows that the state p (t) of the
controlled fractional-order system (8) is asymptotically
converging to the equilibrium p∗.

4.2 Hopf bifurcation

Generally speaking, the Hopf bifurcation refers to the
phenomena that a limit cycle emerges from an equi-
librium and the stability of the equilibrium changes.
The analysis for Hopf bifurcation can be operated by
choosing different parameters, and we will select the
time delay as the bifurcation parameter for the con-
trolled fractional-order system (8).
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Fractional-order PD control at Hopf bifurcations 2191

Fig. 1 Waveform plot of p (t) in the controlled system (8) with
κ = 0.01,C = 50, D (p) = 1/p, kp = −0.8, kd = −0.5, and
τ = 1. The equilibrium p∗is asymptotically stable

We make the following hypothesis:
(H2):

∣∣kp∣∣ < −κp∗D′ (p∗).

Lemma 1 If (H2) holds and τ = τ ck , k = 0, 1, 2 . . .,
then the characteristic equation (10) has a pair of
purely imaginary roots ±iωc

0

(
ωc
0 > 0

)
, where

ωc
0 =

(
a1 cos

απ

2
+

√
a22 − a21 sin

2 απ

2

)1/α

,

τ ck = 1

ωc
0

(
arccos

((
ωc
0

)α cos απ
2 − a1

a2

)
+ 2kπ

)
,

(14)

where τ ck is the critical value of the communication
delay for system (8) and τ c0 is the smallest positive value
of τ ck in particular, name τ c0= τ ck

∣∣
k=0 .

Proof Based on the discussion in the stability analysis,
we can figure out that if (H2) holds, which means that
a21 − a22 < 0, (13) has at least one positive root. This
indicates that the characteristic equation (10) has a pair
of purely imaginary roots.

Solving (13) gives

ωc
0 =

(
a1 cos

απ

2
+

√
a22 − a21 sin

2 απ

2

)1/α

.

Then, it follows from (12) that

τ ck = 1

ωc
0

(
arccos

((
ωc
0

)α cos απ
2 − a1

a2

)
+ 2kπ

)
.

�	

Remark 4 Lemma 1 demonstrates that condition (2)
of Hopf bifurcations in Theorem 2 is satisfied for the
controlled fractional-order system (8).

In what follows, we need to check the transversality
condition of Hopf bifurcations.

Lemma 2 Let h = (1 − kd)
(
ωc
0

)α +kp sin (α − 1) π
2 .

The following results hold:

(1) If κp∗D′ (p∗) < kp ≤ 0, then h > 0.
(2) If 0 < kp < − 1

2κp
∗D′ (p∗), then h �= 0.

(3) If − 1
2κp

∗D′ (p∗) < kp < −κp∗D′ (p∗) , the sign
of h depends on the values of α, kd and kp.

Proof Notice that kd < 1, ωc
0 > 0 and 0 < α ≤ 1.

Therefore, it is easy to see that (1 − kd)
(
ωc
0

)α
> 0 and

sin (α − 1) π
2 ≤ 0.

(1) If κp∗D′ (p∗) < kp ≤ 0, then we have that
kp sin (α − 1) π

2 ≥ 0. Thus, h is positive.
(2) Supposing that h = 0, we obtain

(
ωc
0

)α = −kp sin
(α − 1) π

2 /(1 − kd). By substituting
(
ωc
0

)α into
(13), we can get that

k2p
[
1 +

(
sin (α − 1)

π

2

) (
sin (α − 1)

π

2

+ 2 cos
απ

2

)]
= (

κp∗D′ (p∗))2 (15)

It is clear that the left side of (15) falls in[
0, 4k2p

)
. Moreover, it is known that the right side

of (15) belongs to
(
4k2p,∞

)
under the condition

0 < kp < − 1
2κp

∗D′ (p∗) . This is contradictory.
Hence, the conclusion follows.

(3) From the proof of conclusion (2) of Lemma 2, it is
figured out that if the condition − 1

2κp
∗D′ (p∗) <

kp < −κp∗D′ (p∗) holds, the values of α, kd , kp
can have an effect on the sign of h. This completes
the proof.

Next, we make the following hypothesis:
(H3): h = (1 − kd)

(
ωc
0

)α + kp sin (α − 1) π
2 > 0.

�	

Lemma 3 Let s (τ ) = ρ (τ) + iω (τ) be the root of
(10) satisfying ρ

(
τ ck

) = 0 and ω
(
τ ck

) = ωc
0 > 0, k =

0, 1, 2 . . .. If (H3) holds, then

dRe [s (τ )]

dτ

∣∣∣∣
τ=τ ck

> 0.
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Proof Substituting s (τ ) into (10) anddifferentiate both
sides of the resulting equation with respect to τ, then

ds

dτ
= −κp∗D′ (p∗) se−sτ

α (1 − kd) sα−1 + κp∗D′ (p∗) τe−sτ
.

Note that s (τ ) = ρ (τ) + iω (τ) = r (cos θ + i sin θ)

is the root of (10). Thus

ds

dτ
= −κp∗D′ (p∗) (ρ+iω) e−ρτ [cos (ωτ)−i sin (ωτ)]

α (1−kd ) (ρ+iω)α−1+κp∗D′ (p∗) τe−ρτ [cos (ωτ)−i sin (ωτ)]
.

Then, it follows that

dRe [s (τ )]

dτ
= −κp∗D′ (p∗) e−ρτ

× P (τ ) M (τ ) + Q (τ ) N (τ )

M2 (τ ) + N 2 (τ )
,

where

P (τ ) = ρ cos (ωτ) + ω sin (ωτ) ,

Q (τ ) = ω cos (ωτ) − ρ sin (ωτ) ,

M (τ ) = α (1 − kd) r
α−1 cos [(α − 1) θ]

+ κp∗D′ (p∗) τe−ρτ cos (ωτ) ,

N (τ ) = α (1 − kd) r
α−1 sin [(α − 1) θ ]

− κp∗D′ (p∗) τe−ρτ sin (ωτ) .

When τ = τ ck , it is easy to obtain

dRe [s (τ )]

dτ

∣∣∣∣
τ=τ ck

= α (1 − kd)
(
ωc
0

)α (1 − kd)
(
ωc
0

)α + kp sin (α − 1) π
2

M2
(
τ ck

)
N 2

(
τ ck

) .

Combining the hypothesis (H3), α > 0,
(
ωc
0

)α
> 0 and

1 − kd > 0, we obtain

dRe [s (τ )]

dτ

∣∣∣∣
τ=τ ck

> 0.

�	
Remark 5 Lemma 3 illustrates that condition (3) of
Hopf bifurcations in Theorem 2 is satisfied for the con-
trolled fractional-order system (8).

Theorem 6 If (H2), (H3) hold, the following state-
ments are true for the controlled fractional-order con-
gestion system (8):

(1) For τ ∈ [
0, τ c0

)
, the equilibrium p∗ of system (8)

is asymptotically stable.
(2) For τ > τ c0 , the equilibrium p∗ of system (8) is

unstable.

(3) When τ = τ c0 , system (8) undergoes a Hopf bifur-
cation at the equilibrium p∗.

Proof (1) It is easy to see that when τ = 0, all the roots
of (10) have negative real parts. It follows from
Lemma1 that all the roots of (10) also have negative
real parts for τ ∈ [

0, τ c0
)
.Thus, the equilibrium p∗

of system (8) is stable.
(2) The conclusion in Lemma 3 implies that if (H3)

holds, then (10) has at least one root with positive
real part when τ > τ c0 . So, the equilibrium p∗ of
system (8) is unstable.

(3) Since the coefficientmatrix of the linearized system
(9) has the eigenvalue λ = [

kp + κp∗D′ (p∗)
]
/

(1 − kd) < 0 when (H2) holds, the inequality
|arg (λ)| > απ/2 follows. Therefore, condition (1)
of Hopf bifurcations in Theorem 2 is reached for
the controlled fractional-order system (8). From
Lemmas 1 and 3, conditions (2) and (3) of Hopf
bifurcations in Theorem 2 are also satisfied for the
controlled fractional-order system (8). Thus, sys-
tem (8) undergoes a Hopf bifurcation at the equi-
librium p∗ when τ = τ c0 . �	

Remark 6 Equation (14) gives that the critical value
τ c0 of the controlled fractional-order congestion system
(8) that varies with the control parameters kd and kp.
Accordingly, the effectiveness of the fractional-order
PD controller on the dynamic behaviors of system (8) is
validated; namely, the fractional-order congestion con-
trol system (8) will maintain a stationary sending rate
in a flexible domain of the communication delay.

Remark 7 Theorem 6 shows that the onset of Hopf
bifurcations of the original fractional-order congestion
control system (6) has been changed by the fractional-
order PD controller. Therefore, the fractional-order PD
controller has successfully realize the aim of bifurca-
tion control.

Remark 8 Apart from the time delay, some other
parameters in system (8) also play an important role in
affecting the system’s dynamic characteristics. Thus,
they can be also selected as the bifurcation parameters,
such as the fractional order α and the gain parameter κ.

5 Numerical simulations

This section will provide some numerical results to
illustrate the analytical results obtained in the previous
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Fig. 2 Waveform plot and phase portrait of the controlled fractional-order system (8) with κ = 0.01,C = 50, D(p) = 1/p, α=0.92,
and kp = −0.1, kd = −0.2. The equilibrium p∗ is asymptotically stable, where τ = 4.5 < τ c0 = 5.1626

Fig. 3 Waveform plot and phase portrait of the controlled fractional-order system (8) with κ = 0.01,C = 50, D(p) = 1/p, α = 0.92,
and kp = −0.1, kd = −0.2. A periodic oscillation bifurcates from the equilibrium p∗, where τ = 5.3 > τ c0 = 5.1626

section and validate the effectiveness of the fractional-
order PD controller.

For the purpose of comparison, we choose the same
parameters κ = 0.01,C = 50, and the proportional
fairness D (p) = 1/p used in [18,35,52]. Then, the
controlled fractional-order congestion system (8) has a
unique nonzero equilibrium p∗ = 0.02, which is the
same as that of the uncontrolled system (6). By a simple
calculation, we have κp∗D′ (p∗) = −0.5.

We will show the dynamics of Hopf bifurcation for
the controlled fractional-order congestion system (8)
when α ∈ (0, 1] . For a consistent comparison, we
will take α = 0.92 for an example, which is used
in [35].

Now, we will use our fractional-order PD scheme
with two different control parameters to control the
Hopf bifurcation of the controlled fractional-order sys-
tem (8) and observe the change of the bifurcation char-
acteristics.

Firstly, we choose the fractional-order PD controller
(7) with kp = −0.1, kd = −0.2 (kp < 0, kd < 0 in
order to delay the bifurcation [40]). It follows from (14)
that

τ c0 = 5.1626, ωc
0 = 0.3673.

It is easy to verify that conditions (H2) and (H3) are sat-
isfied under the controller (7) with kp = −0.1, kd =
−0.2. By Theorem 6, the equilibrium p∗ of the con-
trolled system (8) is stable when τ = 4.5 < τ c0 (see
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Fig. 4 Waveform plot and phase portrait of the controlled fractional-order system (8) with κ = 0.01,C = 50, D(p) = 1/p, α = 0.92,
and kp = 0.1, kd = 0.2. The equilibrium p∗ is asymptotically stable, where τ = 2.3 < τ c0 = 2.4807

Fig. 5 Waveform plot and phase portrait of the controlled fractional-order system (8) with κ = 0.01,C = 50, D(p) = 1/p, α=0.92,
and kp = 0.1, kd = 0.2. A periodic oscillation bifurcates from the equilibrium, where τ = 2.7 > τ c0 = 2.4807

Fig. 2), while p∗ loses its stability when τ = 5.3 > τ c0
(see Fig. 3). Therefore, the controlled system (8) gen-
erates a Hopf bifurcation at the equilibrium p∗ when τ

is increased over the critical value τ c0 .

Secondly, we choose the fractional-order PD con-
troller (7) with kp = 0.1, kd = 0.2 (0 < kp < 1, 0 <

kd < 1 in order to advance the Hopf bifurcation [40])
for the controlled fractional-order system (8). From
(14), we have

τ c0 = 2.4807, ωc
0 = 0.6034.

Under the controller parameters kp = 0.1, kd = 0.2,
conditions (H2) and (H3) hold. Figures 4 and 5 display
the dynamical behaviors of system (8). From Theo-
rem 6, it is illustrated that the equilibrium p∗ of the

controlled system (8) is stable when τ = 2.3 < τ c0 (see
Fig. 4), while p∗ loses its stability and a Hopf bifurca-
tion occurs when τ = 2.7 > τ c0 (see Fig. 5). Based on
the results discussed above, Theorem 6 is verified to be
correct.

Next, we will examine the effectiveness of the
fractional-order PD control strategy in changing the
onset of Hopf bifurcations. For the uncontrolled frac-
tional-order system (6) with κ = 0.01,C = 50,
D (p) = 1/p, and α = 0.92, it follows from Theo-
rem 4 that

τ0 = 3.6037, ω0 = 0.4708.

It can be seen that under the action of the fractional-
order PD control, the bifurcation characteristics of the
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Fig. 6 Waveform plots of the uncontrolled integer-order system (5) (left) and the controlled integer-order system (16) (right) when
4.3409 = τ c0 > τ = 4 > τ0 = 3.1416, where κ = 0.01,C = 50, D(p) = 1/p, and kp = −0.1, kd = −0.2

Fig. 7 Waveform plots of the uncontrolled integer-order system (5) (left) and the controlled integer-order system (16) (right) when
2.2363 = τ c0 < τ = 2.6 < τ0 = 3.1416, where κ = 0.01,C = 50, D(p) = 1/p, and kp = 0.1, kd = 0.2

original fractional-order congestion system (6) have
been changed. Specifically, the fractional-order PD
controller (7) with kp = −0.1, kd = −0.2 increases
the critical value τ0 from 3.6037 to 5.1626, which
implies that the onset ofHopf bifurcation is delayed and
the stability domain of the original fractional-order sys-
tem (6) is expanded, while the fractional-order PD con-
troller (7) with kp = 0.1, kd = 0.2 decreases the criti-
cal value τ0 from 3.6037 to 2.4807, which means that
the onset ofHopf bifurcation is advanced and the stabil-
ity region of the original fractional-order system (6) is
reduced. It is observed that when 5.1626 = τ c0 > τ >

τ0 = 3.6037, the equilibrium p∗ of the uncontrolled

fractional-order system (6) is unstable and aHopf bifur-
cation occurs early (see Fig. 6 in [35]), while the equi-
librium p∗ of the controlled system (8) remains stable
under the control parameters kp = −0.1, kd = −0.2
(see Fig. 2). Therefore, the stability and the onset of
Hopf bifurcations of system (8) have been changed
by our fractional-order PD controller; namely, one can
efficiently manipulate these dynamic characteristics of
system (8) by choosing proper values of the control
parameters kp, kd and the order α.

Since the proposed fractional-order PD controller
(7)withα = 1will degenerate to anormal integer-order
PD controller, our fractional-order PD controller is a
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Fig. 8 Relationship between τ c0 and kd for kp = −0.1, α =
0.92, and kp = −0.1, α = 1 given by the controlled fractional-
order system (8) with κ = 0.01,C = 50, D(p) = 1/p

general case of the integer-order PD controller. Mean-
while, both the uncontrolled fractional-order system
(6) and the controlled fractional-order system (8) will
become the integer-order counterparts when α = 1.

For the uncontrolled integer-order congestion sys-
tem (5) with κ = 0.01,C = 50, and D (p) = 1/p, the
onset of Hopf bifurcation is as follows [18]:

τ0 = 3.1416, ω0 = 0.5.

Moreover, the controlled congestion system (8) can be
represented by the following integer-order differential
equation:

d

dt
p (t) = 1

1 − kd
[κp (t) (x (t − τ) − C)

+ kp
(
p (t) − p∗)] . (16)

By choosing the control parameters kp = −0.1, kd =
−0.2, we can apply (14) to obtain the critical value of
system (16):

τ c0 = 4.3409, ωc
0 = 0.4082.

Similarly, under the control parameters kp = 0.1, kd =
0.2, the critical value of system (16) can be calculated
as follows:

τ c0 = 2.2363, ωc
0 = 0.6124.

Figure 6 shows that when τ = 4, the equilibrium
p∗ of the uncontrolled integer-order congestion system
(5) is unstable,while that of the controlled integer-order
system (16) is stable. It is demonstrated that the onset of

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.50.5
0

10

20

30

40

50

60

70

80

90

k
p

τ
0
c

k
d
=−0.2, α=0.92

k
d
=−0.2, α=1

Fig. 9 Relationship between τ c0 and kp for kd = −0.2, α =
0.92, and kd = −0.2, α = 1 given by the controlled fractional-
order system (8) with κ = 0.01,C = 50, D(p) = 1/p
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Fig. 10 Relationship between τ c0 and α for the controlled
fractional-order system (8) with kp = −0.1, kd = −0.2 and
the uncontrolled system (6), both of which have the same system
parameters κ = 0.01,C = 50, D(p) = 1/p

Hopf bifurcation is postponed. FromFig. 7, we observe
that when τ = 2.6, the integer-order PD controller with
kp = 0.1, kd = 0.2 may advance the onset of Hopf
bifurcation.

For the controlled fractional-order system (8) with
κ = 0.01,C = 50, and D (p) = 1/p, Figs. 8, 9,
and 10 visualize the relationships between the critical
value τ c0 and the parameters kd , kp, andα, respectively.
To be specific, as the parameter kd , kp, or α increases,
respectively, the value of τ c0 decreases.Moreover, some
differences of the effectiveness between fractional-
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order PD controller and conventional PD controller are
also illustrated in Figs. 8, 9 and 10. Particularly, our
fractional-order PD controller with the control param-
eters kp = −0.1, kd = −0.2 ismore effective in delay-
ing the onset of Hopf bifurcations when the fractional
order is smaller.

6 Conclusions

In this paper,we have addressed the problemof control-
ling Hopf bifurcations in fractional-order congestion
control systems. Without using conventional bifurca-
tion control methods, we have extended the integer-
order PD controller to the fractional-order PD con-
troller and have first applied it to control the Hopf
bifurcation of a delayed fractional-order dual model
of congestion control algorithms.

Using the communication delay as the bifurcation
parameter, we have investigated the stability and Hopf
bifurcations for the controlled fractional-order con-
gestion system. Some conditions for the stability are
derived for the controlled fractional-order congestion
system by using the stability theory of fractional-order
systems. It is demonstrated that a Hopf bifurcation will
occur at the equilibriumwhen the communication delay
passes through a critical value. It has also been shown
that the fractional-order PD controller can successfully
control the Hopf bifurcations of fractional-order con-
gestion control system. Concretely, by choosing proper
control parameters, one can effectively change the criti-
cal value for the communication delay and accordingly
postpone or advance the onset of the inherent bifurca-
tion of the original fractional-order congestion system.
Therefore, for such a fractional-order congestion con-
trol system under our fractional-order PD controller, a
stationary sending rate is guaranteed for a larger (or
more flexible) domain for the communication delay,
due to the variation of the critical value.

Although conventional bifurcation control schemes
have been successfully applied in various integer-order
dynamic systems, few investigations are reported about
the bifurcation control in fractional-order systems. Our
future works will focus on the bifurcation control for
high-dimensional fractional-order systems using the
proposed fractional-order PD control strategy.
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