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Abstract Energy harvesting of amonostable duffing-
type harvester with piezoelectric coupling under corre-
lated multiplicative and additive white noise is inves-
tigated in this paper. The generalized harmonic trans-
formation is applied to decouple the electromechanical
equations, which leads to an uncoupled equivalent non-
linear system. Using the stochastic averaging method,
an analytical solution of random response for vibration
energyharvesters (VEHs) is obtained. The effects of the
system parameters on the mean-square displacement,
the mean output power and the power spectral density
are explored. It is found that the correlated noise can
improve the performance of the nonlinear VEHs. The
curve of the mean output power first increases with
increasing the ratio of time constant, reaches a maxi-
mum and then decreases. This phenomenon is of great
significance to energy harvesting. Finally, the theoreti-
cal results are well verified through the numerical sim-
ulations.
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1 Introduction

Recent advances in miniaturized and self-contained
electronics [1–4] have led to the fabrication of new bat-
teries, which have a long life span and can work inde-
pendently. In light of such challenges, vibration-based
energy harvesting, notably the piezoelectric energy har-
vesting, has flourished as a major thrust area of micro
power generation.By exploiting the ability of the piezo-
electric materials, various devices have been developed
to transform mechanical motions directly into electric-
ity in response tomechanical stimuli and external vibra-
tions [5–8].

The traditional linear energy harvesters [9–12] were
the first adopted design of vibration energy harvesters.
The linear energy harvesters have a very narrow effec-
tive frequency bandwidth, which limits the applicabil-
ity and usefulness of VEHs. To resolve this problem,
nonlinearity was introduced to extend the bandwidth
of the energy harvester [13–18]. Erturk et al. [13] pro-
posed a non-resonant piezomagnetoelastic energy har-
vester to overcome the narrow bandwidth restriction
of conventional resonant cantilever configuration. Cot-
tone et al. [14] found numerically and experimentally
that the nonlinear oscillators could outperform the lin-
ear ones under stochastic excitation. Daqaq [15] illus-
trated that the stiffness nonlinearity caused the spec-
tral amplitude to decrease and shifted the peaks toward
large frequencies. Stanton et al. [16] constructed a non-
linear unimodal energy harvester, which expanded the
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effective frequency bandwidth in specific conditions
by adjusting the force between the magnets and mak-
ing the energy harvester present soft or hard char-
acteristics. Gammaitoni et al. [17] revealed that the
bistable energy harvester is superior to the linear ones
under stochastic excitation via numerical simulation
and experiment. Erturk et al. [18] studied the bistable
piezoelectric energy harvester and proved that the sys-
tem can produce a drastic periodic or chaotic motion
under harmonic excitation with a wide low-frequency
range based on theoretical analysis and experiments.

In practice, numerous dynamical systems are associ-
ated with the random fluctuating environment or noise
excitation [19–23]. It is necessary to consider the influ-
ence of random environment excitation on the perfor-
mance of nonlinear energy harvester. To evaluate the
performance of the VEHs under noise, it is impor-
tant to develop analytical approaches for solving the
mean output power. Recently, some analytical tech-
niques have been proposed to study the response of
nonlinear energy harvester under Gaussian white noise
excitation [24–31]. For example, Daqaq [24] presented
the voltage response statistics by using the method of
moment and demonstrated that the time constant ratio
of the energy harvester plays a key role in develop-
ing the performance of VEHs under Gaussian white
noise. Jiang and Chen [25–27] developed some ran-
dom vibration methods, such as the equivalent lin-
earization technique, the stochastic averaging method
and the Fokker–Planck–Kolmogorov (FPK) equation,
to analyze the nonlinear piezoelectric energy harvesters
under Gaussian white noise. They demonstrated that
quadratic nonlinearity only and quadratic combined
with properly cubic nonlinearities can increase the
mean-square output. He et al. [28] employed the sta-
tistical linearization techniques and a finite element
methodof FPKequation to investigate themean steady-
state output of the energy harvester. Kumar et al. [29]
used the finite element method to solve the FPK
equation of the associated bistable energy harvester
and analyzed the effects of the system parameters
on the mean-square output voltage and power. Jin et
al. [30,31] introduced the generalized harmonic trans-
formation to decouple the electromechanical equations
and applied the approximate analytical technique to
derive a semi-analytical solution of the correspond-
ing nonlinear VEHs subjected to Gaussian white noise
excitation. However, the above-mentioned papers only
consider the effects of the additiveGaussianwhite noise

on nonlinear VEHs. To the knowledge of authors, there
are no studies investigating the nonlinear VEHs under
correlated additive andmultiplicative noise excitations.

The aim of this study is to analyze the response and
the performance of the nonlinear VEHs subjected to
correlated additive and multiplicative Gaussian white
noise excitations. In Sect. 2, the governing equations
of the nonlinear VEHs under correlated noise excita-
tions are established. In Sect. 3, the generalized har-
monic transformation is adopted to simplify the analy-
sis of the coupled equations. From themodified second-
order differential equation, an equivalent nonlinear
equation for the joint stationary probability density
(SPD) of system mechanical states is derived. The Itô
stochastic differential equation of the equivalent non-
linear system is derived through the stochastic averag-
ing method. The approximate expressions of the joint
SPD and the mean-square displacement are directly
obtained in Sect. 4. In Sect. 5, the effects of system
parameters and correlated noise on the performance of
the VEHs are discussed based on theoretical analysis
and numerical simulation. Meanwhile, the numerical
results are presented to validate the effectiveness of
the proposed technique. Finally, some conclusions are
drawn in Sect. 6.

2 Nonlinear VEHs under correlated noise

In order to explore the effects of correlated noise on the
nonlinear VEHs, we consider a tunable axially loaded
energy harvester consisting of a mechanical oscillator
coupled to an electric circuit through an electromechan-
ical coupling conversion mechanism [24]. The basic
model is shown in Fig. 1. The axial preload P serves to
tune the natural frequency of the beam and to introduce
a cubic nonlinearity proportional to the magnitude of
the axial load.

The coupled equations governing the systemmechan-
ical states and the electric voltage are written as

m ¨̄x + c ˙̄x + dŪ (x̄)

dx̄
+ θv̄ = −mẍb, (1a)

Cp ¨̄v + v̄

R
= θv̄. (1b)

where x̄ represents the displacement of the mass m, v̄
is the voltage measured across the equivalent resistive
load R, c is a linear viscous damping coefficient. θ is the
linear electromechanical coupling coefficient, and Cp
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Fig. 1 Schematics of nonlinear energy harvester

is the effective capacitance of the piezoelectric element.
ẍb is the base acceleration, and the dots represent the
derivativewith respect to time τ . The potential function
of the mechanical subsystem Ū (x̄) takes the following
general form:

Ū (x̄) = 1

2
k1(1 − r)x̄2 + 1

4
k2 x̄

4. (2)

where k1 and k2 are the linear and nonlinear stiffness
coefficients. r is introduced to permit tuning of the lin-
ear stiffness around its nominal value. To nondimen-
sionalize Eq. (1), the transformations are introduced as
follows

x = x̄

lc
, t = τωn, v = Cp

θlc
v̄. (3)

in which lc is a length scale as the ratio of the area of
the equivalent piezoelectric capacitor to the distance
between the parallel plates and ωn = √

k1/m is the
short-circuit natural frequency of the harvester. Using
the above transformations (3), Eq. (1) is rewritten as

ẍ + 2ξ ẋ + dU (x)

dx
+ κ2v = ẍb, (4a)

v̇ + av = ẋ (4b)

with

U (x) = 1

2
(1 − r)x2 + 1

4
δx4. (5)

and

ξ = c

2
√
k1m

, κ2 = θ2

k1Cp
,

α = 1

RCPωn
, δ = k2l2c

k1
. (6)

Fig. 2 Plot of potential U (x) for different values of r and δ

where ξ is the mechanical damping ratio, κ is the linear
dimensionless electromechanical coupling coefficient,
α is the ratio between the mechanical and electrical
time constants of the harvester. Moreover, δ is the coef-
ficient of cubic nonlinearity. Based on the shape of the
potential energy function, the energy harvesters can be
classified into twomajor categories, as shown in Fig. 2.
When r > 1 and δ > 0, the potential function U (x)
is bistable with three equilibrium points. If r ≤ 1 and
δ > 0, the potential functionU (x) is nonlinear monos-
table and has only one equilibrium point.

It is known that the output power P̄ = v̄2/R is an
important quantity in energy harvesting. To get the non-
dimensional expression of the output power, we intro-
duce the transformation P = P̄/(k1ωnl2c ) and obtain

P = ακ2v2. (7)

In Eq. (4a), ẍb = x2ε1(t)+ε2(t) is selected as a combi-
nation of correlated multiplicative and additive Gaus-
sian white noise, which satisfies the following statisti-
cal properties:

〈
ε1(t)ε1(t

′)
〉 = 2Dδ(t − t ′),

〈
ε2(t)ε2(t

′)
〉 = 2Qδ(t − t ′),

〈
ε1(t)ε2(t

′)
〉 = 〈

ε1(t
′)ε2(t)

〉 = 2λ
√
DQδ(t − t ′). (8)

where D and Q are the multiplicative and additive
noise intensity, respectively. λ is the cross-correlation
between the multiplicative and additive noise.
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3 The equivalent nonlinear system

To decouple Eq. (4), we integrate Eq. (4b) and give the
following explicit expression of the voltage

v(t) = C1e
−αt +

t∫

0

e−α(t−τ) ẋ(τ )dτ, (9)

where the general solution C1e−αt in Eq. (9) has negli-
gible influence on the stationary response. Then, using
the transformation s = t − τ , Eq. (9) can be approxi-
mated by

v(t) ≈
t∫

0

e−αs ẋ(t − s)ds. (10)

Using the generalized harmonic function [31], the
system states of Eq. (4) are written as

x(t) = A(t) cosφ(t), (11a)

ẋ(t) = −A(t)ω(A, φ) sin φ(t), (11b)

φ(t) = ψ(t) + (t). (11c)

ω(A, φ) = dψ(t)/dt. (12)

where A, B, φ, ψ and  are random processes, and
A are related to the mechanical energy H(t). Com-
pared to the system states, the amplitude A, frequency
ω, mechanical energy H and initial phase (t) are
all slow-varying random processes. Thus, for small s,
ẋ(t − s) can be approximated as:

ẋ(t−s) ≈ −A(t)ω(A, φ) sin[ω(A, φ)(t−s)+(t)].
(13)

Expanding the sinusoidal function and substituting
Eqs. (11a)–(11b) into Eq. (13) yields:

ẋ(t − s) ≈ −ẋ(t) cos[ω(A, φ)s]
+ x(t)ω(A, φ) sin[ω(A, φ)s]. (14)

Substituting Eq. (14) into Eq. (10) and vanishing the
exponential decay terms, one obtains:

v(t) ≈ ω2(A, φ)

α2 + ω2(A, φ)
x(t)

+ α

α2 + ω2(A, φ)
ẋ(t). (15)

Then, one can obtain the equivalent uncoupled
mechanical equation by substituting Eq. (15) into Eq.
(4a)

ẍ + ζ ẋ + f (x) = x2ε1(t) + ε2(t). (16)

where

ζ = 2ξ + κ2α

α2 + ω2(A, φ)
,

f (x) = ω2(A, φ)κ2

α2 + ω2(A, φ)
+ dU (x)

dx
.

The frequency function can be obtained through the
equivalent potential energy

ω(A, φ) = dψ

dt
=

√
2 [U∗(A) −U∗(A cosφ)]

A2 sin2 φ
. (17)

where the equivalent potential energy is given by

U∗ =
x∫

0

f (u)du (18)

According to Eq. (17), the frequency function can be
obtained,

ω(A, φ) =

√√√√�1 +
√

�2
1 + 4�0

2
. (19)

where

�1 = κ2 − α2 + 1 − r + δA2(3 + cos 2φ)/4,

�0 =
[
1 − r + δA2(3 + cos 2φ)/4

]
α2.

Further integrating Eq. (19) with respect to φ from
0 to 2π leads to the averaged frequency

ω(A) = ω0(A) =
√
1 − r + κ2 + δA2. (20)

4 Steady-state response

The equivalent nonlinear system (16) can be solved
by stochastic averaging method for light damping and
weak random excitation. Equation (11) can be regarded
as a set of randomvander Pol transformations from x, ẋ
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to A,�. Substituting Eq. (11) into Eq. (16) yields

dA(t)

dt
= m1(A, φ, t) + σ11(A, φ, t)ε1(t)

+ σ12(A, φ, t)ε2(t),
dφ(t)

dt
= m2(A, φ, t) + σ21(A, φ, t)ε1(t)

+ σ21(A, φ, t)ε2(t); (21)

where

m1(A, φ, t) = −ζ A2ω2(A, φ)

f (A)
sin2 φ,

m2(A, φ, t) = −ζ Aω2(A, φ)

f (A)
sin φ cosφ.

σ11(A, φ, t) = − A3

f (A)
ω(A, φ) cos2 φ sin φ,

σ12(A, φ, t) = − A

f (A)
ω(A, φ) sin φ.

σ21(A, φ, t) = − A2

f (A)
ω(A, φ) cos3 φ,

σ22(A, φ, t) = − 1

f (A)
ω(A, φ) cosφ.

Based on the theorem proposed by Khasminskii
[33], the (A, φ) can be considered as two-dimensional
diffusive Markov processes approximately. Then, the
Itô stochastic differential equations of Eq. (21) are
derived as:

dA(t) = a1(A, φ, t)dt + b1(A, φ, t)dW (t), (22a)

dφ(t) = a2(A, φ, t)dt + b2(A, φ, t)dW (t). (22b)

where

a1(A, φ, t) = m1(A, φ, t) + 1

2
b1

∂b1
∂A

+ 1

2
b2

∂b1
∂φ

,

a2(A, φ, t) = m2(A, φ, t) + 1

2
b1

∂b2
∂A

+ 1

2
b2

∂b2
∂φ

,

b1(A, φ, t) =
√
2Dσ 2

11(A, φ, t) + 4λ
√
QDσ11(A, φ, t)σ12(A, φ, t) + 2Qσ 2

12(A, φ, t),

b2(A, φ, t) =
√
2Dσ 2

21(A, φ, t) + 4λ
√
QDσ21(A, φ, t)σ22(A, φ, t) + 2Qσ 2

22(A, φ, t).

and the standard Wiener process W (t) is the diffusion
process with a null drift coefficient and a unit diffusion
coefficient.

Applying the stochastic averaging method to Eq.
(22) yields the following expression

ā1(A) = 1

2π

2π∫

0

a1(A, φ, t)dφ,

ā2(A) = 1

2π

2π∫

0

a2(A, φ, t)dφ,

b̄1(A) =

√√√√√
1

2π

2π∫

0

b21(A, φ, t)dφ,

b̄2(A) =

√√√√√
1

2π

2π∫

0

b22(A, φ, t)dφ. (23)

Then, the FPK equation associated with Eq. (22a) is
of the form

∂p

∂t
= − ∂

∂A
[ā1(a)p] + 1

2

∂2

∂A2

[
b̄21(a)p

]
. (24)

where p = p(a, t |a0, 0 ) is the transition proba-
bility density of displacement amplitude, ā1(a) =
ā1(A)|A=a and b21(a) = b21(A)

∣∣
A=a . The initial con-

dition of Eq. (24) is taken as

p = δ(a − a0), t = 0. (25)

The stationary solution of Eq. (24) for system (16) is
of the form:
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(a) (b)

(d)(c)

Fig. 3 Mesh surface of E(x2) and E(P): a E(x2) − (D, λ); b E(P) − (D, λ); c E(x2) − (δ, r); d E(P) − (δ, r)

p(a) = c

b̄21
exp

⎡

⎣
a∫

0

2ā1(u)

b̄21(u)
du

⎤

⎦

= c(k1a + δa3)(Da2/4 + Q)ζ2

×
(

a2 + 4Q/D

a2 + 1 − r + κ/δ

)1/2

exp

(
−2σζ1a2

D

)
.

(26)

where c is a normalization constant and k1 = κ2/(α2

+ 1) + 1 − r , ζ1 = 2ξ + κ2α/(α2 + 1), ζ2 =
ζ1(8δQ − 2k1D)/D2 − 1.

From Eq. (26), the SPD of total energy or energy
envelop can be obtained as follows:

p(H) = p(a)

∣∣∣∣
da

dH

∣∣∣∣ = p(a)

f (a)

∣∣∣∣
a=U∗−1(H)

. (27)

where a = U∗−1(H) is the inverse function of H =
U∗(a). The SPD of displacement and velocity can be
further obtained from p(H) as follows:

p(x, ẋ) = p(H)

T (H)

∣∣∣∣
H=y2/2+U∗(x)

. (28)

where T (H) can be obtained from T (a) by the trans-
formation H = U∗(a).

Thus, the mean-square displacement reads:

E(x2) =
+∞∫

−∞

+∞∫

−∞
x2 p(x, ẋ)dxdẋ . (29)

From Eq. (15), the mean-square value of the electric
voltage is given by
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(a) (b)

(d)(c)

Fig. 4 Mesh surface of E(x2) and E(P): a E(x2) − (α, ξ); b E(P) − (α, ξ); c E(x2) − (κ, ξ); d E(P) − (κ, ξ)

E(v2) = E

[(
ω(A, φ)

α2 + ω(A, φ)

)]

+ E

[(
α ẋ

α2 + ω(A, φ)2

)]

+ 2E

[
αω(A, φ)

(α2 + ω(A, φ))2

]
. (30)

Then, the mean output power reads:

E(P) = ακ2E(v2). (31)

where E[·] denotes the mathematical expectation.

5 Results and discussion

To understand the above theoretical results, one can
turn to a case study, where the parameters are chosen

as ξ = 0.01, κ = 0.75, r = 0, δ = 0.5, α = 0.05,
D = 0.005, Q = 0.005 and λ = 0.5. The effects of
the correlated noise and the system parameters on the
mean-square displacement and the mean output power
are explored theoretically and numerically. Moreover,
theMonte Carlo simulations (MCS) of the original sys-
tem (4) are performed to verify the approximate ana-
lytical results obtained in Sect. 4.

5.1 Stochastic response analysis

The mean-square displacement E(x2) and the mean
output power E(P) are important for the miniaturiza-
tion of device and the energy harvesting. To understand
the above theoretical results (29) and (31), we study the
E(x2) and E(P) for different noise intensities and sys-
tem parameters in Figs. 3 and 4. Figure 3 shows the
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(a) (b)

(d)(c)

Fig. 5 a The joint SPD p (x, ẋ) obtained by using MCS; b the
joint SPD p (x, ẋ) obtained from analytical solution (28); c the-
oretical and simulated results of SPD p(x); d theoretical and

simulated results of SPD p(ẋ). Symbol “–” denotes the analyti-
cal result, and symbol “o” denotes the MCS result

E(x2) and E(P) increase as the multiplicative noise
intensity D increases. However, the cross-correlation λ

has no obvious influence on the E(x2) and E(P) (see
Figs. 3a, b). It is seen that the E(x2)and E(P) decrease
with an increase of δ. The δ degrades the performance
of the energy harvester under correlatedGaussianwhite
noise. The E(x2) and E(P) increase with the increase
of r in Figs. 3c, d. As the tuning parameter becomes
larger, the restoring becomes weaker and the displace-
ment becomes larger.

In Fig. 4, the influences of the system parameters
on the performance of the energy harvester are illus-
trated. It is seen that the E(x2) and E(P) dramatically
decreasewith the increase of the viscous damping coef-
ficient ξ . When the ratio of time constant α increases,
the E(x2) monotonically decreases. While the E(P)

first increases, reaches a maximum and then decreases.
In other words, there is an optimal α to get the max-
imal E(P), which plays a great realistic significance
in the choose of the proper parameters for improving
the performance of piezoelectric VEHs. In Fig. 4c, d, as
the electromechanical coupling coefficient κ increases,
the E(x2) decreases dramatically, while the E(P) first
increases and then begins to level off.

5.2 Monte Carlo simulation

The Monte Carlo simulations of system (4) are per-
formed so as to verify the accuracy of the pro-
posed technique and the effectiveness of the analyt-
ical results. Figure 5a shows the joint SPD p(x, ẋ)
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(a) (b)

(d)(c)

(e)

Fig. 6 Themean-square displacement E(x2) as a function of: a the ratio of time constant α; b the electromechanical coupling coefficient
κ; c the mechanical damping ratio ξ ; d the cubic nonlinearity δ; e the tuning parameter of linear stiffness r

obtained from the original system (4) by using the
fourth-order Runge–Kutta method, while the result
shown in Fig. 5b is calculated by the analytical solution

(28). The p(x, ẋ) displays an unimodal structure cor-
responding to the nonlinear monostable potential func-
tion. Figure 5c, d, respectively, shows the variances of
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(a) (b)

(d)(c)

Fig. 7 a PSD of x(t) with different δ; b PSD of x(t) with different r ; c the E(P) versus δ; d the E(P) versus r

the SPD p(x) and p(ẋ) with different κ . It is seen that
the height of the single peak is increased with increas-
ing κ . Meanwhile, the numerical result of Eq. (4) basi-
cally coincides with that of analytical solution (28),
which validates the effectiveness and the precision of
the proposed technique.

Based on the analytical solution (29) and the MCS
results, the effects of the system parameters on the
mean-square displacement of piezoelectric VEHs are
shown in Fig. 6. It is seen that the approximate analyti-
cal results in Eq. (29) well coincide with the numerical
solutions of Eq. (4).

In the following, the PSD and the output power
of piezoelectric VEHs are calculated numerically as
shown in Figs. 7, 8 and 9. In Fig. 7a, the spectral
amplitudes decrease and the peaks shift toward large
frequency as the δ increases. That is, the δ expands
the spectral response. Figure 7c shows that the E(P)

decreases with an increase of δ. The influences of the r
on the PSD and the E(P) are shown in Fig. 7b, d. The
peaks of the PSD shift toward small frequency with the
increase of r as shown in Fig. 7c. However, the r does
not broaden the spectral response. The E(P) increases
with the increase of r .

The effects of the correlatedmultiplicative and addi-
tive noise on the PSD of displacement and the E(P)

are shown in Fig. 8. Figure 8a, b depicts the depen-
dence of the PSD on the correlated noise. In Fig. 8a, the
spectral amplitudes increase and the peaks shift toward
large frequency as the multiplicative noise intensity
D increases. The PSD is changed from one peak to
two peaks with the increase of additive noise inten-
sity Q. Figure 8b shows that the cross-correlation λ

has no obvious effect on the PSD of displacement. In
Fig. 8c, e the E(P) increases slightly as the D and
λ increase. While the E(P) increases remarkably as
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(a) (b)

(d)(c)

(e)

Fig. 8 a PSD of x(t) with different D and Q; b PSD of x(t) with different λ; c the E(P) versus δ; d the E(P) versus r ; e the E(P)

versus λ
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(a) (b)

(c)

Fig. 9 a The E(P) versus α; b The E(P) versus κ; c The E(P) versus ξ

the Q increases. That is, the additive noise intensity
Q plays an active role in improving the E(P). Fig-
ure 9a demonstrates that the E(P) shows a resonance-
like structure with the increase of α. In Fig. 9b, the
E(P) first increases and then begins to level off as the
κ increases. The E(P) decreases with the increase of
the ξ as shown in Fig. 9c. Obviously, the MCS results
shown in Figs. 6, 7, 8 and 9 well coincide with the
analytical results shown in Figs. 3 and 4.

6 Conclusions

In this paper, a stochastic averaging technique com-
bined with the generalized harmonic transformation is
applied to analyze the response of the nonlinear VEHs

under the correlated Gaussian white noises. Using the
generalized harmonic transformation, the equivalent
nonlinear system is derived according to the modified
nonlinear system. The averaged Itô stochastic differ-
ential equation for the equivalent nonlinear system is
established through the stochastic averaging method.
Then, the joint SPD of system is obtained by solving
the corresponding FPK equation. The influences of the
system parameters on the mean-square displacement
and the mean output power are discussed in detail.
It is shown that the stiffness-type nonlinearities can
broaden the harvester’s bandwidth, but have almost no
influence on the mean-square displacement and hardly
enhance the expected value of the mean output power.
Furthermore, the mean output power increases with
the increase of the noise intensities and the cross-
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correlation between noises. That is, the correlated noise
plays an active role in improving the performance of the
nonlinear VEHs. The curve of the mean output power
first increaseswith increasing the ratio of time constant,
reaches amaximumand then decreases. In otherwords,
themean output power can get themaximum at an opti-
mal ratio of time constant. This phenomenon is of great
significance to energy harvesting because the ratio of
time constant is important to characterize performance
of nonlinear vibration energy harvester under random
excitations [34]. Finally, numerical results demonstrate
the accuracy of the proposed technique and the effec-
tiveness of the analytical solution.
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