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Abstract In this paper, by incorporating the network-
based event-triggered formulation, the robust adaptive
critic control design for a class of nonlinear continuous-
time systems is investigated to fulfill disturbance rejec-
tion. First, the designed problem with output informa-
tion is formulated as a two-player zero-sum differential
game and the adaptive critic mechanism is employed
toward the event-based minimax optimization involv-
ing a suitable triggering condition. Then, the event-
based optimal control law and the time-based worst-
case disturbance law are learned by training the critic
neural network. Besides, the closed-loop system is con-
structed with stability proof of the critic error dynam-
ics and the sampled-data plant. The theoretical analy-
sis has demonstrated that the infamous Zeno behavior
of the proposed event-based adaptive critic design has
been avoided. Finally, the developed method is applied
toward the robot arm plant, as a mechanical component
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of the complex robot system, so as to substantiate the
performance of disturbance rejection.
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1 Introduction

With the framework of network-based systems, the
control loops are often closed through a communica-
tionmedium. As a hot topic of system and control com-
munity, it is significant to perform systematically the-
oretical researches and meaningfully industrial appli-
cations for network-based control design. The grow-
ing demands in reducing the computational load of
networked control systems, or more extensively, the
emerging cyber-physical systems bring a great atten-
tion to develop the mechanism of event-triggering
control [1–4]. Dolk et al. [1] proposed the popular
framework for output-based dynamic event-triggered
control design under denial-of-service attacks. Wu
et al. [3] dealt with the event-based optimal con-
trol of heating, ventilation and air-conditioning sys-
tems of buildings for the purpose of energy saving.
Within these general event-based control approaches,
the actuators are only updated under certain trigger-
ing conditions such that both control performance and
system stability can be guaranteed toward the target
objects.
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Robustness is an important criterion to evaluate the
performance of the designed controller with respect
to uncertain disturbances and parameters of the con-
trolled plant. In particular, the H∞ method usually
concerns to construct a control law for the worse-case
uncertain plant. From the point of view of the mini-
max optimization, a H∞ control problem can be con-
sidered as the two-player zero-sum differential game,
where a controller is obtained that minimizes the cost
function in the worst-case disturbance. In this case, it
requires to get the Nash equilibrium solution via the
Hamilton–Jacobi–Isaacs equation. As we all know, it
is obviously difficult to get the analytic Nash equilib-
rium solution for nonlinear systems. Fortunately, the
methodology of adaptive/approximate dynamic pro-
gramming is developed to effectively solve the class of
optimal control problems forward-in-time [5–7], with
neural networks [8–11] as well as some new devel-
oped function approximation architectures like incre-
mental support vector machines [12], and so on. The
adaptive/approximate dynamic programming approach
has made great progress in the aspects of optimal
control for discrete-time nonlinear systems[13–17],
continuous-time nonlinear systems [18–21] and some
related applications [22–24]. Moreover, the problems
of nonlinear H∞ control and the nonzero-sum game
have been revisited and studied with the approach of
adaptive/approximate dynamic programming in [25–
29].

Adaptive critic control, as one method of adap-
tive dynamic programming-based control, comes from
the literature [30] where Prokhorov et al. proposed
the adaptive critic design with neural networks. Since
then, adaptive critic control has been developed as
an important method of approximate optimal control
approaches. In order to improve the robustness of
adaptive critic control, the robust adaptive critic con-
trol methodology was proposed in references [31,32],
which has recently achieved great development in
[33–37]. However, these existing research results are
obtained by the traditional design manner of time-
based control, which would cause that actuators are
frequently adjusted and thus energy consumption is
enormous. Therefore, the time/event control structure
has become an outlet to fulfill the event-based design
and enhance the control efficiency [29,36,38–40]. In
recent few years, the event-based adaptive critic design
method has been developed as a new channel for the
adaptive optimal stabilization of nonlinear systems

[36,40–42]. With the new time/event control mech-
anism, the developed controller is updated once an
event is triggered, which results in reducing the com-
putational cost. Consider that most existing work con-
ducted for the optimal regulation without involving
output information, such as [18,19,21,26,40,41,43],
motivates this extension work to nonlinear event-based
zero-sum differential game problem with output infor-
mation.

In this paper, the event-based robustH∞ controlwith
output information is investigated under the framework
of adaptive critic designs. The contributions of this
paper are listed as follows. For one thing, the frame-
work of the event-based adaptive critic control with
output information is established to study the nonlin-
ear H∞ feedback control. The two-player zero-sum
differential game problem with output information is
formulated, and the event-based minimax optimization
involving a suitable triggering condition is designed
within the event-based adaptive critic control frame-
work. For another thing, by involving output informa-
tion, both the event-based optimal control law and the
time-basedworst-case disturbance law are derivedwith
stability proof, and the Zeno behavior in the event-
based control is effectively avoided. This improves
the results of traditional adaptive critic design such as
[18,19,21,26] and event-based control design such as
[40,41,43]. The rest of this paper is organized as fol-
lows: In Sect. 2, a succinct transformation of nonlinear
H∞ control with output information is described. The
event-based adaptive critic design for the nonlinear H∞
feedback control problem is intensively investigated in
Sect. 3 with the analysis of closed-loop system stability
andZenobehavior exclusion. The application of a robot
arm plant is provided in Sect. 4, and some concluding
remarks are finally drawn in Sect. 5.

For the effective presentation, these notations are
defined and used in the following sections. R, Rn and
R
n×m define the set of all real numbers, the Euclidean

space of all n-dimensional real vectors and the space of
all n ×m real matrices, respectively. N = {0, 1, 2, . . .}
defines the set of all nonnegative integers. In is the iden-
tity matrix in R

n×n . λmax(·) and λmin(·) represent the
maximal and minimal eigenvalues of a matrix, while
diag{ξ1, ξ2, . . . , ξn} expresses then×n diagonalmatrix
with elements of ξ1, ξ2, . . ., ξn . ‖·‖ denotes the 2-norm
for a vector and the induced-norm for a matrix. Define
Ω as a compact subset of Rn , andA (Ω) is the admis-
sible control policy set on Ω . A superscript “T” and
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∇(·) � ∂(·)/∂x mean the transpose operation and the
gradient operation, respectively.

2 Problem description and preliminaries

The following class of affine nonlinear continuous-time
systems is considered in this paper with external per-
turbations:

ẋ(t) = f (x) + g(x)u(t) + h(x)ν(t), (1a)

y(t) = Cx(t). (1b)

In (1), x(t) denotes the state vector belonging to Ω ⊂
R
n , u(t) ∈ R

m is the control input, ν(t) ∈ R
q is the per-

turbation belonging to L2[0,∞), y(t) ∈ R
p is the out-

put vector, and C ∈ R
p×n is a constant output matrix.

f (x), g(x) and h(x) are differentiable with f (0) = 0.
x(0) is the initial state vector, recorded as x0, and x = 0
is the equilibrium point of the system.

Assumption 1 The nonlinear system (1) is control-
lable. The system function f (x) defined on Ω is Lips-
chitz continuous and contains the origin.

With this assumption, considering the nonlinear H∞
control design of system (1), a feedback control law
u(x) is expected to make the closed-loop system (1)
asymptotically stable with a L2-gain no larger than ι,
which is

∫ ∞

0

(
yT(τ )Py(τ )+uT(τ )u(τ )

)
dτ ≤ ι2

∫ ∞

0
‖ν(τ)‖2dτ,

(2)

where P is a positive semidefinite matrix with appro-
priate dimension. Recalling (1b), it is obvious that (2)
can be rewritten as

∫ ∞

0

(
xT(τ )Qx(τ )+uT(τ )u(τ )

)
dτ ≤ ι2

∫ ∞

0
‖ν(τ)‖2dτ,

(3)

where Q = CTPC is nonnegative definite. If the
closed-loop expression of system (1) satisfies the con-
dition (3), then it has a L2-gain no larger than ι. It is
known to all that the nonlinear H∞ control can be trans-
lated into the problem of two-player zero-sum differen-
tial game, where the minimizing player is considered
as the control and the maximizing player is regarded as

the disturbance [25,26]. Therefore, the solution of non-
linear H∞ control is defined as a control pair with the
form (u∗, ν∗). u∗ and ν∗ are the optimal control and the
worst-case disturbance, respectively. Define the utility
function U

(
x(τ ), u(τ ), ν(τ )

)
as

U
(
x(τ ), u(τ ), ν(τ )

)
= xT(τ )Qx(τ ) + uT(τ )u(τ ) − ι2νT(τ )ν(τ ),

and the corresponding cost function is

J (x, u, ν) =
∫ ∞

t
U

(
x(τ ), u(τ ), ν(τ )

)
dτ, (4)

where the cost function J (x, u, ν) can be simplified as
J (x) in the following text. The initial cost function at
t = 0 is recorded as J (x0). In the two-player zero-
sum game problem, the feedback control pair (u∗, ν∗)
satisfies the Nash condition, i.e.,

J ∗(x0)=min
u

max
ν

J (x0, u, ν) = max
ν

min
u

J (x0, u, ν).

Considering that an admissible control policy u ∈
A (Ω) is used, if the cost function in (4) is differen-
tiable, then it derives the following nonlinear Lyapunov
equation

U (x, u, ν) + (∇ J (x)
)T(

f (x) + g(x)u + h(x)ν
) = 0

with an initial condition J (0) = 0. Correspondingly,
the Hamiltonian function of system (1) is defined as

H
(
x, u, ν,∇ J (x)

)
= U (x, u, ν) + (∇ J (x)

)T(
f (x) + g(x)u + h(x)ν

)
.

If the Bellman’s optimality principle is used, then the
optimal cost J ∗(x) can make sure that the Hamilton–
Jacobi–Isaacs equation

min
u

max
ν

H
(
x, u, ν,∇ J ∗(x)

) = 0
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holds. That is to say, the control pair (u∗, ν∗) can be
obtained by the following partial differential equations

∂H
(
x, u, ν,∇ J ∗(x)

)
∂u

=0,

∂H
(
x, u, ν,∇ J ∗(x)

)
∂ν

=0.

Therefore, the optimal control and the worst-case dis-
turbance are calculated by

u∗(x) = −1

2
gT(x)∇ J ∗(x), (5a)

ν∗(x) = 1

2ι2
hT(x)∇ J ∗(x). (5b)

By using (5), the Hamilton–Jacobi–Isaacs equation
turns to the following expression

0=xTQx+(∇ J ∗(x)
)T

f (x)− 1

4

(∇ J ∗(x)
)T
g(x)gT(x)

× ∇ J ∗(x) + 1

4ι2
(∇ J ∗(x)

)T
h(x)hT(x)∇ J ∗(x)

(6)

with J ∗(0) = 0. It should be noted that (6) is the clas-
sical time-based Hamilton–Jacobi–Isaacs equation. An
approximate solution is pursued to substitute for the
analytic solution. The adaptive critic control-based
method is taken as an effective approach to handle the
problem.

3 Event-based robust adaptive critic control
design and implementation

3.1 Event-based control design with Zeno behavior
exclusion

In industrial practice, a sampling component is often
incorporated into a networked system. With the event-
triggering control method, a monotonically increasing
sequence is usually defined as the triggering instants,
i.e., {s j }∞j=0, where s j expresses the j th consecutive
sampling instant with j ∈ N. The sampled state vector
is denoted as x(s j ) � x̂ j for all t ∈ [s j , s j+1). The
event-triggered error defines the gap between current
and sampled states, which is represented as σ j (t) =
x̂ j − x(t), ∀t ∈ [s j , s j+1).

In the event-based control, the triggering condition
decides the triggering instants. That is to say, at the
triggering instant t = s j , when the triggering condition
is activated, the system is sampled such that the event-
triggered error σ j (t) is reset as zero. The control law
u(x(s j )) = u(x̂ j ) � μ(x̂ j ) is accordingly updated. By
introducing a zero-order holder, the control sequence
{μ(x̂ j )}∞j=0 can be turned into a continuous-time signal
in the form of a piecewise constant function with a
constant valueμ(x̂ j ) at the time interval [s j , s j+1), j ∈
N. When the event-triggering mechanism is employed,
the feedback control law in (5a) becomes

μ∗(x̂ j ) = −1

2
gT(x̂ j )∇ J ∗(x̂ j ), (7)

where ∇ J ∗(x̂ j ) = (
∂ J ∗(x)/∂x

)|x=x̂ j . The distur-
bance law is unchanged during the time/event structure
transformation. Additionally, we make the following
assumptions which are reasonable and conventional in
the event-based design.

Assumption 2 (cf. [41]) The control law u(x) is Lip-
schitz continuous with regard to the event-triggered
errorσ j (t), which is formulated as ‖u(x(t))−u(x̂ j )‖ ≤
Mu‖σ j (t)‖, where Mu is a positive constant.

Assumption 3 The control function matrix g(x) is
Lipschitz continuous associated with the event-trigger-
ed error σ j (t) and is also upper-bounded, which means
‖g(x) − g(x̂ j )‖ ≤ Mg‖σ j (t)‖ and ‖g(x)‖ ≤ Bg ,
where Mg and Bg are positive constants. The distur-
bance matrix h(x) is bounded by a positive constant
Bh , which is expressed as ‖h(x)‖ ≤ Bh .

The following theorem is provided to design a trig-
gering condition.

Theorem 1 Considering the nonlinear system (1) and
its related cost function (4), for all t ∈ [s j , s j+1) with
j ∈ N, if the disturbance law and the event-based con-
trol law are given by (5b) and (7), respectively, and the
triggering condition is given as

‖σ j (t)‖2 ≤ σT = xTQx + ‖μ∗(x̂ j )‖2 − ι2‖ν∗(x)‖2
M2

u
,

(8)

where σT is the threshold of the triggering condition,
then the closed-loop system (1) is asymptotically stable.
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Proof Select L1(t) = J ∗(x(t)) as the Lyapunov func-
tion candidate. Using (5b) and (7), we take the time
derivative of L1(t) along the trajectory of system (1a)
to compute L̇1(t) = dJ ∗(x(t))/dt , which derives

L̇1(t) = (∇ J ∗(x)
)T(

f (x)+g(x)μ∗(x̂ j )+h(x)ν∗(x)
)
.

Note that formula (5) implies that

(∇ J ∗(x)
)T
g(x) = −2u∗T(x), (9a)(∇ J ∗(x)

)T
h(x) = 2ι2ν∗T(x). (9b)

Besides, Eq. (6) reveals

(∇ J ∗(x)
)T

f (x) = −xTQx+u∗T(x)u∗−ι2ν∗T(x)ν∗(x).
(10)

By using (9) and (10), it can derive

L̇1(t) = − xTQx + u∗T(x)u∗ − 2u∗T(x)μ∗(x̂ j )
+ ι2ν∗T(x)ν∗(x). (11)

By introducing Assumption 2, L̇1(t) can be obtained
as

L̇1(t) = − xTQx+(
u∗(x) − μ∗(x̂ j )

)T(
u∗(x)−μ∗(x̂ j )

)
− μ∗T(x̂ j )μ

∗(x̂ j ) + ι2ν∗T(x)ν∗(x)
≤ − xTQx + M2

u‖σ j (t)‖2
− ‖μ∗(x̂ j )‖2 + ι2‖ν∗(x)‖2.

It is obvious that L̇1(t) < 0 can be obtained for any
x 
= 0 if the triggering condition (8) holds, which ends
the proof. ��

For the proposed network-based event-triggered
H∞ control problem, the j th inter-sample time is
s j+1 − s j . Denote the minimal inter-sample time as


smin = min
j∈N{s j+1 − s j },

which might be zero and thus lead to the accumulation
of the event times, i.e., the infamous Zeno behavior.

By using Assumptions 1 and 3, and considering the
fact that the optimal control function and theworst-case

disturbance function are upper-bounded, it can acquire
two positive constants κ1 and κ2 such that

‖ẋ‖=‖ f (x) + g(x)μ∗ + h(x)ν∗‖ ≤ κ1‖x‖ + κ2
(12)

holds, where κ2 is a bounded term with respect to
the control matrix, the optimal control, the distur-
bance matrix and the worst-case disturbance. Take the
derivative of the triggering error σ j (t) and then yield
σ̇ j (t) = −ẋ for t ∈ [s j , s j+1). Based on (12), it can be
further found that

‖σ̇ j‖ ≤ κ1‖x̂ j − σ j‖ + κ2

≤ κ1‖σ j‖ + κ1‖x̂ j‖ + κ2,∀t ∈ [s j , s j+1). (13)

By using the initial condition σ j (s j ) = x̂ j −x(s j ) =
0 and the comparison lemma (seeing [44]), the follow-
ing inequality can be derived based on the solution of
(13), which is

‖σ j‖ ≤ κ1‖x̂ j‖ + κ2

κ1
(σ κ1(t−s j ) − 1) (14)

for any t ∈ [s j , s j+1). According to (14), we obtain
that the j th inter-sample time satisfies

s j+1 − s j ≥ 1

κ1
ln(1 + κ̄ j ) > 0, (15)

where the term κ̄ j = κ1σ̄T /(κ1‖x̂ j‖ + κ2) is posi-
tive with σ̄T = ‖σ j (s j+1)‖ and σ j (s j+1) = x̂ j −
x(s j+1). The minimum of κ̄ j with regard to all t ∈
[s j , s j+1), j ∈ N, is defined as κmin = min j∈N κ̄ j > 0.
By minimizing both sides of (15), we can conclude the
following remark.

Remark 1 Considering the nonlinear system (1) used
the disturbance law (5b) and the event-based control
law (7), the minimal inter-sample time 
smin deter-
mined by (8) is lower-bounded such that


smin ≥ 1

κ1
ln(1 + κmin) > 0, (16)

where κ1 and κmin are positive constants. Hence, the
Zeno behavior in this event-based control design is
avoided.
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3.2 Neural network implementation with stability
analysis

The adaptive critic control design with neural networks
is a practical approach to obtain the approximate opti-
mal control solution for nonlinear system control prob-
lems [5,18,21,27,40]. In the neural network implemen-
tation, lc is denoted as the neuron number of the hidden
layer. By adopting the universal approximation prop-
erty of neural networks, the cost function J (x) is recon-
structed by a single-hidden-layer neural network as

J (x) = ωT
c ϕc(x) + εc(x),

where ωc ∈ R
lc is the desired weight vector, ϕc(x) ∈

R
lc denotes the activation function of the neural net-

work, and εc(x) ∈ R is the reconstruction error. The
gradient of J (x) is expressed as

∇ J (x) = (∇ϕc(x)
)T

ωc + ∇εc(x).

It is obvious that the desired weight vector ωc is
unknown; thus, the critic neural network with an esti-
mated weight vector ω̂c(t) is used to construct the cost
function, which is

Ĵ (x) = ω̂T
c (t)ϕc(x).

Similarly, the gradient of the estimated cost function
Ĵ (x) can be formulated as

∇ Ĵ (x) = (∇ϕc(x)
)T

ω̂c(t).

Therefore, the event-based optimal control and the
time-based worst-case disturbance are formulated as

μ(x̂ j ) = −1

2
gT(x̂ j )

((∇ϕc(x̂ j )
)T

ωc + ∇εc(x̂ j )
)
,

ν(x) = 1

2ι2
hT(x)

((∇ϕc(x)
)T

ωc + ∇εc(x)
)
.

By introducing the critic neural network, the approxi-
mate values of the above control pair are

μ̂(x̂ j ) = −1

2
gT(x̂ j )

(∇ϕc(x̂ j )
)T

ω̂c(t), (17a)

ν̂(x) = 1

2ι2
hT(x)

(∇ϕc(x)
)T

ω̂c(t). (17b)

In the sequel, we apply the neural network expression
to the Hamiltonian function and derive that

H
(
x, μ(x̂ j ), ν(x), ωc

)
= U

(
x, μ(x̂ j ), ν(x)

)+ωT
c ∇ϕc(x)

(
f (x) + g(x)μ(x̂ j )

+ h(x)ν(x)
)

� ecH , (18)

where the term

ecH = −(∇εc(x)
)T(

f (x) + g(x)μ(x̂ j ) + h(x)ν(x)
)

represents the residual error arising in the approximate
operation. Meanwhile, the approximate Hamiltonian
function is

Ĥ
(
x, μ(x̂ j ), ν(x), ω̂c

)
= U

(
x, μ(x̂ j ), ν(x)

) + ω̂T
c (t)∇ϕc(x)

(
f (x)

+ g(x)μ(x̂ j ) + h(x)ν(x)
)

� ec. (19)

Let us define the weight error vector as ω̃c(t) = ωc −
ω̂c(t). Then, we combine (18) with (19) to yield

ec = − ω̃T
c (t)∇ϕc(x)

(
f (x) + g(x)μ(x̂ j ) + h(x)ν(x)

)
+ ecH .

Next, we show how to train the critic neural net-
work. Here, we aim at minimizing the objective func-
tion defined as Ec = 0.5e2c to get ω̂c(t). It should be
pointed out that the control pair of (17) is often adopted
during the learning process because the optimal con-
trol and the worst-case disturbance are unavailable to
be obtained. Based on (19), the normalized steepest
descent algorithm is employed to regulate the weight
vector ω̂c(t):

˙̂ωc(t) = − αc
1

(1 + ψTψ)2

(
∂Ec

∂ω̂c(t)

)

= − αc
ψ

(1 + ψTψ)2

(
U (x, μ̂(x̂ j ), ν̂(x))

+ ψTω̂c(t)
)
, (20)

where αc > 0.5 is the learning rate of the critic neural
network,
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ψ = ∇ϕc(x)
(
f (x) + g(x)μ̂(x̂ j ) + h(x)ν̂(x)

)

is a lc-dimensional column vector, and (1 + ψTψ)2 is
a regularized term [45].

For the sake of clarity, a simple diagram of the adap-
tive critic-based nonlinear H∞ control design that inte-
grated the event-based component is depicted in Fig. 1,
where the solid blocks exhibit the network-based com-
putation modules, while the dashed blocks reveal the
time/event transformation components. The solid line
denotes the signal flow path for H∞ control design,
while the dashed line represents the back-propagation
path for neural network training.

By using ˙̃ωc(t) = − ˙̂ωc(t) and introducing the fol-
lowing notations

ψ1 = ψ

(1 + ψTψ)
,ψ2 = 1 + ψTψ,

the error dynamics of critic neural network are further
investigated, which can be written as

˙̃ωc(t) = −αcψ1ψ
T
1 ω̃c(t) + αc

ψ1

ψ2
ecH . (21)

It is well known that the persistence of excitation is nec-
essary to execute the system identification [46]. There-
fore, this assumption is also required in this paper since
the parameters of critic neural network need to be iden-
tified such that the cost function can be approximated.

Assumption 4 (cf. [18]) The signal ψ1 is with the
property of persistent excitation in the time interval
[t, t + T ], T > 0, i.e., there exist two constants ς1 > 0
and ς2 > 0 such that

ς1 Ilc ≤
∫ t+T

t
ψ1(τ )ψT

1 (τ )dτ ≤ ς2 Ilc

holds for all t .

Based on Assumption 4, the persistent excitation
condition means that λmin(ψ1ψ

T
1 ) > 0, which is useful

in the following stability analysis.
In the event-triggered control, the closed-loop samp-

led-data system contains a flow dynamics for all t ∈
[s j , s j+1) and a jump dynamics at all t = s j+1 with
j ∈ N. Before proceeding the stability issue of the
closed-loop system, Assumption 5 is required, which
is similar in [27,36,42].

Assumption 5 The derivative of used activation func-
tion is Lipschitz continuous, i.e., ‖∇ϕc(x)−∇ϕc(x̂ j )‖
≤ Mϕ‖σ j (t)‖, where Mϕ is a positive constant.
∇ϕc(x), ∇εc(x) and ecH are upper-bounded by ‖∇
ϕc(x)‖ ≤ Bϕ , ‖∇εc(x)‖ ≤ Bε , and ‖ecH‖ ≤ Be,
where Bϕ , Bε and Be are positive constants.

Theorem 2 With Assumptions 3 and 5, for the non-
linear system (1), the event-based approximate opti-
mal control law is given by (17a), and the time-based
approximate worst-case disturbance law is (17b),
where the weight vector of critic neural network is
updated according to (20). Then, the closed-loop sys-
tem (1) is asymptotically stable, and the weight error
vector is uniformly ultimately bounded with the follow-
ing triggering condition

‖σ j (t)‖2 ≤ σ̂T = xTQx + ‖μ̂(x̂ j )‖2 − ι2‖ν̂(x)‖2
2ML‖ω̂c‖2 ,

(22)

where the inequality

‖ω̃c(t)‖ >

√√√√ 2B2
g B

2
ε + α2

c B
2
e

(2αc − 1)λmin(ψ1ψ
T
1 ) − 2B2

g B
2
ϕ

(23)

is satisfied when ML = M2
g B

2
ϕ + M2

ϕB
2
g and αc > 0.5.

Proof Construct a Lyapunov function candidate as the
formula

L2(t) = L21(t) + L22(t) + L23(t),

where

L21(t) =J ∗(x), L22(t) = J ∗(x̂ j ),

L23(t) =1

2
ω̃T
c (t)ω̃c(t).

When t ∈ [s j , s j+1), the events are not triggered.
The time derivative of L2(t) is calculated as

L̇21(t) =(∇ J ∗(x)
)T(

f (x) + g(x)μ̂(x̂ j )

+ h(x)ν̂(x)
)
,
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Fig. 1 Simple structure of adaptive critic H∞ control design with network-based event-triggered mechanism

L̇22(t) = 0, and

L̇23(t) = −αcω̃
T
c (t)ψ1ψ

T
1 ω̃c(t) + αc

ω̃T
c (t)ψ1

ψ2
ecH .

For the term L̇21(t), based on (5) and (6), by adding
and subtracting μ̂T(x̂ j )μ̂(x̂ j ), L̇21(t) can be obtained
as

L̇21(t) = − xTQx + u∗T(x)u∗(x) − 2u∗T(x)μ̂(x̂ j )

− ι2ν∗T(x)ν∗(x) + 2ι2ν∗T(x)ν̂(x)

≤ − xTQx + ‖u∗(x) − μ̂(x̂ j )‖2 − ‖μ̂(x̂ j )‖2
+ ι2‖ν̂(x)‖2.

Considering (5a) and using the neural network expres-
sion, the time-based optimal control can be reformu-
lated as

u∗(x) = −1

2
gT(x)

((∇ϕc(x)
)T

ωc + ∇εc(x)
)
. (24)

Using μ̂(x̂ j ) in (17a) and u∗(x) in (24), it follows from
ωc = ω̂c(t) + ω̃c(t) that

‖u∗(x) − μ̂(x̂ j )‖2
≤∥∥[

gT(x̂ j )
(∇ϕc(x̂ j )

)T − gT(x)
(∇ϕc(x)

)T]
ω̂c(t)

∥∥2
+ ∥∥gT(x)

((∇ϕc(x)
)T

ω̃c(t) + ∇εc(x)
)∥∥2.

Recalling Assumptions 3 and 5, it yields

∥∥gT(x̂ j )
(∇ϕc(x̂ j )

)T − gT(x)
(∇ϕc(x)

)T∥∥2
= ∥∥(∇ϕc(x̂ j )−∇ϕc(x)

)
g(x̂ j )+∇ϕc(x)

(
g(x̂ j )−g(x)

)∥∥2
≤ 2ML‖σ j (t)‖2.

Thus, the following inequality can be obtained

L̇21(t) ≤ −xTQx − ‖μ̂(x̂ j )‖2 + ι2‖ν̂(x)‖2 + B2
g B

2
ε

+ 2ML‖ω̂c(t)‖2‖σ j (t)‖2 + B2
g B

2
ϕ‖ω̃c(t)‖2. (25)

For the term L̇23(t), by applying theYoung’s inequality
into its second term, L̇23(t) satisfies

L̇23(t) ≤ −
(

αc − 1

2

)
λmin(ψ1ψ

T
1 )‖ω̃c(t)‖2

+ 1

2
α2
c B

2
e , (26)

where Assumption 5 and the fact ψ2 ≥ 1 are used. By
combining (25) and (26), we can obtain that the overall
time derivative of L2(t) is

L̇2(t) ≤ − xTQx+2ML‖ω̂c(t)‖2‖σ j (t)‖2−‖μ̂(x̂ j )‖2

+ι2‖ν̂(x)‖2 + B2
g B

2
ε + 1

2
α2
c B

2
e

−
[(

αc − 1

2

)
λmin(ψ1ψ

T
1 ) − B2

g B
2
ϕ

]
‖ω̃c(t)‖2.

(27)

123



Robust adaptive critic control design 2031

Therefore, it is clear that if (22) and (23) are satisfied,
then L̇2(t) < 0 for any x 
= 0 can be obtained accord-
ing to (27).

When t = s j+1, the events are triggered. The differ-
ence of L2(t) is expressed as


L2(t) = L2(x̂ j+1) − L2
(
x(s−

j+1)
)

= 
L21(t) + 
L22(t) + 
L23(t),

where x(s−
j+1) = limε→0 x(s j+1−ε) and ε is a suffi-

ciently small positive constant. For all t ∈ [s j , s j+1),
L̇2(t) < 0 can be derived from (22), (23) and (27). Con-
sidering that the system states and the cost function are
all continuous, it can acquire


L21(t) = J ∗(x̂ j+1) − J ∗(x(s−
j+1)

) ≤ 0

and 
L23(t) ≤ 0, where


L23(t) =1

2

[
ω̃T
c (x̂ j+1)ω̃c(x̂ j+1) − ω̃T

c

(
x(s−

j+1)
)

× ω̃c
(
x(s−

j+1)
)]

.

Hence, we obtain


L2(t) ≤ 
L22(t) = J ∗(x̂ j+1)− J ∗(x̂ j )
≤ −K(‖σ j+1(s j )‖),

where K(·) is a class-K function [44] and σ j+1(s j ) =
x̂ j+1 − x̂ j . This leads to that L2(t) is decreasing for all
t = s j+1.

Based on these two cases, with the triggering condi-
tion (22) and the uniformly ultimately bounded weight
error in (23), the closed-loop system (1) is asymptoti-
cally stable, which ends the proof. ��

Remark 2 If we regard the first term of weight error
dynamics (21) as a nominal system, which is written
as ˙̃ωcn(t) = −αcψ1ψ

T
1 ω̃cn(t), we can verify that it

is exponentially stable. To this end, we choose a Lya-
punov function as the form Lcn(t) = 0.5ω̃T

cn(t)ω̃cn(t)
and differentiate it along the nominal part to yield
L̇cn(t) = −αcω̃

T
cn(t)ψ1ψ

T
1 ω̃cn(t), which clearly revea-

ls that L̇cn(t) ≤ 0 and exhibits the stability of the
nominal system. Moreover, the solution ω̃cn(t) can be
given by ω̃cn(t) = T (t, 0)ω̃cn(0), where the state tran-
sitionmatrix is defined as Ṫ (t, 0) = −αcψ1ψ

T
1 T (t, 0).

Hence, according to [44], there exist two constants ς3
and ς4 such that

‖T (t, 0)‖ ≤ ς3e
−ς4t ,∀t ≥ 0.

Under such circumstance, we can derive that

‖ω̃cn(t)‖ ≤ ‖T (t, 0)‖‖ω̃cn(0)‖ ≤ ς3‖ω̃cn(0)‖e−ς4t .

Thus, it is shown that for the nominal part of the critic
error dynamics (21), the equilibrium point is exponen-
tially stable in case that ψ1 satisfies the persistence of
excitation condition.Note that this kind of stabilitywith
respect to the nominal system is stronger than the uni-
formly ultimately bounded stability of the whole error
dynamics developed in Theorem 2. Nevertheless, the
existence of the residual error-related term is indeed
indispensable due to the neural network approxima-
tion, which eventually results in a weaker stability of
the critic error dynamics.

It should be mentioned that although two triggering
thresholds σT and σ̂T are provided in Theorems 1 and
2, respectively, it is obvious that two thresholds work in
different design stages. Overall, the event-based robust
adaptive critic control algorithm can be summarized in
Algorithm 1.

Algorithm 1 (Robust adaptive critic control method
with network-based event-triggered formulation)

1: Set the parameter ι and the matrix P , calculate Q = CTPC
and the cost function. Choose an appropriate activation func-
tion ϕc(x) and randomly initialize ω̂c(t).

2: Set the parameter values of αc and ML. Then, conduct adap-
tive critic learning by employing the weight updating rule
(20) and the triggering condition (22) with the threshold σ̂T .

3: After the online training process of step 2, retain the con-
verged weight vector and then proceed the robust H∞ control
implementation.

4: Set the parameter value of Mu and carry out the robust adap-
tive critic control with the triggering condition (8) and the
threshold σT .

5: Get the event-based optimal control law and the worst-case
disturbance law, and then stop the algorithm.

4 Simulation analysis

In this section, a numerical example is conducted to
demonstrate the effectiveness of the event-based non-
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Fig. 2 Convergence curves of the critic network weights

linear H∞ control. We consider a single-link robot arm
with the description in [7,40,47,48], and the mechan-
ical dynamics are derived by

Ḡθ̈ (t) = −MḡH̄ sin(θ(t)) − Dθ̇ (t) + u(t) + ν(t),
(28a)

y(t) = θ(t), (28b)

where θ(t) denotes the angle position, u(t) is the con-
trol, and ν(t) is the perturbation. M = 10 and H̄ = 0.5
are the mass and the length of the robot arm, respec-
tively, ḡ = 9.81 is the gravity acceleration, D = 2 is
the viscous friction, and Ḡ = 10 is the inertia moment.

Define x = [x1, x2]T with x1 = θ and x2 = θ̇ such
that the dynamic equation of system (28) is rewritten
as

[
ẋ1
ẋ2

]
=

[
x2

−4.905 sin x1 − 0.2x2

]
+

[
0
0.1

]
(u+ν),

(29a)

y= x1. (29b)

Obviously, the control and disturbance matrices are
constants, which are both upper-bounded. For instance,
we can choose Bg = Bh = 0.1. Then, the initial state
vector of (29) is set as x0 = [1,−1]T, and choose
P = 2 so that Q = diag{2, 0}. The adaptive critic
controller is designed for system (29) in the following.

In the simulation, the critic neural network is con-
structed as

Ĵ (x) = ω̂T
c ϕc(x) = ω̂c1x

2
1 + ω̂c2x1x2 + ω̂c3x

2
2 ,
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Fig. 3 Adaptive regulation of the state trajectories

where ω̂c = [ω̂c1, ω̂c2, ω̂c3]T and ϕc(x) = [x21 , x1x2,
x22 ]T. Clearly, the derivative of the activation function
is a 3 × 2 function matrix of the form

∇ϕc(x) =
[
2x1 x2 0
0 x1 2x2

]T
.

The neuron number of the hidden layer is often
decided by computer experiment. We can certainly
choose hidden neurons of any number, while we should
also consider the complexity of the computation issue.
In this case study, we find that selecting three hid-
den neurons can lead to satisfactory simulation results.
In other words, it can be observed that the choice of
the activation function is more of an art than science.
For adjusting the critic network, we experimentally set
αc = 1.2, ι = 2, and ML = 36. The sampling time in
the learning process is selected as 0.1 s. Note that we
also employ a probing noise to ensure the persistency of
excitation condition in the trainingprocess. The simula-
tion results of the learning stage are shown in Figs. 2, 3
and4. InFig. 2, it can be observed that the critic network
weight vector converges to [0.6050, 0.2418, 0.1310]T.

The adaptive regulation process of state trajecto-
ries and the triggering condition is displayed in Fig. 3,
where the system is trained under the persistency of
excitation condition and the states are regulated to zero
once the excitation signals are stopped. Figure 4 pro-
vides the adjustment process of the triggering condi-
tion, in which the triggering condition with respect to
‖σ j (t)‖2 and σ̂T is shown. It can be observed that the
time-based controller uses 3000 state samples, while
the event-based controller only needs 1501 samples,
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Fig. 4 Adjustment of the triggering condition with the relation-
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Fig. 5 System state trajectories under the robust H∞ control

thereby resulting in an evident reduction in the data
transmission.

For the controlled plant (29), the obtained control
law is used for 60 s with the external perturbation
ν(t) = 5e−(t) cos(t), t > 0, to evaluate the robust
H∞ control performance. Set Mu = 5, and the sam-
pling time is 0.05 s. The simulation results with the
H∞ feedback control are exhibited in Figs. 5, 6, 7 and
8. Specifically, the system state trajectories and the con-
trol input trajectory are depicted inFigs. 5 and6, respec-
tively. Figure 7 shows the adjustment of the triggering
condition under the robust H∞ control.

Then, referring to the common definition in [27–29],
a ratio function ῑ(t) is defined as

ῑ(t) =
√∫ t

0

(
xT(τ )Qx(τ )+ uT(τ )u(τ )

)
dτ

/∫ t

0
‖ν(τ)‖2dτ ,
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Fig. 7 Adjustment of the triggering condition under the robust
H∞ control
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which is used to reflect the disturbance attenuation of
the H∞ control problem. In Fig. 8, the ratio ῑ(t) grad-
ually converges to 1.2440 over time. This implies that
the designed H∞ controller really works on attaining
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a prespecified L2-gain performance level (i.e., ῑ(t) <

ι = 2).
These simulation results substantiate the effective-

ness of the event-based robust adaptive critic control
strategy with regard to the external disturbance, and
consequently, it possesses the excellent ability of dis-
turbance rejection.

5 Conclusion

In this paper, the event-based H∞ feedback control
of nonlinear dynamic systems involving output infor-
mation has been intensively studied under the event-
based adaptive critic design framework. It formulated
the H∞ control problem of disturbed nonlinear sys-
tem as the problem of two-player zero-sum differential
game. The event-based mechanism and the adaptive
critic approach have been adopted to pursue the Nash
equilibrium solution of the two-player zero-sum dif-
ferential game such that the event-based approximate
optimal control law and the time-based worst-case dis-
turbance law were derived by the learning process of
the critic network, where the triggering condition and
its related threshold were provided. Simultaneously,
this paper also presented the stability analysis of the
closed-loop system and the weight estimation error of
critic neural network. With the experimental verifica-
tion of a single-link robot arm, the theoretical results
have beenwell demonstrated and illustrated. Along this
direction of the event-triggered adaptive critic control,
some interesting research topics can be further studied
in the future work, such as the event-triggered approx-
imate optimal tracking control design for affine non-
linear systems with unmatched uncertainties, for non-
affine nonlinear systems including uncertainties and
unknown dynamics.
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