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Abstract In this paper, we investigate the impact
of agent personality on the complex dynamics taking
place in financial markets. Leveraging recent findings,
we model the artificial financial market as a complex
evolving network: we consider discrete dynamics for
the node state variables, which are updated at each
trading session, while the edge state variables, which
define a network of mutual influence, evolve continu-
ously with time. This evolution depends on the way the
agents rank their trading abilities in the network. By
means of extensive numerical simulations in selected
scenarios, we shed light on the role of overconfident
agents in shaping the emerging network topology, thus
impacting on the overall market dynamics.

Keywords Evolving networks · Agent-based model ·
Artificial financial market · Complex networks

1 Introduction

The modern and contemporary economic history pro-
vides several of evidences that are in apparent contra-
diction with the hypotheses of neoclassical economics
[1]. As examples, we mention some of the speculative
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bubbles and market crushes that cannot be explained
with the neoclassical theory. In 1637, the first big spec-
ulative bubble of the history erupted, the Tulip bubble,
making the price of a bulb comparable with that of
houses, fields and livestocks [2], while, around 1720,
in the UK the overwhelming euphoria of the investors
fostered the South Sea Bubble which caused substan-
tial losses even to Isaac Newton [3]. More recently,
the worldwide crises which followed the Wall Street’s
crush of 1929 represents a stunning example of unpre-
dicted and sudden market crush. The analysis of these
and of more recent historical events (e.g., the 2008
financial crisis) seriously questioned the model of the
homo oeconomicus and convinced the economists of
the necessity of additional and interdisciplinary tools
to make quantitative the novel concepts coming from
behavioral economics [4,5]. This stimulated the con-
tributions of other disciplines, which include mathe-
matics, physics and different branches of engineering
[6–14].

In particular, recent interdisciplinary works
attempted to connect the development of atomized
behavioral models of the individual agent with that of
the interaction among them [15–19].Moreover, empiri-
cal evidence shows that agent behavior is influenced by
the time-varying cobweb of relationships they develop
[20]. A pressing open problem is to shed light on the
drivers determining the evolution of the network. In
the literature on social networks, a key element that
shapes the topology is the perceived difference among
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the network agents, which depends on the way they
rank themselves [21]. This is true, for instance, in the
network of scientific credits [22]. Similarly, in financial
markets the way agents rank their trading ability plays
a key role in determining the evolution of their social
relationships, as well in shaping their individual behav-
ior [18,23]. However, agent perception of his trading
ability is often driven by psychological effects that lie
outside rationality. One of the best-known effects is
overconfidence [24], which is the attitude of an agent to
strongly believe in hismistaken valuations. These often
leads to performing overoptimistic judgments of life
prospects which ultimately affect financial decisions.
Overconfidence is associated with a body of related
effects, which includes overplacement, that is, over-
estimation of one’s rank in a population. Clearly, this
directly impacts on the assessment of his own trad-
ing abilities compared to those of his competing peers
[25,26] and reflects on his trading patterns: overcon-
fident agents tend to be stubborn rather than open-
minded [27].

In this paper, we extend a recently proposed evolv-
ing artificial financial market [17,18] to model and test
the effect of overconfidence. The original model elu-
cidated the subtle interplay between agents’ behavior
and the evolving dynamics of the topology describing
their mutual influence. Exploiting our setting, wemake
one step forward compared to the existing literature and
evaluate not only the direct impact of overconfidence
on individual decision, but also the way this shapes the
network topology.

2 Reference market model

Following [17,18], we model the financial market as
an evolving network of dynamical systems populated
by a set V = {1, . . . , n} of financial agents. At each
trading session, an agent can decide whether invest-
ing a fraction δ of his capital in one of the alternative
financial portfolios from the finite set L = {1, ...,m}
or not. The mth asset is a virtual asset, correspond-
ing to no investment, which, differently from the other
(proper) investments, has unlimited availability. Every
agent will chose among one of the available portfolios
depending on his risk attitude ri (k). In turn, the risk
attitude dynamics are described by

ri (k+1) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(1 − w)ri (0) + w

νi (k)

n∑

h=1

ahi (k)rh(k),

if νi (k) > 0

ri (0) otherwise

(1)

for i = 1, . . . , n, where 0 < w < 1 is the interaction
weight, ri (0) is the innate risk attitude of agent i , ahi (k)
is 1 if agent i is influenced by agent h at time k, while it
is zero otherwise, and νi (k) = ∑

h ahi (k). In general,
ahi (k) can be viewed as the hi-th element of a time-
varying adjacency matrix A(k) describing the network
of mutual influences among the agents, and νi (k) the
cardinality of the set of influencers (the neighbors) of
agent i at time k.

At trading session k, the current risk attitude ri (k)
shapes the utility function that agent i seeks to max-
imize (see [17,18] for further details), thus determin-
ing the selection of the portfolio �i (k) := �i (ri (k)) in
which he invests a fraction δ of his capital. According
to this trading mechanism, the wealth dynamics will be
then given by

xi (k
− + 1) = xi (k) + βi (k)δxi (k)(a�i (k) − 1)

− (1 − βi (k))δxi (k)(1 − b�i (k)),

xi (k + 1) = τ(xi (k
− + 1)),

(2)

where a�i (k) and b�i (k) are the win and loss rates associ-
ated with the selected portfolio �i (k), βi (k) is a realiza-
tion of a uniform Bernoulli random variable describing
the output of the trade, and τ is a function describing
the taxation scheme regulating the market.

3 Modeling overconfidence

As explained above, an agent’s trading strategy is
entirely determined by his risk attitude. Therefore, in
this model, the level of confidence of an agent will be
identified by his resistance to learn from the risk atti-
tude (i.e., trading strategy) of his neighbors. Equation
(1) shows that an agent’s risk attitude depends on his
innate attitude and on the influence that the other agents
may have on him, described by the matrix A(k). Over-
confidence will be modeled by selecting an appropriate
law for updating A(k), whichwill take into account that
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-0.5 0 0.5

Fig. 1 Potential driving the edge evolution with b = 16. The
red dotted arrow corresponds to an inactive edge, while the blue
solid arrow to an active one

1. The interaction among the agents is selective, see
[28], and therefore, agent i can be influenced by
agent h only if (h, i) ∈ Ea ⊂ V ×V , with Ea being
the set of admissible edges;

2. The update will depend on the current wealth of
the agents, which is a measure that can objectively
rank the agents’ trading ability;

3. The update cannot be instantaneous, but has to be
dynamical;

4. The existence of an edge pointing to an agent, say
i , depends not on the objective ranking of i within
his neighbors, but on i’s perceived ranking.

To fulfill these four requirements, we exploit the edge
snapping mechanism [18,29,30] and associate with
each admissible edge (i, j) ∈ Ea (for all the others,
ai j (k) = 0 for all k) a state variable σi j that can be
viewed as a mass moving in a double-well potential V ,
described by

σ̈i j (t) + μσ̇i j (t) + dV (σi j (t))

dσi j (t)
= u j

i (t), (3)

where μ is a damping parameter, V (σi j ) := b(σi j −
0.5)2(σi j + 0.5)2 is depicted in Fig. 1, and

u j
i (t) = γ (t)max{0, γ (t)(xi (�t�)/c j − x j (�t�))},

(4)

where γ (t) = (−1)ai j (�t�) and c j is the self-confidence
of j , that is, a parameter quantifying the level of con-

fidence of agent j in his trading abilities. Accordingly,
each element of A(k) will be updated as follows:

ai j (k) =
{
1 if (i, j) ∈ Ea and σi j (k) > 0,
0 otherwise.

(5)

To clarify how this mechanism works, for the sake of
clarity, we refer to the case of an agent j not being influ-
enced by agent i at time k (i.e., ai j (k) = 0, σi j (k) < 0),
and having to decide whether he wants to account for
agent i’s risk attitude at time k + 1, thus activating the
edge (i, j) (the case of a deactivation is specular). In
this case, Eq. (4) becomes

u j
i (t) = max

(

0,
xi (k)

c j
− x j (k)

)

, t ∈ [k, k + 1[.
(6)

Indeed, in our mechanical analogy, when the mass is
closer to the first well (σi j (k) < 0), then j is not influ-
enced by i . To make j change his mind at the next trad-
ing session, a necessary condition is that ui j (t) > 0,
that is, he believes that i has better trading abilities
than his own. This happens when xi (k)/c j > x j (k).
Notice that a neutrally confident agent (c j = 1) just
compares his wealth with that of i , thus objectively
evaluating their relative past trading abilities. Differ-
ently, an overconfident agent (i.e., c j � 1) will con-
sider being influenced by i only if agent i’s trading
strategies proved to be way more successful than that
of agent j (i.e., xi (k) � x j (k)). The opposite happens
for underconfident agents. However, we emphasize that
those are only necessary conditions for activating the
edge: as the update is not instantaneous, but dynamical
according to Eq. (3), the perceived difference in trad-
ing abilities has to be intense enough and persist for a
sufficient time span.

4 Numerical analysis

4.1 Setup

We have considered an artificial market populated by
n=1000 agents that can choose to invest in one of three
alternative portfolios.As in [17], the agents are grouped
in three classes (of equal size) depending on their innate
risk attitudes that are uniformly distributed in the inter-
val [0.5, 1]. Namely, they are classified as audacious

123



36 P. De Lellis et al.

if ri0 ∈ [0.83, 1], ordinary if ri0 ∈ [0.67, 0.83), and
prudent otherwise. The choice of the risk attitudes for
the three classes is such that the prudent agents will
only consider investing in the less risky portfolio, the
ordinary will consider also the averagely risky portfo-
lio, while the audacious agents will also invest in the
riskiest one. Moreover, the market is regulated by a
Tobin-like taxation scheme, which defines the function
τ in (2), see [17] for further details. This scheme was
shown to favor prudent agents, as it reduces the wealth
of the winning agents and redistributes the tax revenues
to the other agents, and keeps unchanged the average
wealth [17].

Within this main frame, we aimed at testing the
effect of overconfidence on the overall market dynam-
ics, with a special focus on the properties of the emerg-
ing network. In what follows, we call an agent overcon-
fident when his self-confidence is greater than a certain
threshold c̄. In formal terms

O = {i : ci > c̄}
whereO is the set of overconfident agents. In our sim-
ulations, we set c̄ = 2.5. To test the effect of overcon-
fidence, we selected two reference scenarios:

(a) All the agents are neutrally confident, that is, ci =
1 for all i . In this case, the agents are perfectly
rational, and they rank their trading ability by only
considering the output of their past investments,
that is, their wealth.

(b) The agents mildly deviate from rationality, as ci
are randomly selected from an inverse uniformdis-
tribution with median 1, where the overconfident
agents represent a minority in the market.

These reference scenarios are compared with cases in
which the overconfident are prevalent, as often occurs
in real markets [31]. In particular, we consider

c) Anextremelyoverconfidentmarket, inwhich all the
agents are overconfident, as we selected the coef-
ficients ci , i = 1, . . . , n, from an inverse uniform
distribution with values in [2.5,∞).

d) A prevalently overconfident market, in which, for
each class of agents (audacious, ordinary, and pru-
dent), half of the agents are selected as in scenario
b) and half as in c).

In our analysis, we have run 100 simulations for each
of the four scenarios, where all the agents start with the
same initial wealth. Before the interaction is triggered,

the agents trade without mutual influence for 1000 ses-
sions to diversify their wealth x j , j = 1, . . . , n. Then,
we generate the edge set E0 of an Erdös and Rényi
(ER) graph [32] with average degree dave = 52. At
time k = 1001 the snapping dynamics (3) are acti-
vated for all the pair of nodes (i, j) ∈ E0, and we let
the market evolve for further 14, 000 sessions, so that a
steady-state wealth distribution is achieved and that the
network parameters analyzed in the following section
settle.

4.2 Results

In what follows, we first investigate how overconfi-
dence shapes the networkof influence among the agents
and then analyze the subsequent effect on the risk atti-
tude and wealth of the agents.

How does overconfidence shape the network?

The considered scenarios differ for both the percent-
age of overconfident, and for the variability of the self-
confidence, which could be quantified by the sample
standard deviation. In what follows, we aim at eluci-
dating how these reflect on the network properties, with
a specific focus on

– The network density, quantified by its average
degree dave.

– The network asymmetry that determines the direc-
tionality of the relations in the influence network,
and that, following [33], we quantify through the
absolute binary network asymmetry as

sb = 1

2

N + 1

N − 1

(∥
∥A − AT

∥
∥
F

‖A‖F

)2

,

where ‖·‖F is the Frobenius norm. Notice that sb
spans from 0, that is the case of an undirected net-
work, to 1, which corresponds to the case where
there are nomutual links, i.e., the activation of edge
(i, j) implies the absence of ( j, i).

– The network clustering, that is quantified by the
average clustering coefficient C . We remind that
the clustering coefficient of a node, say i , is com-
puted as the ratio between the number of directed
triangles in the graph and the total number of pos-
sible triangles that i could form;
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Table 1 dave is the average degree of the network; sb is the
absolute binary network asymmetry; C and Cr are the clustering
coefficient of the network and of the corresponding ER graph
with equivalent degree, respectively; ρ(x, do) is the correlation
between the wealth of an agent and his out-degree, Co, Cm , Ci ,
and Co are the number of cycle, middleman, in, and out pattern
over the total number of possible triangles, respectively; |O| /n
and |U | /n are the fraction of overconfidence and underconfident
agents, respectively

Scen. (a) (b) (c) (d)

dave 26.00 23.46 5.50 14.40

[25.61, 26.39] [22.87, 24.05] [4.95, 6.05] [13.87, 14.93]

sb 1.00 0.80 1.00 0.91

[0.98, 1.00] [0.78, 0.81] [0.98, 1.00] [0.90, 0.92]

103C 25.80 28.10 4.18 24.10

[25.59, 26.01] [27.56, 28.64] [3.57, 4.79] [23.28, 24.92]

103Cc 0.07 0.85 0 0.19

[0.05, 0.09] [0.75, 0.95] [0, 0] [0.16, 0.22]

103Cm 8.58 8.86 1.50 8.11

[8.51, 8.65] [8.74, 8.98] [1.19, 1.81] [7.84, 8.38]

103Ci 8.58 6.50 2.53 4.05

[8.51, 8.65] [6.38, 6.62] [1.98, 3.08] [3.87, 4.23]

103Co 8.58 11.85 0.15 11.75

[8.51, 8.65] [11.43, 12.27] [0.13, 0.17] [11.02, 12.48]

103Cr 26.05 23.51 5.51 14.28

ρ(x, do) 0.41 0.51 0.71 0.62

[0.39, 0.43] [0.49, 0.54] [0.69, 0.73] [0.60, 0.64]

|O| /n 0 0.22 1.00 0.62

|U | /n 0 0.20 0 0.10

Confidence intervals with significance level 0.05 are also
reported when needed

– Correlationbetweendegreedistribution andwealth,
quantified through the computation of the correla-
tion ρ(x, do) between the wealth of an agent and
his out-degree.

The effects of the different distribution of
self-confidence are summarized in Table 1 and dis-
cussed below.Thefirst immediate consequence of over-
confidence is an increased sparsity of the network.
Indeed, the abnormal level of self-confidence makes
the agent reluctant to be influenced by their neigh-
bors. Consistently, we observed a dramatic reduction
in the average degree dave as the fraction of overconfi-
dent agents increases. Indeed, when all the agents are
overconfident (scenario (c)), given the pair of edges
(i, j), ( j, i) ∈ Ea with agent i richer than j , it clearly
happens that i will decide not to be influenced by j , but

also (more irrationally), agent j will often let ai j = 0.
This behavior produces a sparse network, populated by
stubborn investors, but the network remains perfectly
asymmetric, with sb being equal to 1 as in the scenario
(a). Consistently, we observe that the presence of bidi-
rectional links is caused by the presence of a set of agent
U with an opposite behavior, that is, the underconfident,
that in our simulations we define as

U = {i : ci < 0.65} .

Underconfident agents overestimate the trading abil-
ities of their neighbors, thus considering being influ-
enced also by less successful investors: this leads to an
increased probability of the presence of mutual links
and therefore to the reduction in sb as the fraction of
underconfident increases.

As for the clustering coefficientC , we observed that,
when the agents behave homogeneously, it is always of
the same magnitude as the expected one in an ER ran-
dom graph with the same size and expected degree.
This happens in scenarios (a) and (c), where the agents
are all rational or all overconfident, respectively. On
the contrary, the increased heterogeneity of the agent
behaviors in scenarios (b) and (d) increases the likeli-
hood of encountering triangles of agents, see Table 1.
However, the differences becomes evenmore relevant if
we decompose the overall clustering coefficient in the
four possible patterns that can be formed in directed
networks, see Fig. 2. The absence of underconfident

i j

i j

h

i j

( )i ( )ii

( )iii

i j

h

h h

( )iv

Fig. 2 Example of the four possible patterns in triangles from
the perspective of node i [34]: cycle (i), middleman (ii), in (iii),
and out (iv)
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agents in scenarios (a) and (c) makes almost impos-
sible the formation of cycles, which instead appear in
(b) and are significantly higher in (d), which is the sce-
nario characterized by the highest fraction |U | /n of
underconfident. Moreover, we notice that in a market
dominated by overconfidence as in scenario (c), the
possibility of having (at least) two outgoing edges is
limited only to the richest agents that may influence
those who are significantly poorer overcoming their
overconfidence: consequently, this strongly reduces the
fraction of out patterns Co, which are instead favored
in scenarios (b) and (d), where the underconfidence of a
non-negligibleminority of agents increases the chances
of having out patterns.

Finally, we observe the correlation between out-
degree and wealth. Intuition would suggest this cor-
relation to be higher in a rational market, where the
richer are more likely to have a higher outgoing degree.
Surprisingly, we observe that the ρ increases as long
as the fraction of overconfident agents increases. The
explanation is that in a market populated by overcon-
fident agents, agent i may have outgoing edges only if
his wealth is much higher than that of his neighbors,
thus increasing the correlation between out-degree and
wealth.

How does overconfidence impact on agent success?

The different distribution of self-confidence in the
four considered scenarios shapes the network topology
which, in turns, affects the way agents’ trade through
Eq. (1). From [17,18],we know that in a rationalmarket
the Tobin-like tax regulating the market favors the pru-
dent agents that consider investing only in the less risky
asset. Therefore, prudent agents have in average more
outgoing links, and therefore, the average risk attitude
r̄ settles around 0.67, see the blue line in Fig. 3, which
is significantly lower than the average innate attitude of
the agents, that is 0.75. An interesting effect is observed
as the fraction of overconfident agents pervades the
market: the average risk attitude further reduces, see
Fig. 3 when all the agents are overconfident (red line)
we observe the lowest settling value for r̄(k). This is
explained by the fact that overconfident agents are only
influenced by the agents who are significantly richer
than them: this means that an overconfident agent i is
very likely to only imitate the trading patterns of the
agents with the best strategy, and not of agents with

4000 8000 12000 16000
0.63

0.65

0.68

Fig. 3 Evolution of the average risk attitude r̄(k) in scenario (a)
(blue line), (b) (green line), (c) (red line), and (d) (magenta line)

1000 4000 8000 12000 16000

k

0

50

100

150

200

x̄
j
(k
)

Fig. 4 Scenario (d). Evolution of the average risk attitude. Blue,
green, and orange lines correspond to prudent, ordinary, and
audacious agents, respectively, while solid and dotted lines refer
to overconfident and non-overconfident agents, respectively

wrong strategy, but that are temporary richer than i due
to a better luck.

Now,we focus on scenario (d) to understandwhether
overconfidence hinders agent’s wealth. To this aim,
we evaluated the average wealth for each class of
agents (prudent, ordinary, and audacious) and checked
whether being overconfident was an advantage or not
in each class, see Fig. 4. In agreement with the find-
ings of behavioral finance [10,25,26,31], we find that
an excess of confidence is detrimental when agents’
own valuations are mistaken: in this case, being open-
minded can make up for wrong evaluations. On the
other hand, skilled traders benefit from self-confidence,
as they stand on their own correct evaluations.

5 Conclusions

Overconfidence is a well-known psychological effect
that biases decisionmaking in trading. In this paper, we
investigated its impact on an artificial financial market
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recently proposed in [17,18], which is characterized
by the coevolution of the agents’ state, in terms of risk
attitude and wealth, with the network of mutual influ-
ence among them. In particular, we analyzed the way
the distribution of self-confidence shapes the network
topology through extensive numerical simulations. In
particular, we observed that

– Overconfidence fosters network sparsity: agents
tend to become stubborn rather than open-minded,
thus reducing the connections with their neighbors;

– Networks pervaded by overconfident agents are
strongly asymmetric, as underconfident (and rich)
agents are crucial for the formation of mutual influ-
ence among pairs of agents;

– A more heterogeneous distribution favors cluster-
ing. The presence of both underconfident and over-
confident agents promotes the emergence of trian-
gle motifs and, more specifically, allows for the
presence of cycles;

– A highly overconfident market is characterized
by a stronger correlation between out-degree and
wealth: indeed, only the richest agents are capable
of influencing stubborn overconfident agents.

Also, we observed that the average risk attitude reduces
as the fraction of overconfidence increases: indeed,
overconfidence is accompanied by a more selective
coupling which implies that most of the influence links
depart from edges having the best (prudent) trading
strategy. However, we numerically illustrated that over-
confidence is indeed detrimental when it has the effect
of sticking the agent on his own mistaken valuation.
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