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Abstract This article studies a direct numerical
approach for fractional advection–diffusion equations
(ADEs). Using a set of cubic trigonometric B-splines
as test functions, a differential quadrature (DQ)method
is firstly proposed for the 1D and 2D time-fractional
ADEs of order (0, 1]. The weighted coefficients are
determined, and with them, the original equation is
transformed into a group of general ordinary differ-
ential equations (ODEs), which are discretized by an
effective difference scheme or Runge–Kutta method.
The stability is investigated under a mild theoretical
condition. Secondly, based on a set of cubic B-splines,
we develop a newCrank–Nicolson typeDQmethod for
the 2D space-fractional ADEs without advection. The
DQ approximations to fractional derivatives are intro-
duced, and the values of the fractional derivatives of B-
splines are computed byderiving explicit formulas. The
presentedDQmethods are evaluated onfive benchmark
problems and the simulations of the unsteady propaga-
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tion of solitons andGaussian pulse. In comparisonwith
the algorithms in the open literature, numerical results
finally illustrate the validity and accuracy.
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1 Introduction

The differential equations with a fractional deriva-
tive serve as superior models in subjects as diverse as
astrophysics, chaotic dynamics, fractal network, signal
processing, continuum mechanics, turbulent flow and
wave propagation [29,34,40,51]. This type of equa-
tions admit the non-local memory effects in mathe-
matical mechanism, thereby filling in a big gap that
the classical models cannot work well for some of the
natural phenomena like anomalous transport. In gen-
eral, the exact solutions can seldom be represented as
closed-form expressions by using elementary functions
that presents a tough challenge to derive a sufficiently
valid method concerned with analytic approximations,
so a keen interest has been attracted to design robust
algorithms to investigate them in numerical perspec-
tives.

In this article, we aim to construct an efficient
method to numerically solve the general problems:
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(I) 1D time-fractional ADEs

∂αu(x, t)

∂tα
+ κ

∂u(x, t)

∂x
− ε

∂2u(x, t)

∂x2
= f (x, t),

(1)

with 0 < α ≤ 1, κ, ε ≥ 0, a ≤ x ≤ b, t > 0, and
the initial and boundary conditions

u(x, 0) = ψ(x), a ≤ x ≤ b, (2)

u(a, t) = g1(t), u(b, t) = g2(t), t > 0; (3)

(II) 2D time-fractional ADEs

∂αu(x, y, t)

∂tα
+ κx

∂u(x, y, t)

∂x
+ κy

∂u(x, y, t)

∂y

−εx
∂2u(x, y, t)

∂x2
− εy

∂2u(x, y, t)

∂y2
= f (x, y, t),

(4)

with 0 < α ≤ 1, κx , κy, εx , εy ≥ 0, (x, y) ∈ �,
t > 0, and the initial and boundary conditions

u(x, y, 0) = ψ(x, y), (x, y) ∈ �, (5)

u(x, y, t) = g(x, y, t), (x, y) ∈ ∂�, t > 0,
(6)

where � = {(x, y) : a ≤ x ≤ b, c ≤ y ≤ d} and
∂� denotes its boundary;

(III) 2D space-fractional ADEs without advection

∂u(x, y, t)

∂t
− εx

∂β1u(x, y, t)

∂xβ1

− εy
∂β2u(x, y, t)

∂yβ2
= f (x, y, t),

(7)

with 1 < β1, β2 < 2, εx , εy ≥ 0, (x, y) ∈ �,
t > 0, and the initial and boundary conditions

u(x, y, 0) = ψ(x, y), (x, y) ∈ �, (8)

u(x, y, t) = 0, (x, y) ∈ ∂�, t > 0, (9)

where � and ∂� are given as above.

In Eqs. (1), (4), the time-fractional derivatives are
defined in Caputo sense, i.e.,

∂αu(x, t)

∂tα
= 1

	(1 − α)

∫ t

0

∂u(x, ξ)

∂ξ

dξ

(t − ξ)α
,

while in Eq. (7), the space-fractional derivatives are
defined in Riemann–Liouville sense, i.e.,

∂β1u(x, y, t)

∂xβ1
= 1

	(2 − β1)

∂2

∂x2

∫ x

a

u(ξ, y, t)dξ

(x − ξ)β1−1 ,

∂β2u(x, y, t)

∂yβ2
= 1

	(2 − β2)

∂2

∂y2

∫ y

c

u(x, ξ, t)dξ

(y − ξ)β2−1 ,

and ∂αu(x,y,t)
∂tα is an analog of ∂αu(x,t)

∂tα , where	(·) is the
Gamma function. It is noted that Eqs. (1)–(3), (4)–(6),
and (7)–(9) reduce into the classical 1D or 2D ADEs if
α = 1, β1 = β2 = 2 are fixed.

In recent decades, fractional ADEs have been
notable subjects of intense research. Except for a few
analytic solutions, various numerical methods have
been done for Eqs. (1)–(3) without advection, cover-
ing implicit difference method [57], high-order finite
element method (FEM) [17], Legendre wavelets and
spectral Galerkin methods [11,23], direct discontin-
uous Galerkin method [13], quadratic spline colloca-
tion method [25], cubic B-spline collocation method
(CBCM) [38], orthogonal spline collocation method
[50], pseudo-spectral method [9], high-order compact
difference method [16], implicit radial basis function
(RBF)meshlessmethod [24], nonpolynomial and poly-
nomial spline methods [12]. In [3,5,37,56], the algo-
rithms based on shifted fractional Jacobi polynomi-
als, Sinc functions and shifted Legendre polynomials,
Haar wavelets and the third kind Chebyshev wavelets
functions were well developed via the integral oper-
ational matrix or collocation strategy for Eqs. (1)–
(3) with variable coefficients. The Gegenbauer poly-
nomial spectral collocation method was proposed in
[14] for the same type of equations, and a Sinc-Haar
collocation method can be found in [33]. Uddin and
Haq considered a radial basis interpolation approach
[48]. Cui established a high-order compact exponen-
tial difference scheme [6]. Razminia et al. proposed
a DQ method for time-fractional diffusion equations
by using Lagrangian interpolation polynomials as test
functions [35]. Shirzadi et al. solved the 2D time-
fractionalADEswith a reaction termvia a local Petrov–
Galerkin meshless method [39]. Gao and Sun derived
two different three-point combined compact alternat-
ing direction implicit (ADI) schemes for Eqs. (4)–
(6) [10], both of which own high accuracy. High-
dimensional space-fractional ADEs are challenging
topics in whether analytic or numerical aspects due to
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the complexity and huge computing burden. The appli-
cation of an numerical method to Eqs. (7)–(9) did not
have large diffusion; for the conventional algorithms,
we refer the readers to [15,28,36,44,52,54] and refer-
ences therein.

The trigonometricB-splines are a class of piecewise-
defined functions constructed from algebraic trigono-
metric spaces, which have got recognition since 1964.
They are preferred to the familiar polynomial B-splines
since they often yield less errors when served as basis
functions in interpolation theory. Nevertheless, using
these basis splines to set up numerical algorithms
is in its infancy and the related works are limited
[1,30]. In this study, a DQ method for the general
ADEs is developed with its weighted coefficients cal-
culated based on cubic trigonometric B-spline (CTB)
functions. The basis splines are slightly modified for
brevity and a few advantages. Difference schemes and
Runge–KuttaGill’smethod are introduced to discretize
the resulting ODEs. The condition ensuring the sta-
bility of the time-stepping DQ method is discussed
and found to be rather mild. Also, we propose a new
cubic B-splines-based DQ method for the 2D space-
fractional diffusion equations by introducing the DQ
approximations to fractional derivatives. The weights
are determined by deriving explicit formulas for the
fractional derivatives of B-splines through a recur-
sive technique of partial integration. The approaches
in presence are straight forward to apply and sim-
ple in implementation on computers; numerical results
highlight the superiority over some previous algo-
rithms.

The remainder is as follows. In Sect. 2, we outline
some basic definitions and the cubic spline functions
that are useful hereinafter. In Sect. 3, how to deter-
mine the weighted coefficients based on these CTB
functions is studied and a time-stepping DQ method
is constructed for Eqs. (1)–(3) and Eqs. (4)–(6). Sec-
tion 4 elaborates on its stable analysis. In Sect. 5,
we suggest a spline-based DQ method for Eqs. (7)–
(9) based on a set of cubic B-splines by explicitly
computing the values of their fractional derivatives at
sampling points. A couple of numerical examples are
included in Sect. 6, which manifest the effectiveness
of our methods. The last section devotes to a conclu-
sion.

2 Preliminaries

Let M, N ∈ Z
+ and a time–space lattice be

�τ = {tn : tn = nτ, 0 ≤ n ≤ N },
�h = {xi : xi = a + ih, 0 ≤ i ≤ M},

with τ = T/N ,h = (b−a)/M on (0, T ]×[a, b]. Then,
some auxiliary results are introduced for preliminaries.

2.1 Fractional derivatives and their discretizations

Given a good enough f (x, t), the formulas

C
0 Dα

t f (x, t) = 1

	(m − α)

∫ t

0

∂m f (x, ξ)

∂ξm
dξ

(t − ξ)1+α−m
,

RL
0 Dα

t f (x, t) = 1

	(m − α)

∂m

∂tm

∫ t

0

f (x, ξ)dξ

(t − ξ)1+α−m
,

define the α-th Caputo and Riemann–Liouville deriva-
tives, respectively, where m − 1 < α < m, m ∈ Z

+,
and particularly, in the case of α = m, both of them
degenerate into the m-th integer-order derivative.

The two frequently-used fractional derivatives are
equivalent with exactness to an additive factor, i.e.,

C
0 Dα

t f (x, t) = RL
0 Dα

t f (x, t) −
m−1∑
l=0

f (l)(x, 0)t l−α

	(l + 1 − α)
;

(10)

see [21,34] for references.UtilizingRL
0 Dα

t t l=	(l+1)tl−α

	(l+1−α)

and a proper scheme to discretize the Riemann–
Liouville derivatives on the right side of Eq. (10), a
difference scheme for Caputo derivative can be

C
0 Dα

t f (x, tn) ∼= 1

τα

n∑
k=0

ωα
k f (x, tn−k)

− 1

τα

m−1∑
l=0

n∑
k=0

ωα
k f (l)(x, 0)t l

n−k

l! ,

(11)

with several valid alternatives of the discrete coeffi-
cients {ωα

k }n
k=0 [4]. Typically, we have

ωα
k = (−1)k

(
α

k

)
= 	(k − α)

	(−α)	(k + 1)
, k ≥ 0, (12)
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whose truncated error is Rτ = O(τ ), and

ωα
k =

(
11

6

)α k∑
p=0

p∑
q=0

μqμp−qlαq lαp−qlαk−p, k ≥ 0,

(13)

with μ = 4
7+√

39i
, μ = 4

7−√
39i

, i = √−1, and

lα0 = 1, lαk =
(
1 − α + 1

k

)
lαk−1, k ≥ 1, (14)

in which case, the truncated error fulfillsRτ = O(τ 3).
Actually, Eq. (14) is the recursive relation of Eq. (12).
Moreover, the coefficients {ωα

k }n
k=0 in Eq. (12) satisfy

(i) ωα
0 = 1, ωα

k < 0, ∀k ≥ 1,

(ii)
∑∞

k=0 ωα
k = 0,

∑n−1
k=0 ωα

k > 0.

These properties are easily obtained from [34].
Reset 0 < α < 1, (11) thus turns into

C
0 Dα

t f (x, tn) = 1

τα

n−1∑
k=0

ωα
k f (x, tn−k)

− 1

τα

n−1∑
k=0

ωα
k f (x, 0) + Rτ . (15)

It is noteworthy that Eq. (15) gives a smooth transi-
tion to the classic schemes when α = 1, for instance,
Eq. (15) would be the four-point backward difference
scheme if α = 1 and {ωα

k }n
k=0 are chosen to be the

ones in Eq. (13), because these coefficients also fulfill∑∞
k=0 ωα

k = 0 and vanish apart from ωα
0 , ωα

1 , ωα
2 and

ωα
3 .

2.2 Cubic spline functions

Let x−i = a − ih, xM+i = b + ih, i = 1, 2, 3 be the
six ghost knots outside [a, b]. Then the desirable CTB
basis functions {CTBm(x)}M+1

m=−1 are defined as [30,49]

CT Bm(x) = 1

χ

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

φ1(x), x ∈ [xm−2, xm−1)

φ2(x), x ∈ [xm−1, xm)

φ3(x), x ∈ [xm, xm+1)

φ4(x), x ∈ [xm+1, xm+2)

0, otherwise

where

φ1(x) = p3(xm−2),

φ2(x) = q(xm+2)p2(xm−1) + p2(xm−2)q(xm)

+ p(xm−2)p(xm−1)q(xm+1),

φ3(x) = p(xm−2)q
2(xm+1) + q2(xm+2)p(xm)

+ p(xm−1)q(xm+1)q(xm+2),

φ4(x) = q3(xm+2),

with the notations

p(xm) = sin

(
x − xm

2

)
,

q(xm) = sin

(
xm − x

2

)
,

χ = sin

(
h

2

)
sin(h) sin

(
3h

2

)
.

The values of CTBm(x) at each knot are given by

CT Bm(xi ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

sin2
(

h

2

)
csc(h) csc

(
3h

2

)
, i = m ± 1

2

1 + 2 cos(h)
, i = m

0, otherwise
(16)

and the values of CTB′
m(x) at each knot are given by

CT B ′
m(xi ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

3

4
csc

(
3h

2

)
, i = m − 1

− 3

4
csc

(
3h

2

)
, i = m + 1

0. otherwise

(17)

Using the same grid information, the cubic B-spline
basis functions {Bm(x)}M+1

m=−1 are defined by

Bm(x) = 1

h3

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ϕ1(x), x ∈ [xm−2, xm−1)

ϕ2(x), x ∈ [xm−1, xm)

ϕ3(x), x ∈ [xm, xm+1)

ϕ4(x), x ∈ [xm+1, xm+2)

0, otherwise

with the piecewise functions

ϕ1(x) = (x − xm−2)
3,
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ϕ2(x) = (x − xm−2)
3 − 4(x − xm−1)

3,

ϕ3(x) = (xm+2 − x)3 − 4(xm+1 − x)3,

ϕ4(x) = (xm+2 − x)3.

Both {CTBm(x)}M+1
m=−1 and {Bm(x)}M+1

m=−1 are locally
compact and twice continuously differentiable. Since
the knots x−1, xM+1 lie beyond [a, b] and the weights
in relation to the B-splines center at both knots do not
participate in practical computation, hereunder, as in
[26] for cubic B-splines, we modify the CTBs by

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

MTB0(x) = CTB0(x) + 2CTB−1(x),

MTB1(x) = CTB1(x) − CTB−1(x),

MTBm(x) = CTBm(x), m = 2, 3, . . . , M − 2,

MTBM−1(x) = CTBM−1(x) − CTBM+1(x),

MTBM (x) = CTBM (x) + 2CTBM+1(x),

(18)

for simplicity, whichwill result in a strictly tri-diagonal
algebraic system after discretization on the uniform
grid. {MTBm(x)}M

m=0 are also linearly independent and
constitute a family of basis elements of a spline space.

3 Description of CTB-based DQ method

On a 2D domain [a, b] × [c, d], letting Mx , My ∈ Z
+,

we add a spatial lattice with equally spaced grid points
with spacing of hx = (b − a)/Mx in x-axis and hy =
(d − c)/My in y-axis, i.e.,

�x = {xi : xi = a + ihx , 0 ≤ i ≤ Mx },
�y = {y j : y j = c + jhy, 0 ≤ j ≤ My}.

DQmethod is understood as a numerical technique for
finding the approximate solutions of differential equa-
tions that reduces the original problem to those of solv-
ing a system of algebraic or ordinary differential equa-
tions via replacing the spatial partial derivatives by the
representative weighted combinations of the functional
values at certain grid points on the whole domain [2].
The key procedure of such method lies in the deter-
mination of its weights and the selection of the test
functions whose derivative values are explicit at the

prescribed discrete grid points. As requested, we let

∂su(xi , t)

∂xs
∼=

M∑
j=0

a(s)
i j u(x j , t), 0 ≤ i ≤ M, (19)

while for 2D problems, we let

∂su(xi , y j , t)

∂xs
∼=

Mx∑
m=0

a(s)
im u(xm, y j , t), (20)

∂su(xi , y j , t)

∂ys
∼=

My∑
m=0

b(s)
jmu(xi , ym, t), (21)

where s ∈ Z
+, 0 ≤ i ≤ Mx , 0 ≤ j ≤ My and a(s)

i j ,

a(s)
im , b(s)

jm are the weighted coefficients allowing us to
approximate the s-th derivatives or partial derivatives
at the given grid points in the DQ methods.

3.1 The calculation of weighted coefficients

In the sequel, we apply {MTBm(x)}M
m=0 to calculate

the 1D, 2D unknown weights. Putting s = 1 and sub-
stituting these basis splines into Eq. (19), we get

∂MTBm(xi )

∂x
=

M∑
j=0

a(1)
i j MTBm(x j ), 0 ≤ i, m ≤ M,

with the weighted coefficients of the first-order deriva-
tive a(1)

i j , 0 ≤ i, j ≤ M , yet to be determined. In view
of (18) and the properties (16)–(17), some manipula-
tions on the above equations yield the matrix–vector
forms

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Aa(1)
0 = Z0,

Aa(1)
1 = Z1,

...

Aa(1)
M = ZM ,

(22)
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where A is the (M + 1) × (M + 1) coefficient matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

A0 + 2A1 A1

0 A0 A1

A1 A0 A1
. . .

. . .
. . .

A1 A0 0
A1 A0 + 2A1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

A0 = 2

1 + 2 cos(h)
,

A1 = sin2
(

h

2

)
csc(h) csc

(
3h

2

)
,

a(1)
k , 0 ≤ k ≤ M , are the weighted coefficient vectors

at xk , i.e., a
(1)
k = [a(1)

k0 , a(1)
k1 , . . . , a(1)

k M ]T, and the right-
side vectors Zk at xk , 0 ≤ k ≤ M , are as follows

Z0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2z
2z
0
0
...

0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, Z1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−z
0
z
0
...

0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, . . . ,

ZM−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
...

0
−z
0
z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, ZM =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
...

0
0

−2z
2z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

with z = 3
4 csc

( 3h
2

)
, respectively. Thus, a(1)

i j are
obtained by solving Eqs. (22) for each point xi . There
are two different way to derive the weighted coeffi-
cients a(2)

i j of the second-order derivative: (i) do a sim-
ilar fashion as above by putting s = 2 in Eq. (19) and
solve an algebraic system for each grid point; (ii) find
the weighted coefficients a(s)

i j , s ≥ 2, corresponding to
the high-order derivatives in a recursive style [41], i.e.,

a(s)
i j = s

(
a(s−1)

i i a(1)
i j − a(s−1)

i j

xi − x j

)
, i 
= j, 0 ≤ i ≤ M,

a(s)
i i = −

M∑
j=0, j 
=i

a(s)
i j , i = j,

which includes s = 2 as a special case. The former
would be less efficient since the associated equations
have to be solved as priority, so the latter one will be
selected during our entire computing process. Proceed-
ing as before via replacing �h by �x , �y leads to a 2D

generalization to get a(1)
im , b(1)

jm of the first-order par-
tial derivatives with regard to variables x , y in Eqs.
(20)–(21) and by them, the following relationships can
further be applied, i.e.,

a(s)
im = s

(
a(s−1)

i i a(1)
im − a(s−1)

im
xi − xm

)
, i 
= m, 0 ≤ i ≤ Mx ,

a(s)
i i = −

Mx∑
m=0,m 
=i

a(s)
im , i = m,

b(s)
jm = s

(
b(s−1)

j j b(1)
jm −

b(s−1)
jm

y j − ym

)
, j 
= m, 0 ≤ j ≤ My,

b(s)
j j = −

My∑
m=0,m 
= j

b(s)
jm , j = m,

to calculate a(s)
im , b(s)

jm with s ≥ 2.
A point worth noticing is that A0, A1 > 0, when

0 < h < 1, 0 < hx , hy < 1. Since A0, A1 can
be deemed to be the functions of h, we obtain their
derivatives

A′
0 = 4 sin(h)

(1 + 2 cos(h))2
,

A′
1 = sec( h

2 ) tan( h
2 )(5 + 6 cos(h))

4(1 + 2 cos(h))2
.

On letting 0 < h < 1, both are proved to be larger
than zero, i.e., A0, A1 are the increasing functions with
respect to h. On the other hand, there exist A0(0) =
0.6667, A1(1) = 0.2738. Then, it suffices to show

2

1 + 2 cos(h)
> 2 sin2

(
h

2

)
csc(h) csc

(
3h

2

)
,

which implies A0 > 2A1, and thus A is a strictly diag-
onally dominant tri-diagonal matrix. Hence, Thomas
algorithm can be applied to tackle the algebraic equa-
tions as Eqs. (22), which simply requires the arithmetic
operation costO(M +1) and would greatly economize
on the memory and computing time in practice.
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3.2 Construction of CTB-based DQ method

In this subpart, a DQmethod based on {MTBm(x)}M
m=0

(MCTB-DQM) is constructed for Eqs. (1)–(3) and Eqs.
(4)–(6). Let s = 1, 2. The substitution of the weighted
sums (19), (20)–(21) into the main equations gives

∂αu(xi , t)

∂tα
+ κ

M∑
j=0

a(1)
i j u(x j , t)

− ε

M∑
j=0

a(2)
i j u(x j , t) = f (xi , t),

with i = 0, 1, . . . , M , and

∂αu(xi , y j , t)

∂tα
+κx

Mx∑
m=0

a(1)
im u(xm, y j , t)

+ κy

My∑
m=0

b(1)
jmu(xi , ym, t)

− εx

Mx∑
m=0

a(2)
im u(xm, y j , t)

− εy

My∑
m=0

b(2)
jmu(xi , ym, t)= f (xi , y j , t),

with i = 0, 1, . . . , Mx , j = 0, 1, . . . , My , which are
indeed a group of α-th general ODEs associated with
the boundary constraints (3), (6), and involveα ∈ (0, 1)
and α = 1 as two separate cases. In what follows, we
employ the notations

un
i = u(xi , tn), un

i j = u(xi , y j , tn),

f n
i = f (xi , tn), f n

i j = f (xi , y j , tn),

gn
1 = g1(tn), gn

2 = g2(tn), gn
i j = g(xi , y j , tn),

for the ease of exposition, where n = 0, 1, . . . , N .

3.2.1 The case of fractional order

Discretizing the ODEs above by the difference scheme
(15) and imposing boundary constraints, we have

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ωα
0U n

i + κτα
M−1∑
j=1

a(1)
i j U n

j − ετα
M−1∑
j=1

a(2)
i j U n

j

= −
n−1∑
k=1

ωα
k U n−k

i +
n−1∑
k=0

ωα
k U 0

i + ταGn
i ,

(23)

with i = 1, 2, . . . , M − 1 and

Gn
i = f n

i − κ
(
a(1)

i0 gn
1 + a(1)

i M gn
2

) + ε
(
a(2)

i0 gn
1 + a(2)

i M gn
2

)
,

for Eqs. (1)–(3), and the following scheme

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ωα
0U n

i j + κxτ
α

Mx −1∑
m=1

a(1)
im U n

mj + κyτ
α

My−1∑
m=1

b(1)
jmU n

im

− εxτ
α

Mx −1∑
m=1

a(2)
im U n

mj − εyτ
α

My−1∑
m=1

b(2)
jmU n

im

= −
n−1∑
k=1

ωα
k U n−k

i j +
n−1∑
k=0

ωα
k U 0

i j + ταGn
i j ,

(24)

with i = 1, 2, . . . , Mx − 1, j = 1, 2, . . . , My − 1, and

Gn
i j = f n

i j −κx
(
a(1)

i0 gn
0 j + a(1)

i Mx
gn

Mx j

)−κy
(
b(1)

j0 gn
i0 + b(1)

j My
gn

i My

)

+ εx
(
a(2)

i0 gn
0 j + a(2)

i Mx
gn

Mx j

) + εy
(
b(2)

j0 gn
i0 + b(2)

j My
gn

i My

)
,

for Eqs. (4)–(6). Eqs. (23)–(24) can further be rewritten
in matrix–vector forms, for instance, letting

Un = [U n
11, . . . , U n

Mx −1,1, U n
12, . . . , U n

Mx −1,My−1]T ,

Gn = [Gn
11, . . . , Gn

Mx −1,1, Gn
12, . . . , Gn

Mx −1,My−1]T ,

for Eqs. (24), we have

ωα
0U

n+ταKUn = −
n−1∑
k=1

ωα
k U

n−k+
n−1∑
k=0

ωα
k U

0+ταGn,

(25)

where

K = κx Iy⊗W1
x +κyW1

y⊗Ix −εx Iy⊗W2
x −εyW2

y⊗Ix ,

with Ix , Iy being the identity matrices in x- and y-axis,
“⊗” being Kronecker product, and
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Wc
z =

⎛
⎜⎜⎜⎜⎜⎝

w
(c)
11 w

(c)
12 · · · w

(c)
1,Mz−1

w
(c)
21 w

(c)
22 · · · w

(c)
2,Mz−1

.

.

.
.
.
.

. . .
.
.
.

w
(c)
Mz−1,1 w

(c)
Mz−1,2 · · · w

(c)
Mz−1,Mz−1

⎞
⎟⎟⎟⎟⎟⎠

, c = 1, 2,

in which, z = x if w = a while z = y if w = b. The
initial states are got from Eqs. (2), (5). As a result, the
approximate solutions are obtained via performing the
iteration in Eqs. (23)–(24) until the last time level by
rewriting them in matrix–vector forms first.

3.2.2 The case of integer order

When α = 1, despite ω1
0 = 1.8333, ω1

1 = −3,
ω1
2 = 1.5, ω1

3 = −0.3333, being the coefficients of
the four-point backward difference scheme, the initial
values with the errors of the same convergent rate are
generally necessary to start Eqs. (23)–(24). However,
this situation would not happen if {ωα

k }n
k=0 in Eq. (12)

are applied. In such a case, to make the algorithm to be
more cost-effective,we useRunge–KuttaGill’smethod
to handle those ODEs instead, which is explicit and
fourth-order convergent. Rearrange the ODEs in a uni-
fied form

∂u
∂t

= F(u), (26)

then the DQ method is constructed as follow

Un = Un−1 + 1

6

[
K1 + (2 − √

2)K2 + (2 + √
2)K3 + K4

]
,

K1 = τF
(
tn−1,U

n−1),
K2 = τF

(
tn−1 + τ

2
,Un−1 + K1

2

)
,

K3 = τF
(

tn−1 + τ

2
,Un−1 +

√
2 − 1

2
K1 + 2 − √

2

2
K2

)
,

K4 = τF
(

tn−1 + τ,Un−1 −
√
2

2
K2 + 2 + √

2

2
K3

)
,

(27)

where u, Un , n = 1, 2, . . . , N , are the unknown vec-
tors and F(·) stands for the matrix–vector system cor-
responding to the weighted sums in ODEs and contains
a(s)

i j or a(s)
im , b(s)

jm , s = 1, 2, as its elements. Meanwhile,
the boundary constraints (3), (6) must be imposed on
F(·) in the way as they are done for the fractional cases
before we can fully run the procedures for Eqs. (27).

4 Stability analysis

This part makes a attempt to study the matrix stability
of Eqs. (26) and the numerical stability of Eqs. (23)–
(24). When α = 1, we rewrite Eqs. (26) by

∂u
∂t

= −Ku + Q, (28)

where Q is a vector containing the right-hand part and
the boundary conditions, andK is the weighted matrix
mentioned before. We discuss the homogeneous case.
The numerical stability of an algorithm for the ODEs
generated by a DQ method relies on the stability of the
ODEs themselves.Only when their solutions are stable
can a well-known method such as Runge–Kutta Gill’s
method yield convergent solutions. It is enough to show
their stability that the real parts of the eigenvalues of
weighted matrix −K are all non-positive. Denote the
row vector consisting of the eigenvalues of Wc

z by λc
z ,

with z = x, y and c = 1, 2. In view of the properties of
Kronecker product, the eigenvalues ofWc

y⊗Ix , Iy⊗Wc
x

are λc
y ⊗ ex and ey ⊗ λc

x (see [22]), respectively, and
therefore, we have the eigenvalues of −K in Eq. (28),
i.e.,

λ = −κxey ⊗λ1
x −κyλ

1
y ⊗ex +εxey ⊗λ2

x +εyλ
2
y ⊗ex ,

where ex , ey are the row vectors of sizes Mx + 1 and
My +1, respectively, with all of their components being
1. The exact solution of ODEs is related to λ and the
condition Re{λ} ≤ 0 is easy to meet because λ2

z are
always verified to be real and negative while λ1

z be
complex with their real parts being very close to zero;
see Fig. 1 for example. More than that, we notice that
the foregoing analysis is also valid for the 1D cases and
the phenomena appearing in Fig. 1 would be enhanced
as the grid numbers increase. Hence, we come to a
conclusion that the ODEs are stable in most cases.

The discussion about the numerical stability of a
fully discrete DQ method is difficult and still sparse
[42,43]. In the sequel, we show the conditionally stable
nature of Eqs. (23)–(24) in the context of L2-norm || · ||
and the analysis is not just applicable to the fractional
case. Without loss of generality, consider the 2D cases
and the discrete coefficients {ωα

k }n
k=0 in Eq. (12). Let

Ũ
0
be the approximation of initial values U0. Then
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Fig. 1 The eigenvalues of the weighted matrices generated by
DQ method when a = c = 0, b = d = 2: (a) W1

z ; (b) W
2
z

Ũ
n + ταKŨ

n = −
n−1∑
k=1

ωα
k Ũ

n−k +
n−1∑
k=0

ωα
k Ũ

0 + ταGn .

(29)

On subtracting Eq. (29) from (25) and letting en =
Un − Ũ

n
, we have the perturbation equation

en = −
n−1∑
k=1

ωα
k (I+ ταK)−1en−k +

n−1∑
k=0

ωα
k (I+ ταK)−1e0,

(30)

where I is the identity matrix in the same size of K. To
prove ||en|| ≤ ||e0||, we make the assumption

||(I + ταK)−1|| ≤ 1. (31)

When n = 1, by taking || · || on both sides of Eq. (30),
||e1|| ≤ ||e0|| is trivial due to ωα

0 = 1. Let

||em || ≤ ||e0||, m = 1, 2, . . . , n − 1.

Using mathematical induction, it thus follows from
the properties of {ωα

k }n
k=0 stated in Sect. 2 that

||en ||=
∣∣∣∣
∣∣∣∣−

n−1∑
k=1

ωα
k (I+ταK)−1en−k +

n−1∑
k=0

ωα
k (I+ταK)−1e0

∣∣∣∣
∣∣∣∣

≤
(
1−

n−1∑
k=0

ωα
k +

n−1∑
k=0

ωα
k

)
||(I+ταK)−1|| max

0≤m≤n−1
||em ||

= ||(I + ταK)−1|| max
0≤m≤n−1

||em || ≤ ||e0||.

Hereinafter, we proceed with a full numerical inves-
tigation on the assumption (31) to explore the potential
factors which may lead to ||(I + ταK)−1|| > 1. At
first, if τα continuously varies from 1 to 0, there holds
||(I+ ταK)−1|| → 1. However, this process can affect
the maximal ratio of the coefficients of advection and
diffusivity to keep (31); we leave this case to the end
of the discussion. To be more representative, we take
τ = 1.0 × 10−3, α = 0.5, and Mx = My = 5, unless
otherwise stated. The main procedures are divided into
three steps: (i) fixing εx , εy , and �, let κx , κy vary and
the values of ||(I + ταK)−1|| as the function of κx , κy

are plotted in (a), (b) of Fig. 2; (ii) fixing κx , κy , and
�, let Mx , My vary and the results are plotted in (c) of
Fig. 2, where κx = κy = 500; (iii) fixing κx , κy, εx , εy ,
let a = c = 0 and b, d vary, and the corresponding
results are presented in (d) of Fig. 2. It is worthy to note
that � is the unit square except the case of (iii), and the
parameters of the same types in x- and y- axis are used
as the same, for example, εx = εy . Now, we consider
the influence brought by τ . Resetting τ = 1.0×10−10,
let εx = εy = 1 and κx , κy vary. The behavior of objec-
tive quantity is plotted in subfigure (e), from which, we
see that the critical ratio between κx , κy and εx , εy to
maintain (31) is about 40, far less than the case of (i),
and can further be improved by increasing Mx , My .

From the foregoing discussion and figures, we sum-
marize the conclusions as follows: (i) if εx , εy are not
small, the tolerant ranges of κx , κy to guarantee (31) are
quite loose and when εx , εy → ∞, ||(I+ταK)−1|| can
be very close to zero; (ii) if κx , κy are larger than εx , εy

and εx , εy themselves are small, ||(I+ταK)−1|| can be
larger than 1; however, such issue can be remedied by
increasing the grid numbers; (iii) in general, the larger
Mx , My , the smaller ||(I+ταK)−1||; (iv)when the com-
putational domain expands, ||(I+ ταK)−1|| grows at a
speed, whichmay result in the invalidation of (31) if εx ,
εy and Mx , My remain unchanged; (v) when τ → 0,
the critical ratio between κx , κy and εx , εy to maintain
this assumption appears to decrease, but it would be
enhanced as the grid is refined.

123



1816 X. G. Zhu et al.

0 50 100 150 200 250 300 350 400
0

0.2

0.4

0.6

0.8

κ
x

κ
y

||(
1+

τα  K
)−1

|| ε
x
=ε

y
=1 ε

x
=ε

y
=100

(a)

0 10 20 30 40 50

1

1.2

1.4

κ
x

κ
y

||(
1+

τα  K
)−1

|| ε
x
=ε

y
=0.1 ε

x
=ε

y
=0.01

(b)

10 20 30 40 50 60
0

0.5

1

1.5

M
x
  M

y

||(
1+

τα  K
)−1

|| ε
x
=ε

y
=0.1 ε

x
=ε

y
=0.01

(c)

5

0 2 4 6 8 10 12 14
0

0.5

1

1.5

b, d

||(
1+

τα  K
)−1

|| κ
x
=κ

y
=ε

x
=ε

y
=1 κ

x
=κ

y
=ε

x
=ε

y
=5

(d)

0 10 20 30 40 50
0.9998

0.9999

1

1.0001

κ
x

κ
y

||(
1+

τα  K
)−1

|| M
x
=M

y
=5 M

x
=M

y
=10

(e)

Fig. 2 The values of ||(I + ταK)−1|| versus the variation of
various factors: κx , κy , εx , εy , Mx , My , and b, d

Consequently, the assumption is meaningful and
essentially a mild theoretical restriction in practise.

5 Description of cubic B-spline DQ method

In this section, a robust DQ method (MCB-DQM)
based on the modified cubic B-splines {MBm(x)}M

m=0

is established for Eqs. (7)–(9) by introducing the DQ
approximations to fractional derivatives. In the light of
the essence of traditional DQ methods, we consider

∂β1u(xi , y j , t)

∂xβ1
∼=

Mx∑
m=0

a(β1)
im u(xm, y j , t), (32)

∂β2u(xi , y j , t)

∂yβ2
∼=

My∑
m=0

b(β2)
jm u(xi , ym, t), (33)

for fractional derivatives, in constructing the DQ algo-
rithm, where 0 ≤ i ≤ Mx , 0 ≤ j ≤ My and the

weighted coefficients a(β1)
im , b(β2)

jm satisfy

∂β1MBk(xi )

∂xβ1
=

Mx∑
m=0

a(β1)
im MBk(xm), 0 ≤ i, k ≤ Mx ,

(34)

∂β2MBk(y j )

∂yβ2
=

My∑
m=0

b(β2)
jm MBk(ym), 0 ≤ j, k ≤ My .

(35)

The validation of Eqs. (32)–(33) is ensured by the
linear properties of fractional derivatives. a(β1)

im , b(β2)
jm

are then determined by tackling the resulting algebraic
problems from the above equations for each axis if
the values of the fractional derivatives of B-splines
{MBm(x)}M

m=0 at all sampling points are known.

5.1 The explicit formulas of fractional derivatives

It is the weakly singular integral structure that makes it
difficult to calculate the values of the fractional deriva-
tives for a function as B-spline at a sampling point. In
the text that follows, we concentrate on the explicit
expressions of the β-th (1 < β < 2) Riemann–
Liouville derivative of B-splines {Bm(x)}M+1

m=−1 with a
recursive technique of integration by parts. Since these
basis splines are piecewise and locally compact on four
consecutive subintervals, we have
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RL
x0 Dβ

x Bm(x)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, x ∈ [x0, xm−2)
RL
xm−2

Dβ
x ϕ1(x), x ∈ [xm−2, xm−1)

RL
xm−2

Dβ
xm−1ϕ1(x)

+RL
xm−1

Dβ
x ϕ2(x), x ∈ [xm−1, xm)

RL
xm−2

Dβ
xm−1ϕ1(x)

+RL
xm−1

Dβ
xm ϕ2(x)

+RL
xm

Dβ
x ϕ3(x), x ∈ [xm , xm+1)

RL
xm−2

Dβ
xm−1ϕ1(x)

+RL
xm−1

Dβ
xm ϕ2(x)

+RL
xm

Dβ
xm+1ϕ3(x)

+RL
xm+1

Dβ
x ϕ4(x), x ∈ [xm+1, xm+2)

RL
xm−2

Dβ
xm−1ϕ1(x)

+RL
xm−1

Dβ
xm ϕ2(x)

+RL
xm

Dβ
xm+1ϕ3(x)

+RL
xm+1

Dβ
xm+2ϕ4(x), x ∈ [xm+2, xM ]

with 2 ≤ m ≤ M − 2. The compact supports of
BM−1(x), BM (x), and BM+1(x) partially locate on the
outside of [x0, xM ], so do B−1(x), B0(x), and B1(x);
nevertheless, BM−1(x), BM (x), and BM+1(x) can be
thought of as the special cases of the aforementioned
argument, so are omitted here. Further, we have

RL
x0 Dβ

x B−1(x)=
{

RL
x0 Dβ

x ϕ4(x), x ∈ [x0, x1)
RL
x0 Dβ

x1ϕ4(x), x ∈ [x1, xM ]

RL
x0 Dβ

x B0(x)=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

RL
x0 Dβ

x ϕ3(x), x ∈ [x0, x1)
RL
x0 Dβ

x1ϕ3(x)

+RL
x1 Dβ

x ϕ4(x), x ∈ [x1, x2)
RL
x0 Dβ

x1ϕ3(x)

+RL
x1 Dβ

x2ϕ4(x), x ∈ [x2, xM ]

RL
x0 Dβ

x B1(x)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

RL
x0 Dβ

x ϕ2(x), x ∈ [x0, x1)
RL
x0 Dβ

x1ϕ2(x)

+RL
x1 Dβ

x ϕ3(x), x ∈ [x1, x2)
RL
x0 Dβ

x1ϕ2(x)

+RL
x1 Dβ

x2ϕ3(x)

+RL
x2 Dβ

x ϕ4(x), x ∈ [x2, x3)
RL
x0 Dβ

x1ϕ2(x)

+RL
x1 Dβ

x2ϕ3(x)

+RL
x2 Dβ

x3ϕ4(x). x ∈ [x3, xM ]

On the other hand, as the integrands of the integra-
tion in fractional derivatives, ϕi (x), i = 1, 2, 3, 4, are
cubic polynomials, for which, the order shrinks by one

each time integration by parts is applied. Being aware
of this, we can eliminate the weakly singular inte-
grations by repeating integration by parts four times
for each ϕi (x) to derive the fully explicit formulas.
The derivation processes are lengthy and tedious; we
therefore outline the specific expressions of B-splines
RL
x0 Dβ

x Bm(x), −1 ≤ m ≤ M + 1, in “Appendix”.

5.2 Construction of cubic B-spline DQ method

Use the early notations for brevity. On using DQ
approximations (32)–(33) to handle fractional deriva-
tives, Eq. (7) is transformed into a set of first-order
ODEs

∂u(xi , y j , t)

∂t
− εx

Mx∑
m=0

a(β1)
im u(xm, y j , t)

− εy

My∑
m=0

b(β2)
jm u(xi , ym, t) = f (xi , y j , t),

(36)

with i = 0, 1, . . . , Mx , j = 0, 1, . . . , My . Imposing
the boundary constraint (9) on Eq. (36) and applying
the Crank–Nicolson scheme in time, we thus obtain the
following spline-based DQ scheme

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U n
i j − τεx

2

Mx −1∑
m=1

a(β1)
im U n

mj − τεy

2

My−1∑
m=1

b(β2)
jm U n

im

= U n−1
i j + τεx

2

Mx −1∑
m=1

a(β1)
im U n−1

mj

+ τεy

2

My−1∑
m=1

b(β2)
jm U n−1

im + τ f n−1/2
i j ,

(37)

where i = 1, 2, . . . , Mx − 1, j = 1, 2, . . . , My − 1. It
is visible that DQ methods are truly meshless and con-
venient in implementation. Due to the insensitivity to
dimensional changes, (37) can easily be generalized to
the higher-dimensional space-fractional problems, but
do not cause the rapid increase of computing burden.

6 Illustrative examples

In this section, a couple of numerical examples are car-
ried out to gauge the practical performance of MCTB-
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DQM and new MCB-DQM. In order to check their
accuracy, we compute the errors by using the norms

e∞(M) ∼= max
i

∣∣∣un
i − U n

i

∣∣∣,

e2(M) ∼=
√√√√ 1

M

M−1∑
i=1

∣∣∣un
i − U n

i

∣∣∣2,

eN (M) ∼=
√√√√M−1∑

i=1

∣∣∣un
i − U n

i

∣∣∣2
/ M−1∑

i=1

∣∣∣U 0
i

∣∣∣2,

e∞(Mx , My) ∼= max
i, j

∣∣∣un
i j − U n

i j

∣∣∣,

e2(Mx , My) ∼=

√√√√√ 1

Mx My

Mx −1∑
i=1

My−1∑
j=1

∣∣∣un
i j − U n

i j

∣∣∣2,

where eN (M) is termed by a normalized L2-norm. As
to {ωα

k }n
k=0 in the schemes (23)–(24), we use (12) in

the first and fifth examples and (13) in the others but
not the last two ones. In the computation, our algo-
rithms are implemented on MATLAB platform in a
Lenovo PC with Intel(R) Pentium(R) G2030 3.00GHz
CPU and 4 GB RAM except the fourth example. The
obtained results are comparatively discussed with the
early works available in the open literature.

Example 6.1 Let κ = 1, ε = 2; Eqs. (1)–(3)
with ψ(x) = exp(x), g1(t) = Eα(tα), g2(t) =
exp(1)Eα(tα) and homogeneous forcing term are con-
sidered on [0, 1], where E(tα) is the Mittag–Leffler
function

Eα(z) =
∞∑

k=0

zk

	(αk + 1)
, 0 < α < 1.

It is verified that its solution isu(x, t) = exp(x)E(tα).
In order to show the convergence of MCTB-DQM, we
fix τ = 1.0× 10−5 so that the temporal errors are neg-
ligible as compared to spatial errors. The numerical
results at t = 0.1 for various α are displayed in Table
1; the convergent rate is shortly written as “Cov. rate”.
As one sees, our method is pretty stable and convergent
with almost spatial second-order for this problem.

Table 1 The numerical results at t = 0.1 with τ = 1.0 × 10−5

for Example 6.1

α M e2(M) Cov. rate e∞(M) Cov. rate

0.2 8 2.4430e−03 – 3.5200e−03 –

16 6.3696e−04 1.9394 9.2142e−04 1.9337

32 1.6272e−04 1.9688 2.4362e−04 1.9192

64 4.1425e−05 1.9738 6.2649e−05 1.9592

128 1.0765e−05 1.9441 1.5906e−05 1.9777

0.5 8 1.2489e−03 – 1.8283e−03 –

16 3.2655e−04 1.9352 4.8198e−04 1.9235

32 8.3679e−05 1.9644 1.2771e−04 1.9160

64 2.1466e−05 1.9628 3.3008e−05 1.9520

128 5.7295e−06 1.9056 8.4114e−06 1.9724

0.8 8 9.7261e−04 – 1.4452e−03 –

16 2.5487e−04 1.9321 3.8329e−04 1.9147

32 6.5378e−05 1.9629 1.0160e−04 1.9156

64 1.6774e−05 1.9625 2.6330e−05 1.9481

128 4.4723e−06 1.9072 6.7183e−06 1.9705

Example 6.2 In this test, we solve a diffusion equation
on [0, 1]with ε = 1,ψ(x) = 4x(1−x), zero boundary
condition and right side. Its true solution has the form

u(x, t) = 16

π3

∞∑
k=1

1

k3
Eα(−k2π2tα)(1 − (−1)k) sin(kπx).

For comparison of the numerical results given by
FDS-D I, FDS-D II [53] and the semi-discrete FEM
[18], we choose the same time stepsize τ = 1.0×10−4.
Letting α = 0.1, 0.5 and 0.95, the corresponding
results of these four methods at t = 1 are tabulated
side by side in Table 2, from which, we conclude
that MCTB-DQM is accurate and produces very small
errors as the other three methods as the grid number M
increases.

Example 6.3 Let κ = 0, ε = 1; we solve Eqs. (1)–(3)
with homogeneous initial and boundary values, and

f (x, t) = 2t2−α sin(2πx)

	(3 − α)
+ 4π2t2 sin(2πx),

on [0, 1]. The true solution is u(x, t) = t2 sin(2πx).
The algorithm is first run with α = 0.8, τ = 2.0 ×
10−2 and M = 50. In Fig. 3, we plot the approximate
solution and a point to point error distribution at t =
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Table 2 A comparison of eN (M) at t = 1 with τ = 1.0 × 10−4 for Example 6.2

α M FDS-D I [53] FDS-D II [53] FEM [18] MCTB-DQM

0.1 8 9.98e−04 1.00e−03 5.23e−04 2.7445e−04

16 2.44e−04 2.53e−04 1.29e−04 3.6823e−05

32 5.36e−05 6.33e−05 3.21e−05 5.0524e−06

64 5.89e−06 1.55e−05 8.01e−06 9.6533e−07

128 6.08e−06 3.62e−06 2.00e−06 4.6423e−07

0.5 8 7.13e−04 7.13e−04 3.37e−04 1.9258e−04

16 1.79e−04 1.79e−04 8.31e−04 2.6563e−05

32 4.46e−05 4.44e−05 2.07e−05 4.5588e−06

64 1.07e−05 1.06e−05 5.17e−06 1.7866e−06

128 2.23e−06 2.12e−06 1.30e−06 1.4534e−06

0.95 8 1.11e−04 1.11e−04 4.84e−05 2.8976e−05

16 2.83e−05 2.82e−05 1.21e−05 4.0937e−06

32 7.09e−06 7.08e−06 3.05e−06 8.7766e−07

64 1.76e−06 1.75e−06 7.93e−07 4.7682e−07

128 4.29e−07 4.23e−07 2.32e−07 4.2766e−07
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Fig. 3 The approximate solution and error distribution at t = 1 with α = 0.8 for Example 6.3

1, where good accuracy is observed. In Table 3, we
then report a comparison of e2(M), e∞(M) at t = 1
between MCTB-DQM and CBCM [38], when α =
0.3. Here, MCTB-DQM uses τ = 5.0 × 10−3 while
CBCM chooses τ = 1.25 × 10−3. As expected, our
approach generates the approximate solutions with a
better accuracy than those obtained by CBCM.

Example 6.4 We consider a 2D diffusion equation on
[−1, 1]×[−1, 1]with εx = εy = 1,which is referred to
by Zhai and Feng as a test of a block-centered finite dif-

Table 3 A comparison of e2(M), e∞(M) at t = 1 with α = 0.3
for Example 6.3

M CBCM [38] MCTB-DQM

e2(M) e∞(M) e2(M) e∞(M)

8 3.4134e−02 4.8273e−02 9.4300e−03 1.5762e−02

16 8.7334e−03 1.2351e−02 1.1924e−03 2.1670e−03

32 2.1955e−03 3.1048e−03 1.5040e−04 2.8541e−04

64 5.4957e−04 7.7721e−04 1.8925e−05 3.6701e−05

128 1.3739e−04 1.9430e−04 2.3752e−06 4.6559e−06
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Fig. 4 The approximate solution and error distribution at t = 0.5 with α = 0.5 for Example 6.4

Table 4 A comparison of e∞(Mx , My) at t = 0.5 with α = 0.5
for Example 6.4

Mx , My BCFDM [55] MCTB-DQM

e∞(Mx , My) Cov. rate e∞(Mx , My) Cov. rate

12 8.75e−02 – 3.3376e−01 –

24 2.73e−02 1.68 4.6331e−03 6.1707

48 8.26e−03 1.73 3.4566e−04 3.7446

96 2.24e−03 1.88 1.8605e−05 4.2156

ference method (BCFDM) on nonuniform grids [55].
The forcing function is specified to enforce

u(x, y, t) = (1 + t2) tanh(20x) tanh(20y).

Under τ = 1.0 × 10−2, Mx = My = 60 and
α = 0.5, we first plot the approximate solution and
a point to point error distribution at t = 0.5 in Fig. 4.
Then, we compare MCTB-DQM and BCFDM in term
of e∞(Mx , My) at t = 0.5 in Table 4. It is obvious
thatMCTB-DQMproduces significantly smaller errors
than BCFDM as the grid number increases despite a
smaller time stepsize τ = 2.5 × 10−3 and the nonuni-
form girds BCFDM adopts; moreover, MCTB-DQM
provides more than quadratic rate of convergence for
this problem.

Example 6.5 In this test, we simulate the solitons prop-
agation and collision governed by the following time-
fractional nonlinear Schrödinger equation (NLS):

i
∂αu

∂tα
+ ∂2u

∂x2
+ β|u|2u = 0, x ∈ (−∞,+∞),

with i = √−1 and β being a real constant, subjected
to the initial values of two Gaussian types:

(i) mobile soliton

ψ(x) = sech(x) exp(2ix); (38)

(ii) double solitons collision

ψ(x) =
2∑

j=1

sech(x − x j ) exp(ip(x − x j )). (39)

When α = 1 and β = 2, the NLS with Eq. (38) has
the soliton solution u(x, t) = sech(x − 4t) exp(i(2x −
3t)). As the solutions would generally decay to zero as
|x | → ∞, we truncate the system into a bounded inter-
val � = [a, b] with a  0 and b � 0, and enforce
periodic or homogeneous Dirichlet boundary condi-
tions. Letting u(x, t) = U (x, t) + iV (x, t). Then, the
original equation can be recast as a coupled diffusion
system

∂αU

∂tα
+ ∂2V

∂x2
+ β(U 2 + V 2)V = 0,

∂αV

∂tα
− ∂2U

∂x2
− β(U 2 + V 2)U = 0.

After applying the scheme (23), nevertheless, a non-
linear system has to be solved at each time step. In such
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Table 5 The numerical results in term of e2(M) at t = 0.1 for
Example 6.5

α Method Real part Imaginary part CPU time

0.2 Scheme (23) 7.4588e−04 7.3396e−04 10.355 (s)

0.5 Scheme (23) 3.9328e−03 3.7620e−03 10.819 (s)

0.8 Scheme (23) 4.5245e−03 4.6714e−03 10.775 (s)

1.0 Scheme (23) 2.2229e−03 2.2153e−03 1.7436 (s)

Scheme (26) 8.0954e−04 8.1843e−04 0.1521 (s)

a case, the Newton’s iteration is utilized to treat it and
terminated by reaching a solution with tolerant error
1.0×10−12 if α = 1, for which, the Jacobian matrix is

J =
(

2U V U 2 + 3V 2

−3U 2 − V 2 −2U V

)
.

When α 
= 1, because the analytic solutions still
remain unknown and the Newton’s procedure relies
heavily on its initial values, we instead employ the
trust-region-dogleg algorithm built into MATLAB to
improve the convergence of iteration. At first, taking
τ = 2.0×10−3, M = 100, β = 2, and� = [−10, 10],
the mean square errors at t = 0.1 with the initial con-
dition (38) for various α are reported in Table 5, where
the solutions computed by using the coefficients (13)
on a very fine time–space lattice, i.e., τ = 2.5× 10−4,
M = 400, are adopted as reference solutions (α 
= 1).
As seen from Table 5, our methods are convergent and
applicable to nonlinear coupled problems; besides, the
scheme (26) is clearly more efficient than (23) since an

extra Newton’s outer loop is avoided. Then, retaking
M = 200 and � = [−20, 20], we display the evo-
lution of the amplitude of the mobile soliton created
by (23) for α = 0.98 and 1.0 in Fig. 5, respectively.
Using the same discrete parameters, we consider the
double solitons collision for α = 0.96 and 1.0 with
x1 = −6, x2 = 6, and p = ±2 in Fig. 6. It is easily
drawn from these figures that the width and height of
the solitons have been significantly changedby the frac-
tional derivative. In particular, when α = 1, a collision
of double solitons without any reflection, transmission,
trapping and creation of new solitary waves is exhib-
ited, which says that it is elastic, while in fractional
cases, the shapes of the solitons may not be retained
after they intersect each other.

Example 6.6 In this test,we simulate anunsteadyprop-
agation of a Gaussian pulse governed by a classical
2Dadvection-dominated diffusion equation on a square
domain [0, 2]× [0, 2] by using the scheme (26), which
has been extensively studied [19,27,31,45]. The Gaus-
sian pulse solution is expressed as

u(x, y, t)= 1

1 + 4t

× exp

(
− (x −κx t −0.5)2

εx (1 + 4t)
− (y −κyt −0.5)2

εy(1 + 4t)

)
,

and the initial Gaussian pulse and boundary values are
taken from the pulse solution. Letting κx = κy = 0.8,
εx = εy = 0.01,we display its true solution at t = 1.25
with Mx = My = 50 and the used lattice points on
problem domain in Fig. 7, which describe a pulse cen-

Fig. 5 The single soliton propagation for α = 0.98, 1.0 with τ = 2.0 × 10−3 and M = 200
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Fig. 6 The interaction of double solitons for α = 0.96, 1.0 with τ = 2.0 × 10−3 and M = 200
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Fig. 7 The true solution at t = 1.25 and spatial lattice points for Example 6.6

tered at (1.5, 1.5) with a pulse height of 1/6. Using the
same grid number together with τ = 5.0 × 10−3, we
present the contour plots of the approximate solutions
at t = 0, 0.25, 0.75, 1.25 created by MCTB-DQM in
Fig. 8. As the graph shows, the pulse is initially cen-
tered at (0.5, 0.5)with a pulse height of 1, then it moves
toward a position centered at (1.5, 1.5); during this pro-
cess, its width and height appear to be continuously
varying as the time goes by. Besides, the last contour
plot in Fig. 8 coincides with the true solution plotted in
Fig. 7. Retaking τ = 6.25×10−3 and Mx = My = 80,
we compare our results with those obtained by some
previous algorithms as nine-point high-order compact

(HOC) schemes [19,31], Peaceman–Rachford ADI
scheme (PR-ADI) [32], HOC-ADI scheme [20], expo-
nential HOC-ADI scheme (EHOC-ADI) [46], HOC
boundary value method (HOC-BVM) [7], compact
integrated RBF ADI method (CIRBF-ADI) [45], cou-
pled compact integrated RBF ADI method (CCIRBF-
ADI) [47], and the Galerkin FEM combined with the
method of characteristics (CGFEM) [8], at t = 1.25
in Table 6. We implement CGFEM on a quasi-uniform
triangular mesh with the meshsize 2.5×10−2 by using
both Lagrangian P1 and P2 elements. Also, average
absolute errors are added as supplements to evaluate
and compare their accuracy. As seen from Table 6,
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Fig. 8 The contour plots of Gaussian pulse at t = 0, 0.25, 0.75, 1.25 with τ = 5.0 × 10−3 and Mx = My = 50

all of these methods are illustrated to be very accu-
rate to capture the Gaussian pulse except the PR-ADI
scheme; besides, our method reaches a better accuracy
than the others and even shows promise in treating the
advection–diffusion equations in the high Péclet num-
ber regime.

Example 6.7 In the last test, we consider the 2D space-
fractional Eqs. (7)–(9) on [0, 1]×[0, 1]with εx = εy =
1,ψ(x, y) = x2(1− x)2y2(1− y)2, and homogeneous
boundary values. The source term is manufactured as

f (x, y, t) = −e−t x2(1 − x)2y2(1 − y)2

− 2e−t x2−β1 y2(1 − y)2

	(3 − β1)

(
1 − 6x

3 − β1
+ 12x2

(3 − β1)(4 − β1)

)

− 2e−t x2(1 − x)2y2−β2

	(3 − β2)

(
1 − 6y

3 − β2
+ 12y2

(3 − β2)(4 − β2)

)

to enforce the analytic solution u(x, y, t) = e−t x2

(1 − x)2y2(1 − y)2. Letting β1 = 1.1, β2 = 1.3, and
τ = 2.5 × 10−4, we solve the problem via the FEM
proposed by [52] and MCB-DQM, and compare their
numerical results at t = 0.2 in Table 7, where the P1
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Table 6 A comparison of global errors at t = 1.25 with τ =
6.25 × 10−3 and Mx = My = 80 for Example 6.6.

Method Average error e2(Mx , My) e∞(Mx , My)

CIRBF-ADI [45] 6.742e−06 2.197e−05 1.703e−04

CCIRBF-ADI [47] 5.989e−06 1.904e−05 1.427e−04

Noye and Tan [31] 1.971e−05 1.280e−04 6.509e−04

Kalita et al. [19] 1.597e−05 1.024e−04 4.477e−04

PR-ADI [32] 3.109e−04 2.025e−03 7.778e−03

HOC-ADI [20] 9.218e−06 5.931e−05 2.500e−04

EHOC-ADI [46] 9.663e−06 6.194e−05 2.664e−04

HOC-BVM [7] 9.4931e−06 – 2.4766e−04

CGFEM P1 6.3746e−05 1.8849e−04 1.5731e−03

CGFEM P2 1.5667e−05 5.4061e−05 5.8044e−04

MCTB-DQM 9.1512e−07 5.6996e−06 2.2830e−05

element and structured meshes are adopted. The data
indicate that DQ method converges toward the ana-
lytic solution as the grid numbers increase and admits
slightly better results than FEM. More importantly, the
implemental CPU times ofMCB-DQMare far less than
those of FEM, which confirm its high computing effi-
ciency.

7 Conclusion

The ADEs are the subjects of active interest in mathe-
matical physics and the related areas of research. In this
work, we have proposed an effective DQ method for

such equations involving the derivatives of fractional
orders in time and space. Its weighted coefficients are
calculated by making use of modified CTBs and cubic
B-splines as test functions. The stability of DQmethod
for the time-fractional ADEs in the context of L2-norm
is performed. The theoretical condition required for the
stable analysis is numerically surveyed at length. We
test the codes on several benchmark problems and the
outcomes have demonstrated that it outperforms some
of the previously reported algorithms such as BCFDM
and FEM in term of overall accuracy and efficiency.

In a linear space, spanned by a set of proper basis
functions as B-splines, any function can be represented
by a weighted combination of these basis functions.
While all basis functions are defined, the function
remains unknown because the coefficients on the front
of basis functions are still unknown. However, when
all basis functions satisfy Eqs. (34)–(35), by virtue of
linearity, it can be examined that the objective function
satisfies Eqs. (34)–(35) as well. This is the essence of
DQ methods, which guarantees their convergence.

Despite the error bounds are difficult to determine,
the numerical results illustrate that the spline-basedDQ
method admits the convergent results for the fractional
ADEs. The presented approach can be generalized to
the higher-dimensional and other complexmodel prob-
lems arising in material science, structural and fluid
mechanics, heat conduction, biomedicine, differential
dynamics, and so forth. High computing efficiency, low
memory requirement, and the ease of programming are
its main advantages.

Table 7 A comparison of global errors at t = 0.2 with τ = 2.5 × 10−4, β1 = 1.1, and β2 = 1.3 for Example 6.7

Method Mx , My e2(Mx , My) Cov. rate e∞(Mx , My) Cov. rate CPU time

FEM [52] 10 6.5781e−05 – 1.5632e−04 – 63.750(s)

15 3.0082e−05 1.9296 7.2433e−05 1.8972 199.37(s)

20 1.7376e−05 1.9079 4.1321e−05 1.9511 494.98(s)

25 1.1404e−05 1.8872 2.6599e−05 1.9741 1062.7(s)

MCB-DQM 10 5.4217e−05 – 1.4763e−04 – 0.3726(s)

15 2.6606e−05 1.7556 6.9553e−05 1.8562 1.1785(s)

20 1.5559e−05 1.8650 4.0088e−05 1.9153 4.0598(s)

25 1.0207e−05 1.8892 2.6163e−05 1.9124 11.267(s)
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Appendix: The explicit formulas of the fractional
derivatives of cubic B-splines

The fractional derivatives center at x−1, x0, and x1:

RL
x0 Dβ

x B−1(x)=
⎧⎨
⎩

(1−β)(x−x0)−β

	(2−β)
− 3(x−x0)1−β

	(2−β)h + 6(x−x0)2−β

	(3−β)h2
− 6(x−x0)3−β

	(4−β)h3
, x ∈ [x0, x1)

(1−β)(x−x0)−β

	(2−β)
− 3(x−x0)1−β

	(2−β)h + 6(x−x0)2−β

	(3−β)h2
− 6(x−x0)3−β

	(4−β)h3
+ 6(x−x1)3−β

	(4−β)h3
, x ∈ [x1, xM ]

RL
x0 Dβ

x B0(x)=

⎧⎪⎪⎨
⎪⎪⎩

4(1−β)(x−x0)−β

	(2−β)
− 12(x−x0)2−β

	(3−β)h2
+ 18(x−x0)3−β

	(4−β)h3
, x ∈ [x0, x1)

4(1−β)(x−x0)−β

	(2−β)
− 12(x−x0)2−β

	(3−β)h2
+ 18(x−x0)3−β

	(4−β)h3
− 24(x−x1)3−β

	(4−β)h3
, x ∈ [x1, x2)

4(1−β)(x−x0)−β

	(2−β)
− 12(x−x0)2−β

	(3−β)h2
+ 18(x−x0)3−β

	(4−β)h3
− 24(x−x1)3−β

	(4−β)h3
+ 6(x−x2)3−β

	(4−β)h3
, x ∈ [x2, xM ]

RL
x0 Dβ

x B1(x)=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(1−β)(x−x0)−β

	(2−β)
+ 3(x−x0)1−β

	(2−β)h + 6(x−x0)2−β

	(3−β)h2
− 18(x−x0)3−β

	(4−β)h3
, x ∈ [x0, x1)

(1−β)(x−x0)−β

	(2−β)
+ 3(x−x0)1−β

	(2−β)h + 6(x−x0)2−β

	(3−β)h2
− 18(x−x0)3−β

	(4−β)h3
+ 36(x−x1)3−β

	(4−β)h3
, x ∈ [x1, x2)

(1−β)(x−x0)−β

	(2−β)
+ 3(x−x0)1−β

	(2−β)h + 6(x−x0)2−β

	(3−β)h2
− 18(x−x0)3−β

	(4−β)h3
+ 36(x−x1)3−β

	(4−β)h3
− 24(x−x2)3−β

	(4−β)h3
, x ∈ [x2, x3)

(1−β)(x−x0)−β

	(2−β)
+ 3(x−x0)1−β

	(2−β)h + 6(x−x0)2−β

	(3−β)h2
− 18(x−x0)3−β

	(4−β)h3
+ 36(x−x1)3−β

	(4−β)h3
− 24(x−x2)3−β

	(4−β)h3
+ 6(x−x3)3−β

	(4−β)h3
. x ∈ [x3, xM ]

The fractional derivatives center at xm with 2 ≤ m ≤
M + 1:

RL
x0 Dβ

x Bm(x)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, x ∈ [x0, xm−2)
6(x−xm−2)

3−β

	(4−β)h3
, x ∈ [xm−2, xm−1)

6(x−xm−2)
3−β

	(4−β)h3
− 24(x−xm−1)

3−β

	(4−β)h3
, x ∈ [xm−1, xm)

6(x−xm−2)
3−β

	(4−β)h3
− 24(x−xm−1)

3−β

	(4−β)h3
+ 36(x−xm)3−β

	(4−β)h3
, x ∈ [xm, xm+1)

6(x−xm−2)
3−β

	(4−β)h3
− 24(x−xm−1)

3−β

	(4−β)h3
+ 36(x−xm)3−β

	(4−β)h3
− 24(x−xm+1)

3−β

	(4−β)h3
, x ∈ [xm+1, xm+2)

6(x−xm−2)
3−β

	(4−β)h3
− 24(x−xm−1)

3−β

	(4−β)h3
+ 36(x−xm)3−β

	(4−β)h3
− 24(x−xm+1)

3−β

	(4−β)h3
+ 6(x−xm+2)

3−β

	(4−β)h3
, x ∈ [xm+2, xM ]

which contain RL
x0 Dβ

x BM−1(x), RL
x0 Dβ

x BM (x), and
RL
x0 Dβ

x BM+1(x) as special cases:

RL
x0 Dβ

x BM−1(x)=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, x ∈ [x0, xM−3)
6(x−xM−3)

3−β

	(4−β)h3
, x ∈ [xM−3, xM−2)

6(x−xM−3)
3−β

	(4−β)h3
− 24(x−xM−2)

3−β

	(4−β)h3
, x ∈ [xM−2, xM−1)

6(x−xM−3)
3−β

	(4−β)h3
− 24(x−xM−2)

3−β

	(4−β)h3
+ 36(x−xM−1)

3−β

	(4−β)h3
, x ∈ [xM−1, xM ]

RL
x0 Dβ

x BM (x)=

⎧⎪⎪⎨
⎪⎪⎩

0, x ∈ [x0, xM−2)
6(x−xM−2)

3−β

	(4−β)h3
, x ∈ [xM−2, xM−1)

6(x−xM−2)
3−β

	(4−β)h3
− 24(x−xM−1)

3−β

	(4−β)h3
, x ∈ [xM−1, xM ]

RL
x0 Dβ

x BM+1(x)=
{
0, x ∈ [x0, xM−1)
6(x−xM−1)

3−β

	(4−β)h3
. x ∈ [xM−1, xM ]
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