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Abstract The nonlinear bending and vibrations of
tapered beams made of axially functionally graded
(AFG) material are analysed numerically. For a
clamped–clamped boundary conditions, Hamilton’s
principle is employed so as to balance the potential and
kinetic energies, the virtual work done by the damping,
and that done by external distributed load. The non-
linear strain–displacement relations are employed to
address the geometric nonlinearities originating from
large deflections and induced nonlinear tension. Expo-
nential distributions along the length are assumed for
the mass density, moduli of elasticity, Poisson’s ratio,
and cross-sectional area of the AFG tapered beam; the
non-uniform mechanical properties and geometry of
the beam along the length make the system asymmetric
with respect to the axial coordinate. This non-uniform
continuous system is discretised via theGalerkinmodal
decomposition approach, taking into account a large
number of symmetric and asymmetric modes. The lin-
ear results are compared and validated with the pub-
lished results in the literature. The nonlinear results
are computed for both static and dynamic cases. The
effect of different tapered ratios as well as the gradient
index is investigated; the numerical results highlight
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1 Introduction

The advent of gradation technique inmaterials initiated
the beginning of an era of advanced class of structural
materials known as functionally graded (FG) materials
[1–9].Being free of the disadvantages that conventional
laminated composite materials suffer from, FG mate-
rials possess outstanding characteristics such as high
ratio of strength and stiffness to weight, high thermal
resistance, low maintenance cost. Functionally graded
structures such as beams [10] and plates [11–14] can
be divided into two groups, depending on the gradi-
ent variation being through the thickness or along the
length. For the latter case, i.e. the axial functionally
graded (AFG) beams, the variation of material prop-
erties (density and elastic modulus) along the length
of the beam are governed by specified functions. In
addition to the non-uniform mechanical properties, an
AFG beam can possess a varying cross-sectional area,
i.e. it can be tapered along its length. These features
allow the utilisation of AFG tapered beams in many
mechanical and civil engineering applications, as well
as automotive and robotic industries.
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The complex behaviour of beams made up of FG
materials has attracted the attention of engineers and
researchers in the last decades. The main body of the
literature is dedicated to FG beams which are graded
along the thickness. The analysis of the AFG beams,
on the other hand, is a relatively newer field; in what
follows, only the investigations on AFG beams are
reviewed. Linear and nonlinear studies are the two
common class of studies conducted on the vibrations
of AFG beams. The literature on the first class (i.e.
linear analysis) is quite large; however, the studies on
nonlinear AFG beams are limited.

Starting with linear investigations in the literature,
Huang andLi [15] presented a newapproach for the free
vibration analysis of AFG beams; they examined trans-
verse vibrations and the natural frequencies. In another
study,Hein andFeklistova [16] examined the free oscil-
lations of AFG beams and obtained their natural fre-
quencies of making use of Haar wavelets by neglecting
the axial vibrations. The transverse forced oscillations
of an AFG beam when subjected to a moving load
were examined by Şimşek et al. [17], who obtained
the vibration amplitude versus the moving force fre-
quency. The Timoshenko beam theory was employed
by Huang et al. [18] in order to analyse the effect of
different boundary conditions on the natural frequen-
cies of AFG beams. Rajasekaran [19] employed the
differential quadrature technique along with a differ-
ential transformation for the free oscillation analysis
of AFG beams which resulted in the evaluation of nat-
ural frequencies. A closed-form solution for vibration
behaviour of AFG Timoshenko beam was developed
by Sarkar and Ganguli [20], who provided the results
for a fixed–fixed beam. Both the forced and free linear
vibrations of AFG Timoshenko beam resting on a vis-
coelastic foundation were investigated by Calim [21].

Extension of the investigations to include non-
linearities was performed in few studies. Shahba et
al. [22] examined the stability (buckling) and free trans-
verse vibrations of AFG Timoshenko tapered beam.
Kein [23] developed the couple equations of motion
of a tapered AFG beam and obtained the static bend-
ing behaviour. The nonlinear natural frequencies of a
vibratingAFGbeamwere obtained byKumar et al. [24]
via a free vibration analysis. The nonlinear free vibra-
tions of an AFG microscale beam was investigated
by Şimşek [25], utilising He’s variational method. In
another study, Shafiei et al. [26] used the method of the
generalised differential quadrature method and direct

iterative method to examine the nonlinear free oscilla-
tions of a non-uniform AFG microscale beam.

The current study is the first which conducts a
nonlinear forced transverse-longitudinal static and
dynamic analysis of a nonlinear AFG Euler–Bernoulli
beam. To this end, the nonlinear equations of motion
in transverse and longitudinal directions are derived
with the aid of Hamilton’s principle. Sufficient number
of symmetric and asymmetric modes are considered in
the Galerkin discretisation procedure in order to ensure
converged results. A well-optimised numerical scheme
is developed to handle the complex high-dimensional
system with different sources of nonlinearities arising
from large deformation of the beam, non-uniform dis-
tribution of material properties, and non-uniform cross
section. The fundamental natural frequency of the sys-
tem is obtained and compared with published results
in the literature. Extensive numerical simulations are
conducted to highlight the effect of different system
parameters on the nonlinear static and dynamic char-
acteristics of the system; the importance of employing a
high-dimensional is also highlighted. For the first time,
the nonlinear static and dynamic asymmetric responses
of the system are investigated. The results are presented
in the form of nonlinear static deflection curves as well
as nonlinear frequency–amplitude diagrams.

2 Equations of motion and method of solution

An extensible AFG tapered beam subject to a dis-
tributed harmonic excitation load is shown in Fig. 1,
with the axial coordinate x and the transverse one z;
y denotes the direction of the width of the beam. The
beam is of length L , the constant thickness h, and a
varying width b(x), associated with the tapered geom-
etry, resulting in varying second area moment I (x) and
the cross-sectional area A(x). Furthermore, the mate-
rial properties of the beam such as the density ρ(x)
and the modulus of elasticity E(x) vary along the lon-
gitudinal direction (i.e. x-axis), from a material 1 at
the left-hand end to material 2 at the right-hand end.
The beam exhibits two motions, namely the transverse
motiondenotedbyw(x, t) and the longitudinal one rep-
resented by u(x, t) − t represents time. Furthermore,
an external load in the form of F0 (x)+ F1 (x) cos (ωt)
is applied to the AFG beam in the transverse direction,
with ω being the forcing frequency, F1(x) being the
dynamic forcing amplitude, and F0(x) being the static
forcing amplitude.
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Fig. 1 Schematic
representation of an axially
functionally graded tapered
beam subject to distributed
static and dynamic loads in
the transverse direction

(a)

(b)

z

x

F0(x)+F1(x) cos(ωt)

y

x

As already mentioned, it is assumed that the geo-
metrical and the material properties of the AFG beam
vary exponentially and continuously along the longitu-
dinal direction; in the present study, these parameters
are governed by the following expressions

E (x) = (ER − EL)
( x

L

)n + EL ,

ρ (x) = (ρR − ρL)
( x

L

)n + ρL ,

b (x) = (bR − bL)
( x

L

)n + bL ,

hR = hL = h, (1)

where L and R subscripts correspond to the values of
parameters at the left and right ends of the beam, respec-
tively; n represents the gradient index which deter-
mines the variation profile along the length of the beam.

Employing the Euler–Bernoulli beam theory, the
displacement field components of a generic point in
the beam, represented by ux , uy , and uz , in the x , y and
z directions, respectively, can be written as

ux (x, z, t) = u (x, t) − z
∂w (x, t)

∂x
,

uy (x, z, t) = 0,

uz (x, z, t) = w (x, t) . (2)

The axial strain is given by

εxx = ∂u

∂x
+ 1

2

(
∂w

∂x

)2

− z
∂2w

∂x2
. (3)

Hence, the potential energy becomes

U = 1

2

∫

V

⎧⎨
⎩E (x)

[
∂u

∂x
+ 1

2

(
∂w

∂x

)2

− z
∂2w

∂x2

]2
⎫⎬
⎭ dv

= 1

2

∫ L

0

⎧⎨
⎩E (x) A (x)

[
∂u

∂x
+ 1

2

(
∂w

∂x

)2
]2

+E (x) I (x)

[
∂2w

∂x2

]2}
dx, (4)

where

A (x) = b (x) h,

I (x) = 1

12
b (x) h3, (5)

The kinetic energy of the AFG tapered beam can be
formulated as
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K E = 1

2

∫

v

ρ (x)

{(
∂u

∂t
− z

∂2w

∂t∂x

)2

+
(

∂w

∂t

)2
}
dv

= 1

2

∫ L

0

{
ρ (x) A (x)

(
∂u

∂t

)2

+ ρ (x) I (x)

(
∂2w

∂t∂x

)2

+ ρ (x) A (x)

(
∂w

∂t

)2
}
dx, (6)

Thevirtualwork done the damping,with damping coef-
ficient cd , as well as the external force in the transverse
direction is obtained by

δWD = −cd

∫ L

0

(
∂u

∂t
δu + ∂w

∂t
δw

)
dx .

δWEF =
∫ L

0
[F0 (x) + F1 (x) cos (ωt)]δwdx . (7)

Inserting the expression given in Eqs. (4), (6), and (7)
into Hamilton’s principle given by

∫ t2

t1
(δKE − δU + δWEF + δWD)dt = 0, (8)

and integrating by parts over the length of the AFG
taperedbeamand time, and setting the coefficients of δu
and δw equal to zero, the following partial differential
equations governing the motion are obtained

ρ (x) A (x)
∂2w

∂t2
− ρ (x) I (x)

∂4w

∂t2∂x2
+ cd

∂w

∂t

− [ f0 + f1 cos (ωt)] + ∂2

∂x2
[E (x) I (x)]

∂2w

∂x2

+ 2
∂

∂x
[E (x) I (x)]

∂3w

∂x3
+ E (x) I (x)

∂4w

∂x4

− ∂

∂x
[E (x) A (x)]

[
∂w

∂x

∂u

∂x
+ 1

2

(
∂w

∂x

)3
]

−E (x) A (x)

[
∂2w

∂x2
∂u

∂x
+ ∂w

∂x

∂2u

∂x2
+ 3

2

(
∂w

∂x

)2
∂2w

∂x2

]
= 0,

(9)

ρ (x) A (x)
∂2u

∂t2
+ cd

∂u

∂t

− ∂

∂x
[E (x) A (x)]

[
∂u

∂x
+ 1

2

(
∂w

∂x

)2
]

−E (x) A (x)

[
∂2u

∂x2
+ ∂2w

∂x2
∂w

∂x

]
= 0, (10)

inwhich the substitutions F0 (x) = f0 and F1 (x) = f1
are made in Eq. (9); the boundary conditions for the
clamped–clamped beam are (at x = 0, L)

w = 0,
∂w

∂x
= 0, u = 0. (11)

Considering the geometrical and material characteris-
tics of the left-hand end of the AFG tapered beam as a
reference, the following dimensionless parameters are
introduced

x∗ = x

L
,
(
w∗, u∗) = (w, u)

h
,

A∗ (x) = A (x)

AL
, I ∗ (x) = I (x)

IL
,

E∗ (x) = E (x)

ESteel
, ρ∗ (x) = ρ (x)

ρSteel
,

η = L

h
,
(
f ∗
0 , f ∗

1

) = ( f0, f1) L4

ESteel ILh
,

t∗ = t

√
ESteel IL

ρSteelAL L4 ,

� = ω

√
ρSteelAL L4

ESteel IL
,

c∗
d = cd

√
L4

ESteel ILρSteelAL
, (12)

In which the subscript L stands for the left-hand end.
These parameters are substituted into Eqs. (9)–(10) and
the asterisk notation is disregarded for brevity; the fol-
lowing nonlinear dimensionless equations for the trans-
verse and longitudinal motions can then be obtained

ρ (x) A (x)
∂2w

∂t2
− 1

12η2
ρ (x) I (x)

∂4w

∂t2∂x2

+ cd
∂w

∂t
− [ f0 + f1 cos (�t)]

+ ∂2

∂x2
[E (x) I (x)]

∂2w

∂x2
+ 2

∂

∂x
[E (x) I (x)]

∂3w

∂x3

+ E (x) I (x)
∂4w

∂x4

−12
∂

∂x
[E (x) A (x)]

[
η
∂w

∂x

∂u

∂x
+ 1

2

(
∂w

∂x

)3
]

−12E (x) A (x)

[
η
∂2w

∂x2
∂u

∂x
+ η

∂w

∂x

∂2u

∂x2

+3

2

(
∂w

∂x

)2
∂2w

∂x2

]
= 0, (13)

ρ (x) A (x)
∂2u

∂t2
+ cd

∂u

∂t

−12
∂

∂x
[E (x) A (x)]

[
η2

∂u

∂x
+ η

2

(
∂w

∂x

)2
]

−12E (x) A (x)

[
η2

∂2u

∂x2
+ η

∂2w

∂x2
∂w

∂x

]
= 0, (14)
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Equations (13) and (14) are discretised via the Galerkin
modal decomposition technique; to this end, the dis-
placements are assumed as

w(x, t) =
M∑
k=1

ϕk(x)qk(t),

u(x, t) =
Q∑

k=1

ξk(x)rk(t), (15)

where qk(t) and rk(t) represent the kth generalised
coordinates for the transverse and the axial motions,
respectively; ϕk and ξk denote the kth eigenfunction
for the transverse and longitudinal displacement of a
clamped–clamped beam.

Substitution of the assumed displacements, i.e.
Eq. (15), into Eqs. (13) and (14), and the application of
the Galerkin method yields

M∑
j=1

[∫ 1

0
ρAϕiϕ jdx

]
q̈ j

− 1

12η2

M∑
j=1

[∫ 1

0
ρ Iϕiϕ

′′
j dx

]
q̈ j

+cd

M∑
j=1

(∫ 1

0
ϕiϕ jdx

)
q̇ j − [ f0 + f1 cos (�t)]

∫ 1

0
ϕidx

+
M∑
j=1

[∫ 1

0

(
E ′′ I + 2E ′ I ′ + E I ′′)ϕiϕ

′′
j dx

]
q j

+2
M∑
j=1

[∫ 1

0

(
E ′ I + E I ′)ϕiϕ

′′′
j dx

]
q j

+
M∑
j=1

(∫ 1

0
E Iϕiϕ

′′′′
j dx

)
q j

−12η
Q∑
j=1

M∑
k=1

[∫ 1

0

(
E ′A + E A′)ϕi ξ

′
jϕ

′
kdx

+
∫ 1

0
E Aϕi ξ

′
jϕ

′′
k dx +

∫ 1

0
E Aϕi ξ

′′
j ϕ

′
kdx

]
r j qk

−6
M∑
j=1

M∑
k=1

M∑
l=1

[∫ 1

0

(
E ′A + E A′)ϕiϕ

′
jϕ

′
kϕ

′
ldx

+3
∫ 1

0
E Aϕiϕ

′
jϕ

′
kϕ

′′
l dx

]
q jqkql = 0, i = 1, 2, . . . ,M,

(16)

Q∑
j=1

(∫ 1

0
ρAξi ξ j dx

)
r̈ j + cd

Q∑
j=1

(∫ 1

0
ξi ξ jdx

)
ṙ j

−12η2
Q∑
j=1

[∫ 1

0

(
E ′A + E A′) ξi ξ

′
jdx +

∫ 1

0
E Aξi ξ

′′
j dx

]
r j

−6η
M∑
j=1

M∑
k=1

[∫ 1

0

(
E ′A + E A′) ξiϕ

′
jϕ

′
kdx

+2
∫ 1

0
E Aξiϕ

′
jϕ

′′
k dx

]
q jqk = 0 i = 1, 2, . . . ,Q, (17)

where the prime and dot notations represent ∂/∂x
and ∂/∂t , respectively. The discretised model given in
Eqs. (16) and (17) is solved employing a continuation
technique [27,28]. The number of the degrees of free-
dom of the system is M + Q; setting M = Q = 10
gives a system with 20 degrees of freedom.

3 Numerical results

The numerical results are presented and discussed in
this section by constructing: (1) the plots of the vari-
ations of system properties along the length, (2) the
nonlinear static deflection curves, and (3) the nonlinear
dynamic frequency–amplitude diagrams. The effects
of different system parameters are examined. In the
present study, the AFG system is established bymixing
Steel of ESteel = 210 GPa and ρSteel = 7800 kg/m3,
and Alumina of EAlumina = 390 GPa and ρAlumina =
3960 kg/m3; thematerial changes frompure Steel in the
left-hand end to pure Alumina in the right-hand end.

3.1 Property profiles

Figure 2 depicts the variation of Young’s modulus of
the AFG beam with respect to the length for different
values of the gradient index n; as seen in this figure,
this relation is linear for n equal to unity and for the
rest of values of n, the Young’s modulus varies expo-
nentially (nonlinearly) along the length. Moreover, one
can conclude that, for large values of the gradient index
(i.e. reaching the pure Steel case), Young’s modulus
decreases for a large portion of the length of the beam;
for instance, for n = 10, the Young’s modulus of the
AFG beam is close to 210 GPa for almost 70% of the
length—a reverse scenario is observed for small values
of n (i.e. reaching purely Alumina case).

The variation of the density of the beam along the
length of the AFG beam is illustrated in Fig. 3 for dif-
ferent values of n. A behaviour similar to Fig. 2 is seen
here where at larger values of n the density of the beam
is closer to that of the Steel, and for smaller values of
n it is closer to density of Alumina.
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Fig. 2 Young’s modulus variations with respect to the length of
the AFG beam for different values of n

x

D
en
sit
y
(k
g/
m

3 )

0 0.2 0.4 0.6 0.8 1
4000

5000

6000

7000

8000

9000 n = 0.1
n = 0.5
n = 1
n = 2
n = 10

Fig. 3 Density variations with respect to the length of the AFG
beam for different values of n

3.2 Nonlinear static deflection

The nonlinear static simulations are conducted by set-
ting f1 = 0 and obtaining the static deflection of the
AFG beam for different static forcing amplitude f0.
The numerical results are obtained for an AFG beam
of hL = hR = h = 0.1m, L/h = 100, bR/h = 6, and
bL/h = 2. The nonlinear static deflection of the sys-
tem is obtained for various forcing amplitudes as well
as different values of the gradient index n, and plotted
in Figs. 4 and 5, respectively.

x

w
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0

0.2

0.4
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0.8
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1.2
f0= 200
f0= 400
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Fig. 4 Nonlinear static deflection configuration of the AFG
tapered beam for several static forcing amplitudes; n = 0.5
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Fig. 5 Nonlinear static deflection configuration of the AFG
beam for several values of the gradient index; f0 = 800

Figure 4 shows the nonlinear static bending profile
of the AFG beam for several static forcing amplitudes;
n = 5. As seen, the static deflection curve is not sym-
metric with respect to the x axis; for all cases, the max-
imum transverse deflection occurs in the vicinity of
x = 0.45. As the static forcing amplitude is increased,
the location of the maximum transverse deflection is
shifted slightly towards the beam midpoint; in partic-
ular, the maximum deflection occurs at x = 0.4506
when f0 = 200, while it occurs at 0.4518, 0.4531,
and 0.4543 at f0 = 400, 600, and 800, respectively.
Furthermore, it is worth noting that the amount of
increase in the deflection amplitude becomes less at
larger forcing amplitudes, i.e. large deflections, show-
ing that the induced tension due to stretching of the
centreline increases nonlinearly at large static deflec-
tions.
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The effect of the gradient index on the nonlinear
static deflection profile is depicted in Fig. 5; f0 = 800.
It is seen that at very small values of n, i.e. 0.1, the
AFG beam shows almost symmetric response, with the
maximum amplitude occurring at x = 0.4869. How-
ever, as the value of the gradient index is increased, for
the range examined here, the asymmetry in the system
becomes stronger. In fact, for n = 0.5, 1.0, and 2.0,
the maximum static deflection occurs at x = 0.4556,
0.4406, and 0.4380, respectively; this slight shift in the
location of the maximum deflection is visible in Fig. 5.

3.3 Nonlinear dynamic response

The results of the nonlinear dynamic numerical simu-
lations are presented in this section for an AFG beam
with the same mechanical and geometrical properties
as in Sect. 3.2. In all the results of this section, the
static forcing amplitude f0 is set to zero and the modal
damping ratio is set to ζ = 0.015.

Figure 6 illustrates the frequency response curves
of the extensible AFG tapered beam with n = 5, f1 =
30.0, and ζ = 0.015; the dimensionless linear natu-
ral frequency is obtained as ω1 = 27.4733. Although
the schematic figure (i.e. Fig. 1) shows the symmet-
ric boundary conditions (i.e. clamped condition at both
ends), the asymmetric mode shapes (here q2 for the
transverse motion and r1 for the axial one) are acti-
vated due to asymmetric distribution of the materials
constituents as well as the change of the width along
the length of the beam; these asymmetric modes are
equal to zero for a symmetric system. Comparing sub-
figures (b) and (c) shows that the maximum amplitude
of the second generalised coordinate, q2, is close to
0.1 which is considerably larger than that of the third
generalised coordinate, q3, indicating the presence of a
strong asymmetry. Such asymmetric behaviour neces-
sitates employment of a high-dimensional discretised
model by retaining a large number of modes in order
to obtain reliable results. Furthermore, Fig. 6 shows
that the AFG beam exhibits two saddle-node bifurca-
tions at �/ω1 = 1.3430 and �/ω1 = 1.0950 repre-
senting a hardening-type resonance. More specifically,
increasing the excitation frequency, at the first saddle-
node bifurcation (i.e. point A), the system jumps from
one stable attractor of higher amplitude to another sta-
ble attractor of smaller amplitude; a reverse scenario is
seen at point B.
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Fig. 6 Frequency–amplitude curves of the AFG tapered beam:
a–c the maximum amplitudes of the first, second, and third gen-
eralised coordinates of the transverse motion, respectively, and
d the maximum amplitude of the first generalised coordinate of
the axial motion. n = 5, bR = 6bL , f1 = 30.0, and ζ = 0.015
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Another important response of the AFG system is
plotted in Fig. 7; this figure shows the force–response
amplitude plots of the AFG tapered beam when n = 5,
�/ω1 = 1.2, and ζ = 0.015. The system shows
two saddle-node bifurcations; in particular, increas-
ing the excitation amplitude results in the occurrence
of the first saddle-node bifurcation at f1 = 96.718
(point A) where the amplitude of vibrations jumps
abruptly to a larger value; as the excitation amplitude
decreases from large values, another saddle-node bifur-
cation takes place at f1 = 19.585 (point B), where
a sudden decrease in the amplitude of the vibration
occurs. The wide bistable region ranging from points
A to B indicates a strong nonlinear behaviour of the
AFG tapered beam, caused by the presence of geo-
metric nonlinearities and nonlinear material property
distributions.

Figure 8 highlights the effect of the gradient index
on the resonance behaviour of the AFG tapered beam,
when f1 = 30.0, and ζ = 0.015, and bR = 6bL .
The figure shows that as the gradient index increases
from 0.5, i.e. a beam dominantly made of Alumina, to
50.0, i.e. a beam dominantly made of Steel, the oscilla-
tion amplitude increases accordingly for the first gen-
eralised coordinate of the transverse motion, i.e. sub-
figure (a); furthermore, the increased gradient index
results in smaller natural frequency, which causes a
shift in the resonance region to the left in the fre-
quency axis. The effect of gradient index on asymmet-
ric modes, i.e. q2 and r1, on the other hand, is differ-
ent. As seen in subfigures (b) and (d), by increasing
n from 0.5 to 1, the contribution of the asymmetric
generalised coordinates (i.e. q2 and r1) in the response
becomes stronger; note that for n = 0.5, the maximum
amplitude of q2 is close to 0.1 which is quite compara-
ble with the amplitude of q1, showing the presence of a
strong asymmetry in the system. For amoderately large
value of the index gradient (i.e. n = 5), the system still
displays a strong asymmetric behaviour. However, by
increasing the gradient index to n = 50, the amplitudes
of q2 and r1 reduce substantially while the amplitude
of the q1 increases; this shows that the response of the
system becomes closer to that of a symmetric system.

Figure 9 depicts the effect of the variation of the
width of the beam for different tapered ratios; in par-
ticular, four different tapered ratios are considered. i.e.
bR = bL , bR = 2bL , bR = 4bL , and bR = 6bL ,
and the corresponding frequency–amplitude diagrams
are compared. Other dimensionless parameters of the
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Fig. 7 Force–response curves of the AFG tapered beam: a–c
the maximum amplitudes of the first, second, and third gener-
alised coordinates of the transverse motion, respectively, and d
the maximum amplitude of the first generalised coordinate of the
axial motion. n = 5, bR = 6bL , �/ω1 = 1.2, and ζ = 0.015
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Fig. 9 Frequency–response curves of the AFG tapered beam
for different tapered status: a–c the maximum amplitudes of the
first, second, and third generalised coordinates of the transverse
motion, respectively, and d the maximum amplitude of the first
generalised coordinate of the axial motion. n = 5.0, f1 = 30.0,
and ζ = 0.015
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AFG tapered beam are selected as n = 5.0, f1 = 30.0,
and ζ = 0.015. As seen in this figure, the largest
amplitude of the first generalised coordinate of the
transverse motion is designated to the case bR = bL
(i.e. a beam with uniform width); as the tapered ratio
increases, the area of the dominantly Alumina region
increases which in turn decreases the amplitude of the
first generalised coordinate of the transverse motion.
However, the scenario is reverse for the second gen-
eralised coordinate of the transverse motion as well
as the first one of the axial motion. More specifically,
by increasing the bR/bL ratio, the amplitude of the q2
motion increases substantially, while the amplitude of
the q1 motion decreases; this shows that the asymme-
try in the system substantially increases by increas-
ing the bR/bL ratio. On the frequency point of view,
the largest resonance frequency, as well as natural fre-
quency, is associated with the case bR = 6bL . It is
worth mentioning that although for the case bR = bL
the AFG beam is uniform along its length, the asym-
metric generalised coordinates (q2 and r1) are still
activated due to the non-uniform material distribution
along the length of the beam; however, this case pos-
sesses the smallest amplitude of the asymmetric gener-
alised coordinates (q2 and r1) among the cases studied
here. As seen in subfigure (c), the behaviour of the third
generalised coordinate is clearly different for the case
bR = bL , where the system possesses uniform cross
section.

4 Conclusions

The nonlinear forced static and dynamic responses of a
taperedAFGbeam have been investigated in this paper.
The kinetic and potential energies as well as the work
done by the damping and the external harmonic load
were derived and implemented in the Hamilton’s prin-
ciple. Nonlinear equations of motion in transverse and
longitudinal direction were obtained in order to pre-
dict the large deformations of the AFG tapered beam.
Exponential distributions were employed to formulate
expressions for the geometrical and material proper-
ties of the AFG tapered beam. To examine the sys-
tem response numerically, first, theGalerkin technique,
along with adequate number of symmetric and asym-
metric modes, was employed to discretise the system;
next, a continuation scheme was employed in order
to conduct numerical simulations. Computations were

carried out to examine the effect of different parameters
on the nonlinear static and dynamic responses of the
system. The following conclusions were drawn from
the numerical results:

(1) The nonlinear static deflection of the AFG tapered
beam shows the presence of a strong asymme-
try in the response of the system; furthermore,
the induced tension due to centreline stretching
becomes much stronger at larger deflection ampli-
tudes, which in turn increases the resistance of the
system to the applied load.

(2) By increasing the gradient index in the range of
0.1 to 2.0, the asymmetry in the system becomes
stronger, causing the maximum static deflection to
occur at locations further from the midpoint.

(3) The nonlinear frequency–amplitude and force–
amplitude plots of the AFG tapered beam show two
jumps (saddle-node bifurcations).

(4) In contrast to symmetric systems, the asymmetric
mode shapes contribute to the response of the sys-
tem due to non-uniform cross-sectional area of the
tapered geometry and non-homogeneous material
properties of the AFG beam along the length.

(5) The nonlinear dynamic results showed that the
amplitude of the second generalised coordinate
of the transverse motion is comparable to that
of the first generalised coordinate; this highlights
the importance of employing a high-dimensional
model with a large number of degrees of freedom.

(6) As the gradient index increases, the vibration
amplitude increases accordingly for the first gen-
eralised coordinate of the transverse motion and
the resonance region shifts to the smaller values
of the frequency; however, a mixed behaviour is
seen for the second generalised coordinate as the
gradient index is increased. In particular, increas-
ing the gradient index from small values to moder-
ately large values results in strengthened asymmet-
ric behaviour; however, beyond a certain value of
the gradient index, the asymmetry becomesweaker.

(7) Although one of the sources of asymmetry elim-
inates for the case of uniform cross section (i.e.
bR = bL), the asymmetric generalised coordinates
have nonzero value due to the asymmetric distribu-
tion of the materials constituents.

(8) Due to increased bR/bL ratio, the amplitude of the
first generalised coordinate of the transversemotion
decreases, while that of the second generalised

123



Bending and vibration analyses of coupled axially functionally graded tapered beams 27

coordinate increases substantially; this shows that
the asymmetry in the AFG tapered beam depends
strongly on the bR/bL ratio.

Acknowledgements The financial support to this research by
the start-up grant of the University of Adelaide is gratefully
acknowledged.

Appendix A: Validation

In order to validate the performance of the present
study, the numerical results are comparedwith thework

of Ref. [29] and are demonstrated in Table 1. In par-
ticular, the first dimensionless frequency parameter for
the transverse motion of the AFG beams with differ-
ent ratio of modules of elasticity, Eratio = Eleft/Eright,
is obtained versus the material gradient index and
length-to-thickness ratio. As seen in this table, the
first dimensionless frequency parameters for different
values of n are in excellent agreement with those of
Ref. [29].

Table 1 The first dimensionless frequency parameter (λ = ω0.5) for the transverse motion of a pinned–pinned AFG beam for different
material distribution (Eratio = Eleft/Eright)

Eratio L/h = 20 L/h = 100

n = 0 n = 2 n = 10 n = 0 n = 2 n = 10

0.25 Present study 2.2203 2.9279 3.1267 2.2214 2.9293 3.1282

Alshorbagy et al. [29] 2.2203 2.9278 3.1265 2.2214 2.9293 3.1281

0.5 Present study 2.6404 3.0122 3.1316 2.6417 3.0137 3.1332

Alshorbagy et al. [29] 2.6404 3.0122 3.1316 2.6417 3.0137 3.1332

1.0 Present study 3.1400 3.1400 3.1400 3.1415 3.1415 3.1415

Alshorbagy et al. [29] 3.14 3.14 3.14 3.1415 3.1415 3.1415

2.0 Present study 3.7341 3.3244 3.1531 3.7359 3.3260 3.1546

Alshorbagy et al. [29] 3.7341 3.3244 3.1531 3.7359 3.326 3.1547

4.0 Present study 4.4406 3.5794 3.1725 4.4428 3.5812 3.1741

Alshorbagy et al. [29] 4.4406 3.5795 3.1726 4.4428 3.5812 3.1742
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