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Abstract This paper details the study of the aeroe-
lastic effect on modal interaction and dynamic behav-
ior of acoustically excited square metallic panels with
fully clamped edges using finite element method. The
first-order shear deformation plate theory and von Kar-
man nonlinear strain–displacement relationships are
employed to consider the structural geometric non-
linearity caused by large vibration deflections. Piston
aerodynamic theory and Gaussian white noise are used
to simulate the aerodynamic load and the acoustic load,
respectively. Motion equations are derived by the prin-
ciple of virtual work in the physical coordinates and
then transformed into the truncated modal coordinates
with reduced orders. Runge–Kuttamethod is employed
to obtain the system response, and the modal interac-
tion mechanism is quantitatively valued by the modal
participation distribution. Results show that in the pre-
/near-flutter regions, in addition to the dominant funda-
mental resonant mode, the first twin companion anti-
symmetric modes can be largely excited by the aeroe-
lastic couplingmechanism; thus, aeroelasticmodal par-
ticipation distribution and the spectrum response can be
altered, while the dynamic behavior still exhibits lin-
ear random vibrations. In the post-flutter region, the

X.-C. Wang · Z.-C. Yang (B) · Y.-S. Gu · W. Wang ·
Z.-L. Chen
School of Aeronautics, Northwestern Polytechnical
University, Xi’an 710072, China
e-mail: yangzc@nwpu.edu.cn

X.-C. Wang
e-mail: wxc_npu@163.com

dominant flutter motion can be enriched by highly
ordered odd order super-harmonic motion occurs due
to 1:1 internal resonances. Correspondingly, the panel
dynamic behavior changes from random vibration to
highly ordered motions in the fashion of diffused limit-
cycle oscillations (LCOs). However, this LCOs motion
can be affected by the intensifying acoustic excita-
tion through changing the aeroelastic modal interac-
tion mechanism. Accompanied with these changes, the
panel can experience various stochastic bifurcations.

Keywords Aeroelastic effect · Modal interaction ·
Panel flutter · 1:1 Internal resonance · Stochastic
bifurcation

1 Introduction

Most skin panels of high-speed air vehicles or space-
crafts are simultaneously subjected to combined loads
from boundary layer turbulence, engine noise, and
mean flow fluctuations. With a longtime duration
exposed to such extreme environment, panel sonic
fatigue becomes a major concern to the high-speed
vehicles [1]. To avoid an over-conservative design,
there arises a need to accurately predict the vibration
response of such panels in coupled multi-fields.

As a main source of panel sonic fatigue, the acous-
tic load, induced by boundary layer turbulence (may
be combined with the engine noise in some specific
regions), was approximated to be in the range of 130–
170dB [1]. To simulate the acoustic environment for
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research, there exist three different approaches until
the flight test data are available, namely (i) a random
in time, uniform in space, prescribed acoustic load, (ii)
semiempirical models [2], and (iii) computational fluid
dynamics (CFD) [3]. As the first approach is simple
to implement, and its spatial correlated characteristics
can be reasonably neglected considering the smaller
panel scale respect to its attached boundary layer, this
approach has been widely adopted. Additionally, it is
required to consider the mean flow fluctuating load
due to the aeroelastic coupling mechanism [3]. This
aerodynamic load can lead to the aeroelastic insta-
bility problem, i.e., panel flutter, which mainly deals
with predicting the critical flow velocity and the corre-
sponding frequencies (modes). Motivated by the need
for a better understanding of the nonlinear vibration
response of skin panels under such combined loads,
many researchers have used different approaches to
investigate this multi-physical problem. Most existed
studies treated panel flutter as a pure dynamic instabil-
ity problem with merely mean flow considered; how-
ever, some studies took the boundary layer influence
into account. These studies should be motivated by the
experimental studies, which indicated the importance
of the boundary layer [4,5]. Then, Dowell [6] assumed
a particular velocity profile with (1/7)th power veloc-
ity law to simulate the boundary layer and studied its
influence. By using the laminar boundary layer model,
Vasily [7] investigated the interaction of panel flutter
with inviscid boundary layer in supersonic flow. Addi-
tionally, other researchers also investigated the bound-
ary layer by using CFD method [8–10].

These studies focused on building a coupled model
with both mean flow and boundary layer considered.
To simplify this problem, the pressure perturbation
from boundary layer or engine noise can be assumed
as random acoustic excitation with specific spectrum
[11]. Thus, a finite element formulation was presented
for the response analysis of composite panels sub-
jected to both the acoustic excitation and aerody-
namic pressure [12]. The results suggested that both
the acoustic and aerodynamic loads have to be con-
sidered in the post-flutter region from the perspective
of deflections. Additionally, considering the thermal-
induced membrane load, nonlinear aerothermoacous-
tic response of shape memory alloy hybrid composite
panels was investigated, and the thermal-induced snap-
through was observed merely based on the deflection
time histories [13]. Then, a 2-DOF simple computa-

tional panel model based on a novel two-way coupling
method was implemented to investigate the impact of
flow induced load on the snap-through behavior of
the acoustically excited, thermal buckled panels [3].
Results showed that the self-induced aerodynamic load
can significantly affect the vibration response of panels
under random acoustic load, while the random forced
pressure can reduce the onset time of panel flutter.
The above results were also mainly obtained from the
system deflection time histories. To comprehensively
investigated the interaction mechanism between the
flutter motion and the forced response, a parametric
study [14], based on a 2-DOF simple mechanical sys-
tem, was implemented to investigate the effect of small
periodic disturbances on the panel aeroelastic response.
The results showed that the external disturbance force
can induce a smooth transition prior to the flutter occur-
rence obtained from the linear panel flutter theory, and
the frequency response can be altered. Recently, Wang
[15] explored the aeroelastic effect on the aerothermoa-
coustic response ofmetallic panels fromperspectives of
both the spectrum response and the stochastic bifurca-
tion characteristics using finite element method. Zhao
[16] conducted a parametric study on supersonic flutter
of composite panel in coupled multi-fields, where the
significant influence of both the thermal and acoustic
loading was confirmed.

Considering that the motion governing equations
can be transformed into a set of aeroelastic coupled
nonlinear Duffing oscillators driven by a wideband
random excitation in physical nature, thus the system
modal interaction mechanism can be affected by the
frequency coalescence mechanism (panel flutter) and
internal/external resonances. In addition to the well-
known panel flutter, internal resonances exist when
the structural eigenfrequencies are commensurable, or
nearly so. However, an integer eigenfrequency ratio
does form a necessary condition for internal resonance
mechanism to exchange energy as the internal reso-
nance presences depend on the geometry, nonlinearity,
and system boundary conditions of the system [17].
In study [18], a 2-DOF panel aeroelastic system, with
repeated eigenfrequencies and cubic nonlinearity to a
principal parametric excitation, was treated as an one-
to-one (1:1) internal resonances system and investi-
gated. As more higher-order modes were not consid-
ered in this study, thus more complicated internal res-
onance mechanisms cannot be observed. In the studies
using a two-degree-of-freedom airfoil model [19,20],
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1:3, 1:2, and 1:1 internal resonances were investigated
as theflowvelocity increases. Itwas found that the pres-
ence of cubic nonlinear stiffness in the aeroelastic sys-
tem can led to 1:3 internal resonances. Recently, the 1:3
internal resonances were observed in a nonlinear panel
flutter system and treated as a cause of nonlinear panel
flutter by using direct Naiver–Stokes (DNS) method
[21,22]. Additionally, the system dynamic response
canbe complicatedby thegeometric nonlinearity due to
large deflections with panel thickness level. This non-
linearity can not only prevent the panel from imme-
diate flutter collapse, but also result in the nonlinear
frequency–amplitude response (NFR). Accompanied
with panel flutter, internal/external resonance mech-
anism, and nonlinear frequency–amplitude response,
the dynamic response of panel will exhibit different
stochastic bifurcations with varying parameters. These
bifurcations indicate the changes in number, locations,
shapes, and magnitudes of the peaks of the deflections
probability density distribution [23]. Thus, the mean
strain and vibratory strain of the panel can be signifi-
cantly altered.

As noted by the above discussion, to better under-
stand various aeroelastic behaviors of such panels,
the modal interaction mechanism within this forced
aeroelastic system should be highly emphasized. As
an extension work of the previous work [15], the pre-
sented analysis emphasizes on how can themodal inter-
actionmechanism be regulated by the aeroelastic effect
and attempts to understand the balance relationship
between the flutter motion and the external wideband
random excitation figured out by works [12,15]. With-
out considering the variation of the panel modes (fre-
quencies) due to thermal elevations, the motion equa-
tion is formulated by using finite elements method and
virtual principle and is calculated by numerical integra-
tion method. In addition to the conventional behavior
study, the varying frequencies of the updated aeroe-
lastic system with changing flow dynamic pressures is
presented, and the modal participation is presented to
quantitatively investigate the modal interaction mech-
anism. Finally, the corresponding dynamic behaviors
are analyzed.

2 Formulations and solution procedure

The multi-physical system in this study is schemat-
ically depicted in Fig. 1. It is shown that the mean

X

Y

Z

(random load) 
∞U

Fig. 1 Schematic diagram of acoustically excited skin panels in
high-speed flow

flow passes over the upside surface of the acoustically
excited, square metallic panel. The mean flow and the
vibrating panel can build the traditional aeroelastic self-
sustained system, while the uniformly distributed, ran-
dom load is treated as a pure external excitation [15].

Following with the presented detailed formula-
tion [12,15], without considering the thermal-induced
membrane load, themain formulation procedure is pre-
sented again in this section. By using the first- order
deformation theory [23], the displacement fields of the
panel can be expressed as:

⎧
⎨

⎩

u (x, y, z) = u0(x, y) + zϕy(x, y)
v (x, y, z) = v0(x, y) + zϕx(x, y)
w(x, y, z) = w0(x, y)

(1)

where u(x, y, z), v(x, y, z), and w(x, y, z) denote
the panel displacements along x , y, and z direc-
tions, respectively, and z is the transverse coordinate.
u0(x, y), v0(x, y), and w0(x, y) denote three mid-
dle plane displacements along x , y, and z directions,
respectively. ϕx and ϕy denote the rotations of the nor-
mal to the mid-surface respect to the x- and y-axes,
respectively.

The nodal degrees-of-freedom vector of a Mindlin
plate element (MIN3) is expressed as [12,15,25]:

�wb
[
ϕx ϕy � [u v]]T =

⎡

⎣

[
wb

wϕ

]

wm

⎤

⎦ =
[
wB

wm

]

= w (2)

where [wB] = [
wb wϕ

]T
,
[
wϕ

] = [
ϕx ϕy

]T
, and

wb denotes the middle plane transverse displacement
vector and ϕx andϕy denote the rotations vectors of the
normal to the mid-surface respect to the x- and y-axes,
respectively. wm denotes the membrane displacement
vector. The relation between the element displacements
and the nodal displacements can be expressed as [15,
25]:

123



1504 X.-C. Wang et al.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u0 = Huwm

v0 = Hvwm

w0 = Hwwb + Hwϕwϕ

ϕx = Hϕxwϕ

ϕy = Hϕywϕ

(3)

where Hu and Hv denote the in-plane displacement
interpolation shape function matrices, Hw denotes the
transverse displacement interpolation shape function
matrix, and Hwϕ , Hϕx, and Hϕy denote the rota-
tion displacement interpolation shape function matri-
ces [15,25]. Based on the von Karman theory, the in-
plane strains and curvatures can be written as:

ε = εm + εmb + zk (4)

where εm, εmb, and zk denote the linear membrane
strain vector, the nonlinear membrane strain vector,
and the bending strain vector, respectively. The stress–
strain relations of a metallic panel are,

⎡

⎣
σ

τ

⎤

⎦ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎡

⎢
⎢
⎢
⎣

σx

σy

τxy

⎤

⎥
⎥
⎥
⎦

⎡

⎣
τyz

τxz

⎤

⎦

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

E
1−v2

E
1−v2

0 0 0

E
1−v2

E
1−v2

0 0 0

0 0 G 0 0

0 0 0 G 0

0 0 0 0 G

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎡

⎢
⎢
⎢
⎣

εx

εy

γxy

⎤

⎥
⎥
⎥
⎦

⎡

⎣
γyz

γxz

⎤

⎦

⎤

⎥
⎥
⎥
⎥
⎥
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⎥
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⎥
⎦

=
⎡

⎣
Q 03×2

02×3 Qs
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⎥
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⎥
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⎥
⎥
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⎥
⎥
⎥
⎦

(5)

where E ,v, and G denote the material properties of the
metallic panel. Based on Reissner–Mindlin theory [15,
25], the constitutive equations for the isotropic metallic
panel are:

⎧
⎨

⎩

N = A (εm + εmb) + Bk
M = B (εm + εmb) + Dk
R = Asγ

(6)

where

(A,B,D) =
∫ h/2

−h/2

(
1, z, z2

)
Qdz (7)

As =
∫ h/2

−h/2
Qsdz (8)

where N,M, and R are the membrane force vector, the
bending moment vector, and the transverse shear force
vector, respectively. A, B, D, and As are the membrane
stretching stiffness matrices, the bending–stretching
coupling stiffnessmatrices, the bending stiffnessmatri-
ces, and the shear stiffness matrices, respectively. The
piston aerodynamic load is [12,15,25]

pa = −2qa
β

(
∂w

∂x
+ Ma2 − 2

Ma2 − 1

1

V∞
∂w

∂t

)

= −
(

λ
D110

a3
∂w

∂x
+ √

λRM
D110

ω0a4
∂w

∂t

)

(9)

or in the form of nodal force,

pa = −
(

λ
D110

a3

(
∂Hw

∂x
wb + ∂Hwϕ

∂x
wϕ

)

+√
λRM

D110

ω0a4

(
Hw

•
wb +Hwϕ

•
wϕ

))

(10)

where qa = 1
2ρaV

2∞ denotes the mean flow dynamic
pressure, V∞ denotes the mean flow velocity, ρa
denotes the air density, Ma denotes Mach number,
D110 denotes the first element D

(
1, 1

)
of the bend-

ing stiffness matrix D in Eq. (6), λ = 2qaa3

βD110
denotes

the non-dimensional dynamical pressure with β =√
Ma2 − 1, and a is the panel length along the stream

direction. The aerodynamic damping coefficient is

RM =
(
Ma2−2
Ma2−1

)2
μ
β
, with the air–panel mass ratio

μ = ρaa
ρh . For Ma � 1, RM ≈ μ

Ma , and RM = 0.1
is selected [12,15,26].

The exerted Gaussian-type random acoustic excita-
tion is specified by its power spectrum density function
as [12,13,15]:

S( f ) =
{

P2
ref × 10SPL/10, 0 ≤ f ≤ fc

0, otherwise
(11)

where Pref = 20µPa is the reference pressure, fc is the
selected cutoff frequency inHertz, andSPL is the sound
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pressure level in decibels (dB). Using the principle of
virtual work, the governing equation can be obtained
as [12,15]:
[
MB 0
0 Mm

] [
ẄB

Ẅm

]

+
[
CA 0
0 0

] [
ẆB

Ẇm

]

+

⎛

⎜
⎜
⎝

[
KB KBm

KmB Km

]

+
[
KA 0
0 0

]

+ 1
2

[
K1B K1Bm
K1mB 0

]

+ 1
3

[
K2B 0
0 0

]

⎞

⎟
⎟
⎠

×
[
WB

Wm

]

=
{
pB
0

}

(12)

where MB and Mm denote the system mass matri-
ces affected by the bending–stretching, membrane dis-
placements, respectively. CAdenotes the aerodynamic
damping matrix. K, K1, and K2 denote the linear,
first-order and second-order nonlinear stiffness matri-
ces. The nonlinear stiffness terms depend linearly and
quadratically on displacements, the subscript B, and
m denote the bending–stretching, membrane-related
components, respectively. pB is the nodal random
forces. By neglecting the membrane inertia term, the
membrane displacement vector can be expressed as
[12,15]:

Wm = −K−1
m KmBWB − 1

2
K−1
m K1mBWB (13)

Then, the governing equation can be written in terms
of the bending displacement,

MB ẄB + CAẆB +
(

KB − KT + KA

+ 1
2K1B + 1

3K2B

)

WB

+
(

KBm + 1

2
K1Bm

)( −K−1
m KmBwB

− 1
2K

−1
m K1mBwB

)

︸ ︷︷ ︸
Wm

= pB

(14)

As the bending displacementWBcan be expressed as a
linear combination of normal transverse modes as:

WB = Qq (t) ≈
N∑

r=1
Qr qr (t) (15)

where Q = [
Q1 Q2 · · · QN

]
is the selected natural

mode shapes of the panel obtained from a derived

eigenproblem without the thermal effect of Eq. (12)
as:

ω2
rMBQr =

(
KB − KBmK−1

m KmB

)
Qr (16)

Accordingly, the systemgoverning equations inEq. (12)
can be transformed into the modal coordinates as:

MBq̈+CAq̇+2ξr fr IMBq̇+(
KL + KNL

)
q = PB (17)

where the terms with superscript denote the corre-
sponding matrices in the modal system, and,
(
MB,CA,KL

)

= QT
(
MB,CA,

(
KB + KA − KBmK−1

m KmB

))
Q

(18)

KNL = QT
(
1

2
K1B + 1

3
K2B − 1

2
KBmK−1

m K1mB

−1

2
K1BmK−1

m KmB − 1

4
K1BmK−1

m K1mB

)

Q

(19)

PB = QTpB (20)

Considering the structural damping effect, a structural
modal damping matrix 2ξr fr IMBhas been added to
Eq. (17). The coefficient ξr = 0.01 is the modal damp-
ing ratio of the r th mode, and fr is the correspond-
ing natural frequency. Finally, the fourth-order Runge–
Kutta integration method is employed to obtain the
dynamic response. Equation (17) can be rewritten in the
state space, and the fourth-order Runge–Kutta numeri-
cal integrationmethodwith a fixed time step of 1/5000s
is adopted to solve the dynamic differential equations,
while a random acoustic loading is generated with the
same time step [12,13,15].

3 Numerical results and discussions

The properties of a fully clamped square metallic panel
are listed in Table 1.

For panel subjected to combined aerodynamic and
acoustic load, the location of themaximumdeflection is
not at a fixed position, the position could be somewhere
between the panel center and the three quarter from the
leading edge, and the reference point is fixed at (3a/4,
a/2) in this study [12,15].
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Table 1 Geometric and
material properties of a fully
clamped square panel

Geometric properties Material properties (Ti-6242S)

Dimensions a × a × h: 0.3m × 0.3m × 0.001m E = 113GPa

Boundary conditions: clamped (C–C–C–C) G = 46GPa

Poisson’s ratio: ν=0.3 Density: ρ = 4370 Kgm−3

Table 2 Natural frequencies (Hz) of the fully clamped square titanium plate

Mode order 1 2 3 4 5 6 7 8

Type Symmetric Anti-symmetric Anti-symmetric Symmetric Anti-symmetric Anti-symmetric Antisymmetric Anti-symmetric

NASTRAN 97.96 199.80 199.90 294.84 358.40 360.09 449.49 449.97

FEM (MIN3) 98.67 201.76 201.99 299.22 366.25 367.88 458.16 460.67

Err., % 0.73 0.98 1.04 1.49 2.19 2.16 1.92 2.38

Table 3 Modal convergence study

Selected modes number RMS (W/h)

6 0.4928

12 0.7838

16 0.7843

26 0.7848

30 0.7848

3.1 Validation of the formulation

Firstly, the proposed finite element method is veri-
fied in this section. The system natural frequencies
obtained by Eq. (16) are compared with those obtained
by MSC/NASTRAN as listed in Table 2. It can be
seen that they are in good agreement. Thus, the tri-
angular meshes (20× 20× 2) with MIN3 element can
be employed to model the metallic panel for further
dynamic analysis [15].

Then, the convergence study for building reduced-
order model under combined loads (SPL = 120 dB,
λ = 1000) is conducted as listed in Table 3, the
obtained results are listed in Table 3, and it can be
clearly shown that the first twenty-six modes can be
employed for the following numerical cases analysis
with enough accuracy.

Finally, the limit-cycle oscillation amplitudes ob-
tained by using the proposed method agree well with
the open literature [26,27] as shown in Fig. 2; thus,
the capability of the proposed finite element method to
calculate the flutter motion is validated [15].
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Fig. 2 Comparison of limit-cycle oscillation amplitudes [15]

3.2 Aeroelastic effect on the overall response

After the proposed finite element method is verified,
considering that the aerodynamic load can function as
aerodynamic stiffness and damping within the updated
aeroelastic model as described in Eq. (14), it is also
necessary to calculate the variation of the natural fre-
quencies of the aeroelastic model as shown in Fig. 3. It
can be clearly shown that the first three natural frequen-
cies can be remarkably regulated by the increasing flow
dynamic pressure λ. And the frequencies merging pro-
cedure between the first two aeroelastic modes can be
observed as the flowdynamic pressure increases. These
two frequenciesmerge at the critical aerodynamic pres-
sure, λcr = 812.

Based on the obtained panel natural frequencieswith
null aerodynamic load listed in Table 2, from the per-
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spective of the internal/external resonances, there exist
some nearly integral ratios: one-to-one 1:1 relation-
ships among these natural frequencies (such as mode
2nd and 3rd, mode 5th and 6th, mode 7th and 8th,
respectively), one-to-two 1:2 (for mode 1st and 2nd. In
fact, for this specific square panel, each antisymmetric
mode has a companion mode. Therefore, internal reso-
nances of the type one-to-one (1:1) can be always pre-
sented with different modal participation [17,18,20].
Thus in this case, the modal internal resonances are
largely affected by the variation of the natural frequen-
cies as the flow dynamic pressure changes; thus, the
modal interaction mechanism can be altered [17,20].
To quantify the aeroelastic effect on the modal inter-
action mechanism, the variation of modal participation
of panel random vibrations under SPL = 120dB with
different flow dynamic pressures is presented in Fig. 4.
The modal participation value is defined as Eq. (21),
where RMS denotes root-mean-square of the random
deflections [28].

Participation of the r th mode = RMS |qr |
∑N

s=1 RMS |qs |
(21)

From Fig. 4, it can be seen that as the flow dynamic
pressure increases from zero to 1000, the modal par-
ticipation of the lower twin modes (2nd and 3rd, 5th
and 6th) increases with the almost same participation
level, but the modal participation of the higher modes
decreases. These changes indicate that more energy be
transferred from the higher modes to the lower modes
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Fig. 5 RMS response versus flow dynamic pressure λ with dif-
ferent SPL

as the flow dynamics pressure increases. Within the
lowermodes (mode 1st–6th), as the flow dynamic pres-
sure increases, the modal participation of the mode 1st
initially decreases and then increases, and the 4thmode
participation continues to decrease.

As each mode modal participation can be signifi-
cantly regulated by the increasing flow dynamic pres-
sure, thus the dynamic behavior can be consequently
altered. Figure 5 illustrates the overall RMS response
of deflections under varying combined loads. Before
the flutter occurrence, the deflections decrease as the
flow dynamic pressure increases. Thus, the system is
stiffenedby the additive aerodynamic loaddue to aeroe-
lastic effect. As the dynamic pressure is approaching
the critical flutter value λcr = 812, there exist smooth
transitions prior to the flutter limit-cycle oscillations
(LCOs). And in the post-flutter region, the deflections
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Fig. 6 Random response (SPL = 120dB, λ = 0, RMS = 0.0182). a Non-dimensional deflection time history. b Phase plane.c
Displacement spectral density. d Probability density distribution for displacement

can always be higher than those without aerodynamic
load as the flow dynamic pressure increases to the high
enough level [12]. These characteristics coincide with
the variation of modal participation of the fundamen-
tal mode as shown in Fig. 4. To obtain more detailed
knowledge of these complex behaviors, some repre-
sentative cases under different combination loads are
presented in the flowing sections.

3.3 Cases studies

3.3.1 Random vibration response without aeroelastic
effect

In this section, two cases with null aerodynamic load
are presented firstly to give us some basic knowl-

edge of pure random vibration response. Figures 6
and 7 illustrate the random vibrations with null aero-
dynamic pressure (λ = 0) at sound pressure levels
SPL = 120 and 160dB, respectively. At sound pres-
sure level SPL = 120dB, the panel basically experi-
ences a small deflection linear random vibration. The
deflections power spectrum density (PSD) responses
are shown in Fig. 6c. According to the calculated nat-
ural frequencies and modal participation distribution
(Table 2; Figs. 3, 4), the deflections PSD of the linear
random response (SPL = 120dB, λ = 0) is dominated
by the fundamental resonant peak [1st symmetricmode
(1,1)] in the fashion of external resonance, which is
excited by the spatially uniform, random acoustic load.
Even that the second natural frequency is twice the
first one, however, this nearly integer ratio of natural
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Fig. 7 Random response (SPL = 160dB, λ = 0, RMS = 0.8691). a Non-dimensional deflection time history, b phase plane. c
Displacement spectral density. d Probability density distribution for displacement

frequencies does not guarantee a significant one-to-two
(1:2) internal resonances (Figs. 4, 6).

While at SPL = 160dB, λ = 0, the panel experi-
ences a larger deflection nonlinear random vibration
as shown in Fig. 7. The deflections PSD responses
are shown in Fig. 7c. In this nonlinear vibration case,
the fundamental resonance peak becomes flattened and
shifts to the higher-frequency region (around 160Hz)
due to the hardening-type nonlinear frequency–
amplitude relationship induced by the large deflec-
tions. This relationship figures out that for a nonlin-
ear dynamic system with positive linear and nonlin-
ear stiffness, there exist some unstable multi-valued
frequency regions in the higher-frequency region rel-
ative to the linear resonance peaks [15,23]. Based on

the PSD analysis of these two cases, both of which
are dominated by one single resonance peak, it is
reasonable that the single-degree-of-freedom(SDOF)
model be always adopted in the previous thermo-
acoustic studies [2,11]. As different PSD responses
can be accompanied with different deflections proba-
bility density distributions, in the linear case (Fig. 6d),
the deflections probability density distribution is close
to Gaussian, while in the nonlinear case (Fig. 7d),
the initial Gaussian-type distribution can be flattened
caused by themulti-valued hardening- type frequency–
amplitude relationship due to large deflections. Thus,
the phenomenon bifurcation (P-bifurcation) due to
the intensified random excitation can be observed
[23].
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Fig. 8 Random response (SPL = 120dB, λ = 400, RMS = 0.0180). a Non-dimensional deflection time history. b Phase plane. c
Displacement spectral density. d Probability density distribution for displacement

3.3.2 Aeroelastic effect on random vibration in the
pre-/near-flutter regions

Before studying the aeroelastic effect on the panel ran-
dom vibration, the critical flutter aerodynamic pressure
λcr = 812 is calculated to classify different regions
as pre-flutter region (λ � λcr), near-flutter region
(λ < λcr), and post-flutter region (λ > λcr). As the
proposed model does not consider the perturbations on
the mean flow velocity due to boundary layer [3,4,15],
thus the aeroelastic system stability can be indepen-
dentwith the exerted randomacoustic excitation.Based
on the variation of natural frequencies with changing
dynamic pressure (Fig. 3), it is clearly shown that in
the pre-flutter region, when the flow dynamic pressure
λ is increased to 400, the fundamental mode natural

frequency increases lightly, while its modal partici-
pation decreases (Fig. 4), thus the panel experiences
a linear random vibration with lower amplitudes as
shown in Fig. 8. These changes can be illustrated as
a shifted fundamental resonant peak in the deflections
PSD response, which is different with its counterpart
of the linear case (SPL = 120dB, λ = 0).

Under SPL = 120dB and λ = 800, in the near-
flutter region, the panel also experiences a linear ran-
dom vibration as shown in Fig. 9 with increased ampli-
tudes. It can be seen in Fig. 4 that much more par-
ticipation are contributed by the lower three modes in
this case. In the PSD response as shown in Fig. 9c, the
almost merged frequencies of the first two aeroelastic
modes can be observed. And these changes in the PSD
response demonstrate that it is necessary to consider
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Fig. 9 Random response (SPL = 120dB, λ = 800, RMS = 0.0806). a Non-dimensional deflection time history. b Phase plane. c
Displacement spectral density. d Probability density distribution for displacement

the aeroelastic effect for a more accurate response pre-
diction even before the flutter occurrence.Additionally,
the deflections probability density distributions of these
two cases are both close to Gaussian.

The above cases all illustrate the linear random
vibration under random acoustic excitation with lower
SPL. The following two cases will discuss the ran-
dom vibration under higher-level random excitation,
SPL = 160dB. The case (SPL = 160dB, λ = 0)
is illustrated in Fig. 7, and the variation of modal
participation with increasing flow dynamic pressures
under SPL = 160dB is presented in Fig. 10. It can be
clearly shown that the modal participation of the fun-
damental mode decreases, while higher-order modal
participation increases as the flow dynamic pressure
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Fig. 10 Variation of modal participation distribution under
SPL = 160dB
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Fig. 11 Random response (SPL = 160dB, λ = 400, RMS = 0.8395). a Non-dimensional deflection time history. b Phase plane. c
Displacement spectral density. d Probability density distribution for displacement

λ increases. Comparing with the modal participation
variation under SPL = 120dB shown in Fig. 4, the
first mode modal participation in this case can be much
higher than its counterpart to dominate the overall
dynamic behavior.

At (SPL = 160dB, λ = 400), the panel mainly
experiences a large deflection nonlinear random vibra-
tion as shown in Fig. 11. Comparing with the non-
linear case with null flow dynamic pressure shown in
Fig. 7, the deflections of this case decrease due to the
additive aerodynamic stiffness. As the flow dynamic
pressure increases to λ = 800 as shown in Fig. 12,
the deflections increase, and there appear some higher
resonant peaks in addition to the fundamental reso-
nant peak as the probability density distributions of
the non-dimensional deflections of these two cases

(λ = 400, 800) both represent as the flatten distribution
plateau.

3.3.3 Aeroelastic effect on random vibration in
post-flutter region

As the exerted random acoustic excitation does not
alter the system dynamic stability (panel flutter), a
pure panel flutter case (λ=1000, SPL = 0dB) is pre-
sented here to build a benchmark case for comparison
as shown in Fig. 13. It can be shown in the phase plot
that the panel mainly experiences typical LCOs. The
flutter mechanism, coalescence of the first two aeroe-
lastic coupled frequencies (Fig. 3), can be illustrated as
a sharp merged resonant peak (≈189.5Hz) as shown
in Fig. 13c.
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Fig. 12 Random response (SPL = 160dB, λ = 800, RMS = 0.9370). a Non-dimensional deflection time history. b Phase plane. c
Displacement spectral density. d Probability density distribution for displacement

In addition to the first two modes with 1:1 inter-
nal resonances [18], it can be seen in Fig. 14 that the
modal contribution of the third mode keeps the almost
same level with the second one. However, the PSD
response is dominated by three sharp peaks with nearly
integral ratio, 1:3:5, which indicates that the single
periodic motion be enriched by its odd order super-
harmonic motions. With such a highly ordered spec-
trum response, it is reasonably assumed that the flutter-
ing panel can function as a linear filter to the wideband
excitation [29].

At SPL = 120dB and λ=1000, based on the
modal participation distribution (Fig. 14) of the vibra-
tions under different combined loads in the post-flutter
region, both the above two cases possess the almost
same modal participation; thus, this case (SPL =
120dB, λ = 1000) is dominated by the flutter motion.

The corresponding behavior is shown in Fig. 15 as dif-
fused limit-cycle oscillations. And the PSD response
overall presents the characteristics of odd order super-
harmonic motions, while there exists a resonant peak
indicating the third aeroelastic mode (Fig. 3) [30,31].
Comparing with the cases with single peak distri-
butions in the pre-/near-flutter regions, the probabil-
ity density distribution of non-dimensional deflections
presents a fork-like shape with two peaks, indicating
LCOs amplitudes as shown in Fig. 15d. This dynamic
bifurcation [23], inducedby the instability of this aeroe-
lastic coupling system, can cause significant change of
the mean and vibratory strains of the vibrating panel.

However, as the sound pressure level is increased to
SPL = 160dB, the characteristic of the modal partici-
pation distribution can be significantly altered as shown
in Fig. 14. Figure 16 clearly shows that the initial odd
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plane, c displacement spectral density, d probability density distribution for displacement

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

5

10

15

20

25

30

35

40

45

50

Mode Order

M
od

al
 P

ar
tic

ip
at

io
n,

 %

λ=1000,SPL=0dB
λ=1000,SPL=120dB
λ=1000,SPL=160dB

Fig. 14 Modal participation distribution in post-flutter region

order super-harmonic motion characterized by flutter
motion can be replaced by external resonances; thus,
the panel experiences a large deflection nonlinear ran-
dom motion. And the PSD response (Fig. 16c) is dom-
inated by a broaden fundamental resonant peak. Cor-
respondingly, the deflections probability density distri-
bution experiences another P-bifurcation shown as a
plateau distribution in Fig. 16d.

4 Conclusions

Based on the first-order shear deformation plate theory
and piston aerodynamic theory, the aeroelastic effect
on both the modal interaction mechanism and dynamic
behavior of acoustically excited panels is studied. As
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Fig. 15 Random response (SPL = 120dB, λ = 1000). a Non-dimensional deflection time history. b Phase plane. c Displacement
spectral density. d Probability density distribution for displacement

an extensionwork of studies [12,15], this paper empha-
sizes on analyzing the aeroelastic modal interaction
mechanism; thus, the corresponding complex dynamic
behavior can be better understood, and the following
conclusions can be drawn.

1. Based on the variation of natural frequencies and
modal participation with increasing flow dynamic
pressure within the updated aeroelastic model, the
aeroelasticmodal interactionmechanismcan be not
only affected by the coupling mechanism between
the first two approaching aeroelastic modes, which
can lead to 1:1 internal resonance thus panel flut-
ter, but also affected by the initial companionmodes
(especially the first twin companion modes). Addi-
tionally, the higher the flow dynamic pressure, the

more participation contributed by the lower aeroe-
lastic modes.

2. In the pre-/near-flutter regions, in addition to the
dominant fundamentalmode excited by the random
acoustic excitation, the first twin companion anti-
symmetric modes (especially the second and third
modes) can pose much more modal participation
with the almost same level with the increasing flow
dynamic pressure, while the modal participation
of the dominant fundamental mode varies. These
changing trends may explain the changing over-
all amplitudes RMS response with increasing flow
dynamic pressure. Thus in this region, the panel
behavior exhibits linear random vibrations.

3. In the post-flutter region, as the flutter LCOs are
characterized by 1:1 internal resonances accom-
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Fig. 16 Random response (SPL = 160dB, λ = 1000). a Non-dimensional deflection time history. b Phase plane. c Displacement
spectral density. d Probability density distribution for displacement

panied with its odd order super-harmonic motion;
thus, the randommotion can be highly ordered reg-
ulated. However, as much more modal participa-
tion of the fundamental mode can be caused by the
intensifying random acoustic excitation, the spe-
cific aeroelastic modal participation distribution of
flutter motion can be eliminated. Thus, the highly
ordered LCO motion can be transformed into ran-
dom motion.

4. Within this aeroelastic modal interaction mecha-
nism, the vibration response can be also altered by
the geometric nonlinearity due to large deflections
through the nonlinear frequency–amplitude rela-
tionship. Correspondingly, various stochastic bifur-
cations can be observed.
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