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Abstract Nonlinear modal interactions have recently
become the focus of intense research in micro-
resonators for their use to improve oscillator per-
formance and probe the frontiers of fundamental
physics. Understanding and controlling nonlinear cou-
pling between vibrational modes is critical for the
development of advanced micromechanical devices.
This article aims to theoretically investigate the influ-
enceof antisymmetrymodeonnonlinear dynamic char-
acteristics of electrically actuated microbeam via con-
sidering nonlinear modal interactions. Under higher-
order modes excitation, two nonlinear coupled flexu-
ral modes to describe microbeam-based resonators are
obtained by using Hamilton’s principle and Galerkin
method. Then, theMethod ofMultiple Scales is applied
to determine the response and stability of the system
for small amplitude vibration. Through Hopf bifur-
cation analysis, the bifurcation sets for antisymme-
try mode vibration are theoretically derived, and the
mechanism of energy transfer between antisymmetry
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mode and symmetry mode is detailed studied. The
pseudo-trajectory processing method is introduced to
investigate the influence of external drive on amplitude
and bifurcation behavior. Results show that nonlinear
modal interactions can transit vibration energy from
one mode to nearby mode. In what follows, an effec-
tive way is proposed to suppress midpoint displace-
ment of the microbeam and to reduce the possibility of
large deflection. The quantitative relationship between
vibrationalmodes is also obtained. The displacement of
one mode can be predicted by detecting another mode,
which shows great potential of developing parameter
design in MEMS. Finally, numerical simulations are
provided to illustrate the effectiveness of the theoreti-
cal results.

Keywords MEMS · Coupled vibration ·
Antisymmetry mode · Multiple scales · Hopf ·
Nonlinear dynamic

1 Introduction

Doubly clampedmicrobeams have beenwidely applied
in many micro-electro-mechanical systems (MEMS)
devices, such as energy harvester [1], microbeam res-
onator [2–4], gyroscope [5], sensor [6,7] and so on.
As the existence of structure nonlinearity and nonlin-
ear electrostatic force, they can exhibit rich nonlin-
ear dynamic behaviors [8–10]. These behaviors have
attracted a lot of attention and have been studied by
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many MEMS communities. The great majority of the
models in previous papers are based on the funda-
mental frequency vibration. With the wide application
of MEMS, nonlinear modal interactions have recently
become the focus of intense research in micro- and
nano-scale resonators for their use to improve oscilla-
tor performance and probe the frontiers of fundamen-
tal physics [11]. For example, the mode coupling can
adjust the pull-in voltage and resonant frequency of
the doubly clamped beam [4]. Besides, the complex
bifurcation behaviors and the energy transfer between
vibrational modes can be caused by the mode coupling
[12].

Early studiesmainly focus on the static and dynamic
behavior of microbeam, which considered the funda-
mental frequency vibration. Many researchers studied
pull-in instability which is always a key issue in the
design of MEMS [13]. For instance, Han et al. [14]
investigated the static and dynamic characteristics of a
doubly clamped microbeam-based resonator driven by
two electrodes and studied its dynamic pull-in. Younis
et al. [15] presented an analytical approach and accu-
rately predicted the pull-in voltage ofmicrobeam-based
MEMS. Krylov [16] proposed a largest Lyapunov
exponent criterion and well evaluated the dynamic
pull-in instability of a doubly clamped microbeam.
Nonlinear model analysis was introduced to investi-
gate the dynamics of a doubly clamped microswitch
in the presence of geometric nonlinearity and non-
linear energy coupling [17]. Besides, considering pri-
mary resonance and high order vibration, Younis et al.
[18–24] traversed nonlinear dynamic behaviors of elec-
trically actuated MEMS beams and arches. Galerkin
method, Differential Quadrature method and Shoot-
ing method were introduced to investigate numerically
static pull-in and dynamic pull-in phenomena. How-
ever,most of the above examples aremostly concerning
the single degree of freedom models that approximate
an underlying continuous system, which is impossible
to study coupled vibrations.

Recently, coupled vibrations have become the focus
of intense research in micro- and nano-scale resonators
for their use to reveal the mechanism of the complex
dynamic behaviors. Studies of coupling between indi-
vidual resonators or arrays of them have introduced
a host of nonlinear phenomena into the purview of
microscale research [25–28]. In some cases two driv-
ing forces were applied to a single resonator [29,30].
Recent experimental work has moved in this direction

by exploring coupling between different eigenmodes of
a single clamped–clamped beam [31–33]. Accounting
for the effect of other modes enables precise determi-
nation of intra- and inter-modal coupling coefficients.
Kirkendall and Kwon [11] reported multistable energy
transfer between internally resonant modes of an elec-
troelastic crystal plate and used a mixed analytical–
numerical approach to provide new insight into these
complex interactions. The results revealed a rich bifur-
cation structure marked by nested regions of multista-
bility. Antonio et al. [34] provided a way to stabilize
the oscillation frequency of nonlinear self-sustaining
micromechanical resonators by coupling two different
vibrationalmodes through an internal resonance,which
was a new strategy for engineering low-frequency
noise oscillators capitalizing on the intrinsic nonlin-
ear phenomena of micromechanical resonators. Vyas
et al. [35] introduced a unique T-beam microresonator
designed to operate on the principle of nonlinear modal
interactions due to 1:2 internal resonance. The T-beam
resonator showed a high sensitivity to mass pertur-
bations and hold great potential as a radio frequency
filter–mixer and mass sensor. Labadze et al. [36] inves-
tigated the behaviors of two nonlinearly coupled flex-
ural modes of a doubly clamped suspended beam and
found that the behaviors of the non-driven mode were
reminiscent of that of a parametrically driven linear
oscillator. Younis and Nayfeh [37] considered modal
interactions among the microbeam modes involving
the first mode and investigated possibility of activat-
ing a three-to-one internal resonance between the first
and second modes. The analysis showed that these two
modes are nonlinearly uncoupled, and hence this inter-
nal resonance cannot be activated. Parametric mode
mixing can transfer the mechanical oscillation from
one mode to the other and enable rapid switching of
mechanical oscillation between modes. Yamaguchi et
al. [38] proposed a novel concept for controlling high-Q
micromechanical resonators. Besides, a model for the
microscopic mechanism of parametric mixing between
different modes in a single doubly clamped beam res-
onator was presented [39]. The results showed that the
modulation can also mix modes with different parities
by introducing the beam-shape and mass-load asym-
metry. Ramini et al. [12] demonstrated well-controlled
and repeatable experiments to study nonlinear mode
coupling among micro- and nanobeam resonators and
proposed three different kinds of nonlinear interactions
among the first and third bending modes of vibrations
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of slightly curved beams. Samanta et al. [40] reported
on all electrical actuation and detection of few-layer
MoS2 resonator and detected three distinct internal res-
onances. Hajjaj et al. [41] experimentally demonstrated
an exploitation of the nonlinear softening, hardening,
and veering phenomena, where the frequencies of two
vibration modes got close to each other, to realize a
bandpass filter of sharp roll off from the passband to
the stopband. There is a growing body of literature on
the study of coupled vibrations to reveal the mecha-
nism of the complex dynamic behaviors and improve
oscillator performance [42].

It can be concluded from the above analysis that
complex dynamic behaviors and oscillator perfor-
mance are both important in the design of MEMS
and should be taken into account [11,43]. Meanwhile,
coupled vibration behaviors caused by internal reso-
nance are gradually considered in the design of the
MEMS. A doubly clamped microbeam actuated by
one electrode has been widely applied in many MEMS
devices. For the appropriate geometry size, when the
system is driven with higher-order modes excitation,
coupled vibration behaviors will appear. It can exhibit
rich dynamic behaviors and multiple-mode-coupling
vibration wherein the perturbation theory and numeri-
cal simulation are not enough to describe accurately the
mechanism of the complex dynamic behaviors of the
MEMS and Hopf bifurcation analysis is introduced for
its ability to predict the threshold and the mechanism
of energy transfer of the coupled system. However, to
the best of our knowledge, there are fewer quantita-
tive results about a general analysis of coupled vibra-
tion system by using Hopf bifurcation theory. Besides,
antisymmetric mode has important influence on the
vibration behaviors of the system [36]. The research
on energy transfer mechanism between antisymmet-
ric mode and symmetric mode is incomplete. Through
Hopf bifurcation analysis and pseudo-trajectory pro-
cessing method, the influence of system parameters on
transition mechanism of nonlinear jumping phenom-
ena and complex nonlinear dynamic behaviors can be
predicted, which motivates our present work. In this
study we exploit nonlinear coupling between modes of
an individual resonator driven by one electrode to quan-
titatively make a complete description of the transition
mechanism of nonlinear jumping phenomena and the
law of energy transfer between vibrational modes.

The structure of this paper is as follows. In Sect. 2,
the Hamilton’s principle and Galerkin discretization is

Fig. 1 Schematic of an electrically actuated microbeam

applied to obtain two degrees of freedom equation.
Then static analysis is carried out under a DC volt-
age. In Sect. 3, the method of multiple scales (MMS) is
applied to produce an approximate solution. In Sect. 4,
we analyze the stability and bifurcation near the origin
and the threshold of coupled vibration is theoretically
derived by the application of Hopf bifurcation theory.
In Sect. 5, the influences of electrostatic force and fre-
quency on the coupled vibration system are introduced.
In Sect. 6, case studies of a microbeam are done to
investigate the effect of some physical parameters on
the coupled vibration of the system. Finally, summary
and conclusions are presented in the last section.

2 Problem formulation

As shown in Fig. 1, a clamped–clamped microbeam-
based resonator is considered. The actuation of the
microbeam is realized by means of a bias voltage and
an AC voltage component. By using Hamilton’s princi-
ple, the equation of motion that governs the transverse
deflection ŵ(x̂, t̂) is written as [37]

ρA ¨̂w + E I ŵiv + c ˙̂w
=

(
E A

2L

∫ L

0
ŵ′2dx

)
ŵ′′+ ε0b[Vdc+Vac cos(�̂t̂)]2

2(d − ŵ)2

(1)

with the following boundary conditions

ŵ(0, t̂) = ŵ′(0, t̂) = ŵ(L , t̂) = ŵ′(L , t̂) = 0 (2)

where ˙̂w = ∂ŵ
∂t and ŵ′ = ∂ŵ

∂x .
The first term on the right hand of Eq. (1) represents

mid-plane stretching effects. Here, x̂ is the position
along the plate length, A and I are the area andmoment
of inertia of the cross section, L is the length of beam, E
is Young’s modulus, t̂ is time, ρ is the material density,
b is the microbeam width, d is the gap width, and ε0 is
the dielectric constant of the gapmedium. The last term
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Fig. 2 a The transverse
deflection obtained by using
the software COMSOL
when Vdc = 40 V; b center
deflection under different
voltages obtained by using
the Galerkin method (line)
and FEM (point)

in Eq. (1) represents the parallel-plate electric actuation
which is composed of DC and AC components.

For convenience, the following non-dimensional
variables are introduced

w = ŵ

d
, x = x̂

L
, t = t̂

√
E I

ρAL4 (3)

Substituting the non-dimensional variables into
Eqs. (1), (2) yields the following non-dimensional
equation of motion of the microresonator

ẅ + wiv + cnẇ −
(

α1

∫ 1

0
w′2dx

)
w′′

= α2
V 2
dc

(1 − w)2
+ α2

2VdcVac cos�t + (Vac cos�t)2

(1 − w)2

(4)

with boundary conditions

w(0, t) = w′(0, t) = w(1, t) = w′(1, t) = 0 (5)

The parameters appearing in Eq. (4) are

α1 = 6 ×
(
d

h

)2

, α2 = 6ε0L4

Ed3h3
(6)

where h represents thickness of microbeam, α1 repre-
sents ratio coefficient of the gapwidth to themircobeam
thickness, α2 represents electrostatic force coefficient.

The microbeam deflection under an electric force is
composed of a static component due to the DC voltage,
denoted by wdc(x), and a dynamic component due to
the AC voltage, denoted by wac(x); that is

w = wdc + wac (7)

To calculate the static deflection of the microbeam,
we set the time derivatives and the AC forcing term
in Eq. (4) equal to zero and obtain

wiv
dc −

(
α1

∫ 1

0
w′2

dcdx

)
w′′

dc = α2
V 2
dc

(1 − wdc)2
(8)

Here, Galerkin method is introduced to calculate
Eq. (8). Figure 2 shows the relationship between mid-
point deflections of a microbeam and the DC volt-
ages obtained with Galerkin method and Finite ele-
ment method (FEM). Herein, in order to study the
behavior of internal resonance between antisymme-
try mode and symmetry mode, the geometric and the
material parameters for the microbeam are taken as
E = 169 GPa, ρ = 2300 kg/m3, L = 150 µm,
h = 1 µm, d = 1.5 µm and b = 10 µm [44]. Results
are presented for values of Vdc ranging from0V to pull-
in voltage, where the solid line denotes the Galerkin
results and the points denote the finite element results.
They agree with each other. Here, the finite element
method results are obtained from the software COM-
SOL by using the multi-field solver [45], as shown in
Fig. 2a.

We generate the problem governing the dynamic
behavior of the microbeam around the deflected shape
by substituting Eq. (7) into Eq. (4) and using Eq. (8) to
eliminate the terms representing the equilibrium posi-
tion. To third-order in wac, the result is

ẅac + cnẇac +
[
wiv
ac − α1w

′′
ac

∫ 1

0
w′2
dcdx − 2α1w

′′
dc

∫ 1

0
w′
acw

′
dcdx − 2α2

V 2
dcwac

(1 − wdc)3

]

−α1w
′′
dc

∫ 1

0
w′2
acdx − α1w

′′
ac
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∫ 1

0
2w′

acw
′
dcdx − 3α2

V 2
dcw

2
ac

(1 − wdc)4

−α1w
′′
ac

∫ 1

0
w′2
acdx − 4α2

V 2
dcw

3
ac

(1 − wdc)5

= 2α2
VdcVac cos�t

(1 − wdc)2
(9)

Due to Vdc � Vac [14,15], (Vdc + Vac cos�t)2 ≈
V 2
dc + 2VdcVac cos�t is obtained.
We express the solution of Eq. (9) as wac(x, t) =∑∞
i=1 ui (t)φi (x), where φi is the i-th linear undamped

mode shape of the straight microbeam. Here, the linear
undamped eigenvalue problem is obtained

φiv
i =

(
α1

∫ 1

0
w′
dc2

dx

)
φ′′
i + β2

i φi (10)

Substituting Eq. (10) into the resulting Eq. (9), multi-
plying by φi , and integrating the outcome from x = 0
to 1, yield [46]

ün+cnu̇n+β2
nun−

M∑
i=1

[
2α1

∫ 1

0
w′′
dcφndx

∫ 1

0
φ′
iw

′
dcdx

+ 2α2V
2
dc

∫ 1

0

φiφn

(1 − wdc)3
dx

]
ui

−
M∑

i, j=1

[
α1

∫ 1

0
w′′
dcφndx

∫ 1

0
φ′
iφ

′
jdx

+α1

∫ 1

0
φ′′
i φndx

∫ 1

0
2φ′

jw
′
dcdx

+ 3α2V
2
dc

∫ 1

0

φiφ jφndx

(1 − wdc)4

]
uiu j

−
M∑

i, j,k=1

[
α1

∫ 1

0
φ′
iφ

′
jdx

∫ 1

0
φ′′
kφndx

+ 4α2V
2
dc

∫ 1

0

φiφ jφkφndx

(1 − wdc)5

]
uiu j uk

= fn cos�t (11)

Here

fn = 2α2VdcVac

∫ 1

0

φndx

(1 − wdc)2

ThroughEq. (11), we know that the linear term of equa-
tion is decoupled and we can obtain the resonant fre-
quency.

ωn =
√

β2
n − 2α1

∫ 1

0
w′′
dcφndx

∫ 1

0
φ′
nw

′
dcdx − 2α2V 2

dc

∫ 1

0

φ2
n

(1 − wdc)3
dx

(12)

Fig. 3 Variation of the first four natural frequencies of a
microbeam with various values of DC voltages (the solid lines
denote the theoretical results and the points denote the finite ele-
ment results)

where ωn is the resonant frequency of the n-th order
mode.

Here, the first four natural frequencies of the system
areobtainedbyEq. (12), as shown inFig. 3.Meanwhile,
the results obtained by FEM are given. They are agree-
ment with each other. It is found that the third-order
frequency is approximately equal to two times of the
second-order frequency. In this paper, we consider non-
linear modal interactions with the higher-order modes
excitation. It follows from Fig. 3 that ω2 ≈ ω3/2 for
some range of Vdc, and hence we study the possibil-
ity of activating a 1:2 internal resonance between the
second and third modes when the third mode is excited
with a higher-order excitation.

In order to quantify the coupling between the flexu-
ral modes of the microbeam, the equations are derived
for the general situation with modes coupled. Here, we
take wac(x, t) ≈ ∑3

i=2 ui (t)φi (x) and obtain that

ü2 + cnu̇2 + ω2
2u2 + a2r u2u3 + a2su

3
2

+ a2t u2u
2
3 = 0

ü3 + cnu̇3 + ω2
3u3 + a3r u

2
2 + a3su

2
3

+ a3t u
3
3 + a3pu

2
2u3 = f3 cos�t (13)

where the dots indicate the time derivative and the
parameters are given in “Appendix”.

For the second-order vibration, forced excitation
term vanishes and parametric excitation term exists as
shown inEq. (13), which is caused by the antisymmetry
of the second-order mode. When the driving frequency
is close to two times of the natural frequency of the
second-order mode, the coupling vibration may occur.
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3 Perturbation analysis

In this section, the method of multiple scales is directly
used to investigate the response of the MEMS res-
onator with small amplitude vibration around equilib-
rium position. To indicate the significance of each term
in the equation of motion, ε is introduced as a small
non-dimensional bookkeeping parameter. Considering
the electrostatic force term f3 = O(ε3), scaling the
dissipative terms, we obtain

ü2 + ε2cnu̇2 + ω2
2u2 + a2r u2u3 + a2su

3
2

+ a2t u2u
2
3 = 0

ü3 + ε2cnu̇3 + ω2
3u3 + a3r u

2
2 + a3su

2
3

+ a3t u
3
3 + a3pu

2
2u3 = ε3 f3 cos�t (14)

To describe the nearness of the resonance, detuning
parameters δ and � are introduced and defined by

ω3 = 2ω2 − ε2�, � = ω3 − ε2δ (15)

We seek the approximate solution of Eq. (14) in the
form

u2 = εu21(T0, T1, T2) + ε2u22(T0, T1, T2)

+ ε3u23(T0, T1, T2)

u3 = εu31(T0, T1, T2) + ε2u32(T0, T1, T2)

+ ε3u33(T0, T1, T2) (16)

where Tn = εnt
Substituting Eqs. (15) and (16) into Eq. (14) and

equating coefficients of like powers of ε yield

O(ε1) : D2
0u21 + ω2

2u21 = 0

D2
0u31 + ω2

3u31 = 0 (17)

O(ε2) : D2
0u22 + ω2

2u22 = −2D0D1u21 − a2r u21u31

D2
0u32 + ω2

3u32 = −2D0D1u31 − a3r u
2
21 − a3su

2
31

(18)

O(ε3) : D2
0u23 + ω2

2u23 = −2D0D2u21 − D2
1u21

− 2D0D1u22 − cnD0u21 − a2r u21u32

− a2r u22u31 − a2su
3
21 − a2t u21u

2
31

D2
0u33+ω2

3u33 = −2D0D2u31−D2
1u31−2D0D1u32

− cnD0u31 − 2a3r u21u22 − 2a3su32u31

− a3t u
3
31 − a3pu31u

2
21 + f3 cos(ω3T0 − δT2) (19)

The general solution of Eq. (17) can be written as

u21(T0, T1, T2) = A21(T1, T2)e
iω2T0

+ Ā21(T1, T2)e
−iω2T0

u31(T0, T1, T2) = A31(T1, T2)e
iω3T0

+ Ā31(T1, T2)e
−iω3T0 (20)

Here, it is convenient to express A21 and A31 in the
polar form

A21 = 1

2
a2e

iθ2 , A31 = 1

2
a3e

iθ3

where a2 and a3 indicate the amplitudes of the second-
order vibration mode and the third-order vibration
mode, respectively.

Substituting Eq. (20) into Eqs. (18)–(19) yields the
secular terms

ȧ2 = a2r a2a3
4ω2

sin ϕ − cna2
2

ϕ̇ = δ + � + a2r a3
2ω2

cosϕ + κ1a
2
2 + κ2a

2
3

ȧ3 = −a3r a22
4ω3

sin ϕ − cna3
2

− f3
2ω3

sin β

β̇ = δ + a3r a22
4ω3a3

cosϕ + κ3a
2
3

+ κ4a
2
2 − f3

2ω3a3
cosβ (21)

Here

ϕ = 2θ2 + �t − θ3, β = δt + θ3

κ1 = 3a2s
4ω2

− a2r a3r
2ω2

3ω2

κ2 = a2t
2ω2

− a2r a3s
2ω2

3ω2
+ a22r

32ω3
2 − 24ω2

2�

κ3 = 3a3t
8ω3

− 5a23s
12ω3

3

κ4 = a3p
4ω3

− a3sa3r
2ω3

3

+ a2r a3r
32ω2

2ω3 − 24ω2ω3�

To determine the stability of the periodic solution, we
evaluate the Jacobianmatrix ofEq. (21) at (a20, ϕ0, a30,
β0) as
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J =

⎡
⎢⎢⎢⎢⎢⎣

a2r a30
4ω2

sin ϕ0 − cn
2

a2r a20a30
4ω2

cosϕ0
a2r a20
4ω2

sin ϕ0 0

2κ1a20 − a2r a30
2ω2

sin ϕ0
a2r
2ω2

cosϕ0 + 2κ2a30 0

− a3r a20
2ω3

sin ϕ0 − a3r a220
4ω3

cosϕ0 − cn
2 − f3

2ω3
cosβ0

a3r a20
2ω3a30

cosϕ0 + 2κ4a20 − a3r a220
4ω3a30

sin ϕ0 2κ3a30
f3

2ω3a30
sin β0

⎤
⎥⎥⎥⎥⎥⎦

(22)

When all the matrix eigenvalues is negative, the system
is stable; otherwise, the system is unstable.

Finally, the frequency response equation can be
derived as

c2n +
[
(δ + �) + κ2a

2
3

]2 − a22r a
2
3

4ω2
2

+ 2κ1
[
(δ + �) + κ2a

2
3

]
a22 + κ2

1a
4
2 = 0 (23)

(δ + κ3a
2
3 + κ4a

2
2)

2a23 + c2n
4
a23 +

(
a3r a22
4ω3

)2

+c2n
8
a22 − 1

4
(δ + � + κ1a

2
2 + κ2a

2
3)

(
δ + κ3a

2
3 + κ4a

2
2

)
a22 = f 23

4ω2
3

(24)

In this paper, pseudo-trajectory processing method is
introduced to solve Eqs. (23), (24), and the stability of
the solutions is calculated by Eq. (22).

4 Hopf bifurcation analysis

As is known to all, when the electrostatic excitation is
too small or the driving frequency is far away from two
times of the natural frequency, there is no second-order
vibration. In order to obtain the physical conditions
of the second-order vibration induced by the modal
coupling, Hopf bifurcation analysis is introduced. For
determining the critical states of this system, it turns
out to be advantageous to introduce the new unknown
variables. We obtain an alternate form of the equation
by transforming from polar coordinates a2 and ϕ to
rectangular coordinates u and v, where

u = a2 cos
ϕ

2
, v = a2 sin

ϕ

2
(25)

Substituting Eq. (25) into Eq. (21), results in the form:

u̇ = −cn
2
u +

(
a2r a3
4ω2

− δ + � + κ2a23
2

)
v

−κ1

2
v(u2 + v2)

v̇ = −cn
2

v +
(
a2r a3
4ω2

+ δ + � + κ2a23
2

)
u

+κ1

2
u(u2 + v2) (26)

From the Eq. (26), the Jacobian matrix is obtained:

J =
∣∣∣∣∣∣

− cn
2

a2r a3
4ω2

− δ+�+κ2a23
2

a2r a3
4ω2

+ δ+�+κ2a23
2 − cn

2

∣∣∣∣∣∣ (27)

The trace and determinant of the Jacobian matrix eval-
uated at an equilibrium point contain the local stability
information. From Eq. (27), it is found that there is no
second-order vibration when a3 is small. For presence
of the second-order amplitude, a critical point generi-
cally occurs when Det(J ) = 0.

Here, the threshold of third-order amplitude is
obtained

a23 =
a22r
4ω2

2
−2κ2(δ+�)−

√[
a22r
4ω2

2
−2κ2 (δ+�)

]2
−4κ2

2

[
(δ+�)2 + c2n

]

2κ2
2

(28)

When third-order amplitude is more than the above
threshold, the second-order vibration may occur. From
Eq. (28), the physical condition of the second-order
vibration is obtained.

a22r
4ω2

2

> 2κ2(δ + �) + 2κ2
√[

(δ + �)2 + c2n
]

(29)

In this paper, Eq. (29) is defined as the basic phys-
ical condition of modal coupling vibration. With the
increase in third-order amplitude, the energy transfers
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Fig. 4 Variation of the bifurcation behavior versus δ and Vdc
[solid line the critical value of Eq. (29), dashed line the critical
value of Eq. (31)]

from the third-order mode to the second-order mode.
Then, in order to further study, the complex dynamic
behaviors when the second-order vibration occurs. The
stability analysis of the nontrivial solution is intro-
duced. As is known to all, the supercritical Hopf bifur-
cation can lead to stable branches near the critical
points. On the contrary, subcritical Hopf bifurcation
can lead to unstable branches. Here, we study Hopf
bifurcation of critical points to determine the stability
of periodic vibration. And Hopf bifurcation equation is
obtained by Eq. (27)

c2n +
[
(δ + �) + κ2a

2
3

]2 − a22r a
2
3

4ω2
2

+ 2κ1
[
(δ + �) + κ2a

2
3

]
a22 = 0 (30)

Substituting Eq. (28) into Eq. (30) yields the discrimi-
nant

M = κ1

[
a22r (δ + �) + 4ω2

2κ2c
2
n

]
(31)

The case M < 0 results in the subcritical Hopf bifur-
cation. With the increase in third-order amplitude, the
jump phenomenon appears in the second-order mode.
Likewise, the case M > 0 results in the supercriti-
cal Hopf bifurcation. With the increase in third-order
amplitude, there appears the small vibration in the
second-order mode. Meanwhile, it is found that when
M = 0, the threshold of third-order amplitude is min-
imum. In other word, the relatively small electrostatic
force may motivate the second-order vibration.

Figure 4 shows variation of the bifurcation behav-
ior versus δ and Vdc. The increase in the DC voltage

Fig. 5 Variation of the amplitude versus electrostatic force f3
corresponding to point C in Fig. 4 (solid line theoretical solution,
point numerical solution)

enhances the modal coupling coefficient and makes
nonlinear modal interactions occur easy. It is interest-
ing to note that low-frequency perturbation parameter
is more advantageous to realize the coupled vibration
than the high frequency perturbation parameter.

5 Dynamic analysis

To further research on nonlinear dynamics behavior
under different Hopf bifurcation parameter range, the
influences of electrostatic force and frequency on the
system are introduced. In this section, we study the
complex dynamics behaviors of the coupled vibration
and some interesting phenomena are obtained.

5.1 Electrostatic force

The third-order amplitude can be approximately equal

to f3/
√

(�2 − ω2
3)

2 + (cn�)2 under the small ampli-
tude vibration. With the increase in f3, the third-
order amplitude increases.When the third-order ampli-
tude exceeds the threshold, the second-order amplitude
appears. For low values of the coupling constant a2r ,
the amplitude of the third-order mode is not big enough
to bring the second-order mode into the parametric
resonance region, i.e., the effective coupling constant
is below the parametric resonance threshold. Thus, in
this case, the second mode has zero amplitude, while
the third mode responds to the driving frequency in
a simple harmonic manner, see Fig. 5. At the reso-
nance and for sufficiently strong coupling a2r , the sys-
tem is driven over the threshold for Eq. (28), so that
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Fig. 6 Comparison of the
force–amplitude curves
obtained by
pseudo-trajectory
processing method (line)
and long-time integration
method (point)
corresponding to A–B in
Fig. 4 (solid line stable,
dashed line unstable)

the second mode has a finite amplitude. The value of
the threshold increases if one moves further away from
the resonance. Figure 6 shows the coupled vibration
behaviors. Here, pseudo-trajectory processing method
is introduced to solve Eqs. (23), (24) and the theo-
retical results are obtained. When Vdc = 40 V and
δ = −0.8, subcritical Hopf bifurcation occurs. With
the increase in f3, the jump phenomenon appears in
the second-order mode and the amplitude of the sec-
ond mode is much larger than that of the third mode
as shown in Fig. 6a, b. Similarly, When Vdc = 40 V
and δ = −0.45, supercritical Hopf bifurcation occurs
as shown in Fig. 6c, d. Besides, under the fixed param-
eters, five cycles vibration may exist in the nonlinear
coupling vibration system, which makes the dynamic
behavior more complicated. In order to validate the
above analysis, long-time integration (LTI) of Eq. (13)
is used to obtain some numerical solutions (discrete
points), compared with the analytical solution derived
from the method of multiple scales.

5.2 Frequency

To further study the influence of frequency on the cou-
pled mode vibration, a series of frequency response

curves are obtained. When driving both modes nonlin-
ear, interesting features are observed. Figure 7a shows
amplitude frequency curve without considering the
coupled vibration. Meanwhile, critical curve of cou-
pled vibration is obtained by Eq. (28). As the amplitude
exceeds the critical value, vibrational energy transfers
from the third-order mode to the second order mode,
and the third-order vibration is suppressed. Here, P1,
P2, P3 and P4 indicate the turning points of the cou-
pling vibration. From Fig. 7a, it is found that: (1) when
the frequency is less than P1, there is no coupling vibra-
tion; (2) when the frequency is between P1 and P2, the
coupling vibration occurs and there is only one peri-
odic solution in the system; (3) when the frequency is
between P2 and P3, the coupling vibration may occur
and there are two stable and an unstable periodic solu-
tions in the system. Then, the second-order amplitude
and third-order amplitude are plotted versus the driving
frequency as shown in Fig. 7b. The two modes interact
with each other as the nonlinear line shape of onemode
is reflected in the response of the other mode. Also a
frequency response with two peaks, which is clearly
different from a Duffing line shape, is observed. These
two amplitudes correspond to two values of the tension
and the electrostatic force, which leads to two reso-
nance frequencies of the second mode and two peaks
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Fig. 7 aAmplitude–frequency response curve of the third-order
vibration mode without considering the coupled vibration; b
amplitude–frequency response curve of the system with consid-

ering the coupled vibration (line the results obtained by pseudo-
trajectory processing method, point the results obtained by long-
time integration method)

Fig. 8 aAmplitude–frequency response curve of the third-order
vibration mode without considering the coupled vibration; b
amplitude–frequency response curve of the system with consid-

ering the coupled vibration (line the results obtained by pseudo-
trajectory processing method, point the results obtained by long-
time integration method)

in its frequency response. This indicates that the model
captures the coupling mechanism in detail.

Similarly, Fig. 8 shows the frequency response curve
when Vdc = 43 V and f3 = 0.4. Here, there are only
two turning points of the coupling vibration, which
means that the frequency response curve of the second-
ordermode is continuous. FromFig. 8b, it is found that:
(1) a frequency responsewith twopeaks is observed; (2)
Monostable dynamic behavior exists between two res-
onant frequencies, which can eliminate dynamic bifur-
cation and improve system stability; (3) the amplitude

of the second mode is much larger than that of the
third mode near the resonant frequencies; (4) consid-
ering coupled vibration, the original third-order ampli-
tude becomes unstable when the third-order amplitude
exceeds the threshold.

Away from the resonant frequency, the third mode
shows a Duffing-like. However, when driving the third
mode on resonance, the third mode displays a com-
plex dynamic response, which can be understood as
follows: when the second mode enters its resonance,
its amplitude increases and the increased tension and
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Fig. 9 The force–amplitude curves obtained by pseudo-
trajectory processing method at the case of Vdc = 40 V and
� = 13545 K rad/s (solid line stable, dashed line unstable)

electrostatic force tune the resonance frequency of the
thirdmode. The amplitude of the thirdmode then drops,
reducing the tension and electrostatic force and chang-
ing the resonance frequency of the second mode. This
feedback mechanism reduces the nonlinear stiffness of
the thirdmode andmakes the thirdmode linear, thereby
increasing the linear dynamic range.

The second-order mode is antisymmetric. Here, our
analysis shows that there is a way to produce antisym-
metric vibrationmode by using symmetric electrostatic
force. As shown in Figs. 6b and 8b, when the third-

order amplitude exceeds the critical value, the system
is mainly carried out by the second-order mode. This
is a very interesting phenomenon. Besides, the quanti-
tative relationship between the second-order amplitude
and the third-order amplitude is obtained. We can pre-
dict the vibration behavior of onemode by detecting the
displacement of another mode [36], which may be use-
ful to improve sensor. For example, we can predict the
vibration behavior of the second-order mode by detect-
ing the midpoint displacement of the microbeam.

6 Dynamics simulation

In this section, case studies of a microbeam are done
to investigate the effect of some physical parameters
on the coupled vibration of the system. An effective
way is proposed to suppress large amplitude vibra-
tion of the third-order mode and to reduce the pos-
sibility of large deflection. The maximum static deflec-
tion appears at the midpoint of the microbeam. As we
know, the second-order mode cannot cause the vibra-
tion of the midpoint. However, the maximum displace-
ment of the third-order mode appears at the midpoint.
When the coupled vibration occurs, vibrational energy
transfers from the third-order mode to the second-order
mode. Based on the analysis in former section, the cou-

Fig. 10 The vibration
profile curves are obtained
using LTI under different
simulation cases
corresponding to A–D in
Fig. 9
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Fig. 11 Swept harmonic responses for midpoint displacement when Vdc = 43 V and Vac = 0.24 V: a without considering the coupled
vibration; b with considering the coupled vibration

pled vibration behaviors can be predicted at the case
of Vdc = 40 V and �̂ = 13545 K rad/s, as shown
in Fig. 9. To observe the coupled vibration behavior of
microbeam, the vibration profile curves along the beam
length are obtained by using LTI of Eq. (9) under dif-
ferent simulation cases, as is shown in Fig. 10. When
the third modal amplitude is below the critical value,
only the third modal amplitude appears, as shown in
Fig. 10a. As the third mode amplitude exceeds the crit-
ical value, the vibrational energy transfers from the
third-ordermode to the second-ordermode. In Fig. 10b,
the second-order amplitude is much greater than that
of the third order. In Fig. 10c, d, the obvious coupled
vibration behaviors appear.

From Fig. 10, the red line represents the contour
of the maximum displacement without considering the
coupled vibration. Through Fig. 10b–d, it is found that
when the coupled vibration occurs, the midpoint dis-
placement is below the red line and the vibrationofmid-
point is suppressed, which is advantageous to reduce
the possibility of large deflection. Then, to study the
midpoint dynamics behavior under the variable fre-
quency, swept harmonic response for midpoint dis-
placement is obtained, as shown in Fig. 11. The base
excitation is assumed as a swept cosine function in the
form f3 cos�(t)t , where �(t) is the time-dependent
frequency and increases linearly with time. It can be
found that when considering the coupled vibration, the
midpoint displacement is greatly suppressed. Besides,
multi-jump frequency phenomena occur, which means
the complex energy exchange between the second-
order mode and the third-order mode.

7 Conclusion

This paper presents mechanism of energy transfer
between second order and third-order modes caused by
the geometric nonlinearity and electrostatic nonlinear-
ity and reveals the complex nonlinear dynamics behav-
iors. Nonlinear modal interactions play an important
role in micro-resonators for their use to improve oscil-
lator performance and probe the frontiers of fundamen-
tal physics. Hopf bifurcation analysis is carried out to
investigate the physical conditions of the energy trans-
fer. Through analysis, bifurcation sets of the second-
order mode are obtained and the threshold of the third-
order amplitude is theoretically derived.

In conclusion, an effective way is proposed to sup-
press large amplitude vibration of the midpoint and
to reduce the possibility of large deflection. When
the third-order amplitude is more than the thresh-
old, the second-order vibration occurs and the vibra-
tional energy transfers from the third-order mode to
the second-order mode. Meanwhile, an effective way
is proposed to drive the antisymmetric mode by using
electrostatic force,whichmaybe useful to improve sen-
sor. The framework presented here overcomes many
problems of accurately predicting complex dynamics
in MEMS. It should be emphasized that all the theoret-
ical results in this paper are compared with numerical
results, which guarantees the accuracy of our whole
investigations.
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Appendix

a2r = −
[
α1

∫ 1

0
φ′′
2φ2dx

∫ 1

0
2φ′

3w
′
dcdx

+ 6α2V
2
dc

∫ 1

0

φ3φ
2
2dx

(1 − wdc)4

]
(32)

a2s = −
[
α1

∫ 1

0
φ′2
2 dx

∫ 1

0
φ′′
2φ2dx

+ 4α2V
2
dc

∫ 1

0

φ4
2dx

(1 − wdc)5

]
(33)

a2t = −
[
α1

∫ 1

0
φ′2
3 dx

∫ 1

0
φ′′
2φ2dx

+ 12α2V
2
dc

∫ 1

0

φ2
2φ

2
3dx

(1 − wdc)5

]
(34)

a3r = −
[
α1

∫ 1

0
w′′
dcφ3dx

∫ 1

0
φ′
2φ

′
2dx

+ 3α2V
2
dc

∫ 1

0

φ2φ2φ3dx

(1 − wdc)4

]
(35)

a3s = −
[
α1

∫ 1

0
w′′
dcφ3dx

∫ 1

0
φ′
3φ

′
3dx

+α1

∫ 1

0
φ′′
3φ3dx

∫ 1

0
2φ′

3w
′
dcdx

+ 3α2V
2
dc

∫ 1

0

φ3φ3φ3dx
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]
(36)

a3t = −
[
α1

∫ 1

0
φ′
3φ

′
3dx

∫ 1

0
φ′′
3φ3dx

+ 4α2V
2
dc

∫ 1

0

φ3φ3φ3φ3dx

(1 − wdc)5

]
(37)

a3p = −
[
α1

∫ 1

0
φ′
2φ

′
2dx

∫ 1

0
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2
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∫ 1

0
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