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Abstract Deformation rogue wave as exact solution
of the (2+1)-dimensional Korteweg–de Vries (KdV)
equation is obtained via the bilinear method. It is local-
ized in both time and space and is derived by the interac-
tion between lump soliton and a pair of resonance stripe
solitons. In contrast to the general method to get the
rogue wave, we mainly combine the positive quadratic
function and the hyperbolic cosine function, and then
the lump soliton can be evolved rogue wave. Under
the small perturbation of parameter, rich dynamic phe-
nomena are depicted both theoretically and graphically
so as to understand the property of (2+1)-dimensional
KdV equation deeply. In general terms, these deforma-
tions mainly have three types: two rogue waves, one
rogue wave or no rogue wave.
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1 Introduction

In soliton theory, soliton solutions can describe many
nonlinear phenomena in nature. Recently, rogue wave
or freak wave [1–4], which has captured imagination
of general public, scientists and ocean engineers for
a long time, is originally observed to reflect the tran-
sient gigantic ocean waves of extreme amplitudes that
seem to appear from nowhere in high seas and can lead
to disastrous outcomes. In addition to the open ocean,
roguewaves have been seen inmany other physical sys-
tems, including deepwater [5–9], surface ripples [10]
and optical fibers [11,12]. The reasons for appearing
such waves are a hot topic of great interest. A signif-
icant one is the nonlinear mechanism of the solitons
interaction, for instance, the Benjamin–Feir instability
[13,14], resonance interaction by three or more waves.
Mathematically, rogue wave is a kind of rational solu-
tion that is localized in both time and space. Currently,
there is a trend to study the rogue wave with the nonlin-
ear Schrödinger equation [15–18] by usingmanymeth-
ods. In addition,manyother nonlinear soliton equations
have been proved to have rogue wave solutions, such
as the Hirota equation [19], the Sasa–Satsuma equation
[20], the Yajima–Oikawa system [21] and KP equation
[22,23].

In this letter, we focus on the basic
(2+1)-dimensional KdV equation{

ut − uxxx + 3(uv)x = 0,

ux = vy,
(1)
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which was first derived by Boiti et al. [24] using a weak
Lax pair context and can also be considered as a model
for an incompressible fluid [25] where u is a compo-
nent of the velocity. This equation has been discussed
from various aspects. Such as, with the variable separa-
tionmethod, its dromion solutions [26], localized stable
solutions [27] and the interaction of localized coher-
ent structures [28] are given, and by using the Lau-
rent series expansion method, its period solutions [29]
and singularity structure analysis [30] are presented.
Moreover, its quasi-periodic waves [31], lump solution
[32] and multiple soliton [33] are obtained with the
Hirota bilinear operator. It is found that the perturba-
tion parameter of seed solution u0 plays an important
role in the obtained solution. Its multi-soliton solution
and lump solution will vary as u0 makes a small per-
turbation in the neighborhood of u0 = 0. However,
the rogue wave has not been presented. In this paper,
based on the bilinear operator and symbol calculation,
the roguewave is obtainedwith the combination of pos-
itive quadratic function and a hyperbolic cosine func-
tion. It is verified that the deformation rogue waves
depend on not only the initial u0, but also the other
parameters. We only discuss the impact of the initial
value u0 on the basis of other parameters that are con-
stants. It is interesting that due to the different values
of u0, the obtained solution will be varied essentially;
the deformations among one rogue wave, two rogue
waves or no rogue wave are investigated and exhibited
mathematically and graphically.

2 Rogue wave aroused by the interaction between
lump soliton and a pair of resonance stripe
solitons

Through the Painlevé analysis, assume

{
u = u0 − 2(ln f )xy,

v = −2(ln f )xx ,
(2)

where f = f (x, y, t) is an unknown function to
de determined and u0 is a seed solution. Substituting
Eq. (2) to Eq. (1), we can receive its bilinear formula

(
DyDt + DyD

3
x − 3u0D

2
x

)
f · f = 0. (3)

To search for its roguewave soliton, take f as a com-
bination of positive quadratic function and a hyperbolic
cosine, that is,

f = m2 + n2 + a9 + l, (4)

where

m = a1x + a2y + a3t + a4, n = a5x + a6y + a7t + a8, l

= kcosh(k1x + k2y + k3t),

and ai , (i = 1, 2, . . . 9), k, k1, k2, k3 are parameters to
be determined. A complex calculation with f above
can lead to 13 classes of constraining equations for the
parameters, and we only choose two classes to analyze:
Case I

a1 = a6k21
2u0

, a2 = −2a5u0
k21

, a3 = 3k21a5
2

, a7 = −3a6k41
4u0

,

a8 = −a4a6k21
2a5u0

, a9 = 2k21u
2
0k

2

a26k
4
1 + 4a25u

2
0

, k2 = 2u0
k1

, k3 = k31
2

,

(5)

the parameters should satisfy

u0 �= 0, k1 �= 0, a5 �= 0, a6 �= 0, k > 0 (6)

in order to insure the analytical, positive and rationally
localized in all directions in the (x, y)-plane of f .

Substituting Eq. (5) to Eq. (4)and with the trans-
formation Eq. (2), we can give rise to the solution for
Eq. (1)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

u = 2
(2a1m + 2a5n + kk1sinh(k1x + k2y + k3t))(2a2m + 2a6n + kk2sinh(k1x + k2y + k3t)

f 2

− 2
2a1a2 + 2a5a6 + k1k2l

f
+ u0,

v = −2
2a21 + 2a25 + k21l

f
+ 2

(2a1m + 2a5n + kk1sinh(k1x + k2y + k3t))2

f 2
,

(7)
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Fig. 1 (Color online) Evolution plots of Eq. (7) by choosing a4 = 0, a5 = 0.01, a6 = 0.5, k = 2, k1 = 0.5, u0 = 0.05, at times a
t = −100, b t = −40, c t = −10, d t = 0, e t = 10, f t = 40, g t = 100

where f,m, n satisfy Eq. (4) and Eq. (5).
Obviously, this pair of solutions Eq. (7) represents a

solitary wave solution in the form of a combination of
rational solution and a pair of resonance stripe solitary
solutions. This solution includes a family of four waves
solutions, twowaveswith different velocities and a pair
of resonance stripe solitary waves. By choosing the suit
parameters values, we give four kinds of deformation
rogue waves due to the small perturbation to the seed
solution u0 on the basis of other parameters that are
constants, which are shown in Figs. 1, 2, 3, 4, 5, 6, 7
and 8.

Figure 1a depicts there are two stripe solitons; lump
soliton is invisible, as a ghoston. When t = −40, there
appears one small wave packet, which arises from one
stripe soliton as shown in (b); when t = −10, it is inter-
esting that one wave packet changes two wave packets
and they still attach to the stripe soliton. Moreover,
these two wave packets locate into the middle of the
stripe soliton, possessing a peak wave profile as shown
in Fig. 1d.Whereafter, these two wave packets begin to
disappear and out of our horizon. This whole process
is the generating mechanism of two rogue waves.

Figure 3a depicts a pair of resonance solitons and the
lump soliton is in a invisible place, similar to a ghos-
ton, and Fig. 3b shows when t = −50, lump soliton
appears gradually, fromoneof the resonance stripe soli-

tons. When t = 0, there exists a rogue wave, derived
from the lump soliton, located in the middle of these
two resonance solitons and linked themwith each other
as shown in Fig. 3c. Then, the lump soliton begins to
transfer, until it attaches to the other stripe soliton suc-
cessfully as shown in Fig. 3d and finally goes out of
our vision as shown in Fig. 3(e).
Case II

a3 = 3a1
(
4a21u

2
0 − k41a

2
6

)
2a26k

2
1

, a5 = 4a21u
2
0 − k41a

2
6

4a6k21u0
,

a7 = 3
(
a46k

8
1 − 24a21a

2
6k

4
1u

2
0 + 16a41u

4
0

)
16u0a36k

4
1

,

a9 = a46k
8
1 + 8a21a

2
6k

4
1u

2
0 + 16a41u

4
0

8a26k
6
1u

2
0

,

k = a46k
8
1 + 8a21a

2
6k

4
1u

2
0 + 16a41u

4
0

8a26k
6
1u

2
0

,

k2 = 4u0a26k
3
1

k41a
2
6 + 4a21u

2
0

,

a2 = 0, k3 = 12a21u
2
0 − k41a

2
6

4k1a26
, (8)

then the solution of Eq. (1) is still the form of Eq. (7)
and where f,m, n satisfy Eqs. (4) and (8).
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Fig. 2 Corresponding density plots of Fig. 1

Fig. 3 (Color online) Evolution plots of Eq. (7) by choosing a4 = 0, a5 = 0.01, a6 = 0.5, k = 2, k1 = 0.5, u0 = 0.15, at times a
t = −120, b t = −50, c t = 0, d t = 50, e t = 120

By choosing suit parameters, we show three kinds
of deformation rogue waves in Figs. 9, 10, 11 and 12
which are different from case I.

Figure 9 shows the generation of deformation rogue
wave, which is similar to Fig. 1, but the structures of
Figs. 1 and 9 are different at the same time, especially
at t = 0. Meanwhile, compared with Fig. 3, we give
the relative one rogue waves in Fig. 10

It is found that Figs. 3 and 10 have no difference
no matter the structure of rogue or the generation
mechanism. However, for the third situation—no rogue
waves, it changes greatly, which is shown in Fig. 11,

There is a pair of resonance stripe solitons at t =
−200 shown in Fig. 11a; due to the drive of an invisible
soliton, the stripe solitons begin to change into semicir-
cle waves with the same velocity and spread direction,

until t = 0; these exist semicircle waves separated by
the origin O(0, 0); whereafter, they turn to the stripe
solitons in a symmetry shape. Its corresponding density
plots can verify the dynamics property (from stripe soli-
ton to semicircle soliton and return to the stripe soliton)
more obvious.

3 The theoretical analysis for the types of rogue
wave

Section 2 shows two dynamics properties to Eq. (1);
first, we discuss the types of the rogue wave varies
with the change in the parameters u0 for case I. After
calculation, we know that the (x, y) = (0, 0) is the
critical point of U (x, y) = u(x, y, 0) with the initial
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Fig. 4 Corresponding density plots of Fig. 3

Fig. 5 Compared with Fig. 3 for the perturbation of u0 by choosing a4 = 0, a5 = 0.01, a6 = 0.5, k = 2, k1 = 0.5, u0 = 0.21, at
times a t = −120, b t = −50, c t = 0, d t = 50, e t = 120

Fig. 6 Corresponding density plots of Fig. 5

Fig. 7 (Color online) Evolution plots of Eq. (7) by choosing
a4 = 0, a5 = 0.01, a6 = 0.5, k = 2, k1 = 0.5, u0 = 0.5, at
times a t = −50, b t = 0 and c t = 50. a–c depict there are

only two stripe solitons; rogue waves cannot be seen at any time
due to the perturbation of u0 by contrasting Fig. 1 which has two
rogue waves at t = 0
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Fig. 8 Corresponding density plots of Fig. 7

Fig. 9 Another evolution plots of Eq. (1) with the parameters constraint by choosing a4 = 0, a8 = 0, a1 = 0.1, a6 = 0.5, k1 =
0.5, u0 = 0.6, at times a t = −100, b t = −30, c t = 0, d t = 30, d t = 100

Fig. 10 (Color online) One rogue wave of Eq. (1) by choosing a4 = 0, a8 = 0, a1 = 0.1, a6 = 0.5, k1 = 0.5, u0 = 2 at times a
t = −20, b t = −8, c t = 0, d t = 8, e t = 20

Fig. 11 (Color online) No rogue wave of Eq. (1) by choosing a4 = 0, a8 = 0, a1 = 0.1, a6 = 0.5, k1 = 0.5, u0 = 0.1 at times a
t = −200, b t = −50, c t = 0, d t = 50, e t = 200
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Fig. 12 (Color online) Corresponding density plots of Fig. 11

phase a8 = a4 = 0. Thus, at the point O(0, 0), the
second-order derivative can be calculated

∇1 = ∂2

∂x2
U (x, y, 0)

∣∣
O(0,0) =

r1
(
a26k

4
1 + 4a65u

2
0

)
a26k

4
1 + 2kk21u

2
0 + 4a25u

2
0

,

�1 =
∣∣∣∣∣∣

∂2

∂x2
U (x, y, 0) ∂2

∂x∂yU (x, y, 0)
∂2

∂x∂yU (x, y, 0) ∂2

∂y2
U (x, y, 0)

∣∣∣∣∣∣
O(0,0)

=
512s1

(
a26k

4
1 + 4a25u

2
0

)2 (
a26k

4
1

4 + a25u
2
0

)2 (
kk21u

2
0 − a26k

4
1

2 − 2a25u
2
0

)

u40k
4k81

(
a26k

4
1 + 2kk21u

2
0 + 4a25u

2
0

)4 ,

(9)

where

r1 = 3a26k
4
1 − 2kk21u

2
0 + 12a25u

2
0

u0k
,

s1 = k101 a46
16

(
k21a

2
6 + 10ku20

)
+ k81

(
k2a26u

4
0

+3a25a
4
6u

2
0

4

)
+ ku40k

6
1

(
5a25a

2
6 − k2u20

)

+ k41

(
3a45a

2
6u

4
0 + 4a25k

2u60

)
+ 2a45u

6
0

(
5kk21 + 2a25

)
.

Obviously, the sign of∇1 is uniquely determined by the
sign of r1 and the sign of �1 is determined by the sign

of s1(kk21u
2
0 − a26k

4
1

2 − 2a25u
2
0); with the extreme value

theory of two variables, we can obtain the following
several cases:

(1) If r1 > 0, s1

(
kk21u

2
0 − a26k

4
1

2 − 2a25u
2
0

)
> 0 or

r1 < 0, s1

(
kk21u

2
0 − a26k

4
1

2 − 2a25u
2
0

)
> 0, then the

point O(0, 0) is only the minimal value or maximum
value.

U (0, 0, 0) = u0
(
2kk21u

2
0 − a26k

4
1 − 4a25u

2
0

)
a26k

4
1 + 2kk21u

2
0 + 4a25u

2
0

.

Moreover, U (0, 0, 0) has two extreme points with
respect to u20 as

u1 =

(
2kk21 − 2a25 +

√
5k2k41 − 8a25kk

2
1

)
k41a

2
6

2
(
4a45 − k2k41

) ,

u2 = −

(
−2kk21 + 2a25 +

√
5k2k41 − 8a25kk

2
1

)
k41a

2
6

2
(
4a45 − k2k41

) ;

for brevity, we choose 5k2k41 − 8a25kk
2
1 > 0, k2k41 −

4a45 > 0 for analysis.

When u20 < u1 or u20 > u2,
∂U (0,0,0)

∂(u20)
> 0, U (0, 0, 0)

increase monotonically; when u1 < u20 < u2,
∂U (0,0,0)

∂(u20)
< 0, U (0, 0, 0) decrease monotonically.

Therefore, with the perturbation of u0, the structures
of rogue waves will vary essentially, which are shown
in Figs. 3c and 5c.

(2) If s1

(
kk21u

2
0 − a26k

4
1

2 − 2a25u
2
0

)
< 0, then the

point O(0, 0) is not a local extremum point. So the
point U (0, 0, 0) is called a saddle point of U (x, y, 0).
Furthermore, similar to the (1), with the perturbation of
u0, the structures of rogue waves will vary essentially,
which are shown in Figs. 1d and 7b; Fig. 1d exhibits
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two rogue waves and its corresponding density plot is
like a four-petaled flower, and Fig. 7b exhibits no rogue
waves and its corresponding density plot only has two
stripe solitons.

In order to depict the dynamics properties of the
perturbation of seed solution u0, we list the possible
deformation rogue waves by choosing a4 = 0, a5 =
0.01, a6 = 0.5, k = 2, k1 = 0.5; in this case, U (0, 0, 0)
has one extreme points about u20 = 0.0036; when
u20 > 0.0036,U (0, 0, 0) increase monotonically; con-
versely, it decreases monotonically and u0 = 0.0036 is
the minimum. As to �1, it has two roots about u20:
One is u20 = 0.0156 and another is u20 = 0.0456;
when u20 < 0.0156 or u20 > 0.0456,�1 < 0 and there
maybe appear two roguewaves or no roguewave;when
0.0156 < u20 < 0.0456, �1 > 0 and there maybe
appear one roguewave or no roguewave,which depend
on the amplitude of U (0, 0, 0).

Next, we discuss the rogue wave varies aroused
by the perturbation of u0 in case II; in this case, the
(x, y) = (0, 0) is still the critical point of U (x, y) =
u(x, y, 0) with the initial phase a8 = a4 = 0. In the
same way, the second-order derivative can be given as

∇2 = ∂2

∂x2
U (x, y, 0)

∣∣
O(0,0) = 2r2a26k

6
1(

a26k
4
1 + 4a21u

2
0

)2 ,

�2 =
∣∣∣∣∣

∂2

∂x2
U (x, y, 0) ∂2

∂x∂yU (x, y, 0)
∂2

∂x∂yU (x, y, 0) ∂2

∂y2
U (x, y, 0)

∣∣∣∣∣
O(0,0)

= 1024s2a21k
20
1 a106 u60(

a26k
4
1 + 4a21u

2
0

)8
(10)

where

r2 = u0
(
20a21u

2
0 − a26k

4
1

)
,

s2 = 80a41u
4
0 − 8a21a

2
6k

4
1u

2
0 − 3a46k

8
1 .

where

r2 = u0
(
20a21u

2
0 − a26k

4
1

)
,

s2 = 80a41u
4
0 − 8a21a

2
6k

4
1u

2
0 − 3a46k

8
1 .

It is apparent that the sign of ∇2 is determined by the
sign of r2 and the sign of�2 is determined by the sign of

s2. According to the extremum principle of two dimen-
sional function, it can be proved that:

(1) If s2 > 0, theU (0, 0, 0) is the unique extremum

U (0, 0, 0) = u0
(
a26k

4
1 − 4a21u

2
0

)2
(
a26k

4
1 + 4a21u

2
0

)2 ,

and U (0, 0, 0) has two extreme points with respect to
u20 as

u′
1 = a26k

4
1

4a21
,

u′
2 =

(√
17 − 4

)
a26k

4
1

4a21
,

when 0 < u20 < u′
2 or u20 > u′

1,U (0, 0, 0) increase
monotonically, and when u′

2 < u20 < u′
1,U (0, 0, 0)

decrease monotonically, u′
1 is the minimum.

(2) If s2 < 0, thenU (0, 0, 0) is not the local extreme
point; a direct calculation gives that s2 has one zero
point at u20 = u′

1, when u
2
0 < u′

1, s2 < 0 and conversely
s2 > 0. Sowe can get a conclusion that the deformation
rogue wave maybe appears at the neighbor of u20 = u′

1,
which are shown in Figs. 9, 10, 11 and 12.

4 Conclusion

In this paper, using the combination method of posi-
tive quadratic function and hyperbolic cosine function,
we discuss the deformation rogue waves to the (2+1)-
dimensional KdV equation with a small parameter per-
turbation in the neighborhood of u0 = 0. By choosing
two different parameter values, we give two kinds of
deformation rogue waves. According to the extreme
points of U (0, 0, 0) and the zero points of �1 and �2,
both of these two cases have three kinds of deforma-
tion, which is shown in Figs. 1, 2, 3, 4, 5, 6, 7 and 8 and
Figs. 9, 10, 11 and 12, respectively. In Fig. 1, there are
two rogue waves with the same velocity, appearing on
one of the stripe soliton and disappearing on the other
stripe soliton. Figure 3 depicts there is only one rogue
wave, whose spread trace and generation mechanism
are similar to the rogue waves in Fig. 1. Figures 5 and 7
show there is no rogue wave at t = 0, let alone at other
time. Likewise, Fig. 9 shows two rogue waves, Fig. 10
shows one rogue wave, and Fig. 11 shows no rogue
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wave. On the basis of different parameters, the genera-
tion mechanism of rogue wave is same, but their struc-
tures vary greatly. It is hoped that these rich dynamic
phenomena can provide some useful information to the
nonlinear soliton theory.
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