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Abstract Vortex solitons in the spatially modulated
cubic–quintic nonlinearmedia are governed by a (3+1)-
dimensional cubic–quintic nonlinearSchrödinger equa-
tion with spatially modulated nonlinearity and trans-
verse modulation. Via the variable separation principle
with the similarity transformation, we derive two fam-
ilies of vortex soliton solutions in the spatially mod-
ulated cubic–quintic nonlinear media. For the disap-
pearing and parabolic transverse modulation, vortex
solitons with different configurations are constructed.
The similar configurations of vortex solitons exist for
the same value of l − k with the topological charge
k and degree number l. Moreover, the number of the
inner layer structure of vortex solitons getting rid of
the package covering layer is related to (n − 1)/2 + 1
with the soliton order number n. For the disappear-
ing transverse modulation, there exist phase azimuthal
jumps around their cores of vortex solitons with 2π
phase change in every jump, and any two jumps one
after another realize the change in π . For the parabolic
transversemodulation, all phases of vortex soliton exist
k-jump, and every jump realizes the change in 2π/k;
thus, k-jumps totally realize the azimuthal change in
2π around their cores.
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1 Introduction

Over the past several decades, solitons based on
the nonlinear Schrödinger equation (NLSE) exhibit
widespread applications in various branches of physics,
engineering and other disciplines [1–4]. Spatial and
spatiotemporal solitons reveal different types of local-
izedmodes, including fundamental solitons [5,6], Pere-
grine solution and breather [7,8], multipole solitons
[9,10] and vortex solitons [11,12], and so on.

Vortex solitons are optical beams which exist phase
singularities mixed within the wave front curvature and
carry a nonzero angular momentum, and extensively
investigated in the context of optical tweezers [13],
entanglement states of photons [14] and trapping and
guiding of cold atoms [15]. In many kinds of media,
such asKerr, saturable-atomic and photorefractive non-
linear media, optical vortices have been studied experi-
mentally and theoretically [16,17]. If a vortex generates
an effective axisymmetric potential well, then this well
may trap a bright two-dimensional solitary wave, pro-
ducing some complex vector vortex solitons, such as
the vortex-bright soliton [17], the half-quantum vortex
[18] and the filled-core vortex [19].

In conservative nonlinear media, vortex solitons
always lead to the symmetry breaking azimuthal insta-
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bility and collapse into many fundamental solitons.
This instability can also be inhibited. In graded-index
optical fibers [20], nonlinear photonic crystals with
defects and optical lattices with defect [21], the con-
fined potentials can suppress the azimuthal instabil-
ity of vortices. Although vortex soliton in the (3+1)-
dimensional case has been studied in Bose–Einstein
condensates (BEC) [22], the influence of the trans-
verse modulation on vortex soliton in the (3+1)-
dimensional spatially modulated cubic–quintic (CQ)
nonlinear media is relatively few studied.

As we all know, the CQ nonlinearities are consid-
ered when the optical field frequency is close to a res-
onant frequency of the optical fiber material in non-
linear optics [23,24]. On the other hand, in BEC with
high density, the three-body interaction must be con-
sidered, and thus, the CQNLSE is used to describe this
case [25]. After Serkin et al. firstly studied the topolog-
ical quasi-soliton solutions of the variable coefficient
CQNLSE [26], rich solitonmodes of this equation have
been derived [27,28]. Recently, soliton solutions in the
media with CQ nonlinearities modulated in space and
time have also been discussed [29–31]. However, these
works studied solitons based on (1+1)-dimensional and
(2+1)-dimensional cases [28–31], (3+1)-dimensional
vortex solitons in the spatially modulated CQ nonlin-
earmediawith the transversemodulation have not been
reported. In this paper, we focus on this case.

2 Model and exact vortex soliton solutions

In nonlinear fiber optics, a general (3+1)-dimensional
NLSE is written as [35,36]

i
∂A

∂z
+ 1

2β0

(
∂2A

∂x2
+ ∂2A

∂y2

)
+ β2

2

∂2A

∂t2
+γ |A|2A = 0,

(1)

where the pulse envelope A = A(z, x, y, t), the dis-
persion parameter β2 can be positive or negative with
magnitude of the order of 10−3 − 10−2ps2/m [35]
and the propagation parameter β0 = 2πn0/λ with
the refractive index n0 and the wave length of the
beam λ [36]. The unit of the nonlinear parameter γ

and |A|2 is W−1m and Wm−2, respectively. By scal-
ing, we define the following dimensionless variables
x = x/ρ, y = y/ρ, t = t/τ, z = z/LD, φ =

Aρ/
√
P0, p = γ P0LD/ρ2 [35] with lengths for dis-

persion or diffraction (LDS = LDF = LD), the radius
of the beam ρ, the timescale of the soliton τ , power P0,
Eq. (1) can be transformed into the dimensionless form.
ConsideringCQnonlinearities,we obtain the following
dimensionless NLS equations with self-focusing cubic
and self-defocusing quintic nonlinearity [36,37]

i
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where φ = φ(z, x, y, t).
Recently, spatiallymodulatednonlinearity and trans-

verse modulation are introduced to study the dynamics
of solitons [29–31], and thus, the (3+1)-dimensional
CQNLSE with spatially modulated nonlinearity and
transverse modulation reads

i
∂φ

∂z
+ 1

2

(
∂2φ

∂x2
+ ∂2φ

∂y2
+ ∂2φ

∂t2

)

+χ3(r)|φ|2φ + χ5(r)|φ|4φ + R(r)φ = 0, (3)

where the cubic nonlinearity coefficient χ3(r), quin-
tic nonlinearity coefficient χ5(r) and the transverse
modulation R(r) are all functions of radial coordi-
nate r ≡ (x, y, t). In BEC, φ represents the macro-
scopic wave function of the condensate with time z,
R(r) is the external potential. In this paper, we choose
parabolic transverse modulation or external potential.
Other external potentials can be found inRefs. [32–34].

In the following, we use dimensionless form and
units to calculate, and these results can be easily
converted to actual experimental units following the
guidelines by considering some similar values in an
experiment on spatiotemporal soliton in a planar glass
waveguide, namely wave length λ = 1μm, β2 =
10−2ps2/m, and the timescale τ = 60 fs; thus, the
propagation length LD = 36 cm and the beam width
ρ ≈ 239μm.

We assume that Eq. (3) has the spatially localized
vortex soliton solution in the form

φ(r, θ, ϕ, z) = ρ(r)ψ(θ, ϕ) exp(−iσ z), (4)

where σ is the propagation constant in optics and the
chemical potential in BEC, and the real function ρ(r)
satisfies the localization condition limr→±∞ ρ(r) = 0.
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Substituting Eq. (4) into Eq. (3), and considering

ψ(θ, ϕ) =
√

(2l+1)(l−k)!
2π(l+k)! ×Pk

l (cos θ) exp(ikϕ) where
the topological charge k and the associated Legendre
polynomials Pk

l (cos θ) with the degree l and order k
satisfying l ≥ k ≥ 0, one obtains

r2

ρ

{
1

r2
∂

∂r
(r2

∂ρ

∂r
) + 2[σ + R(r)]ρ

+ 2χ3(r)ρ
3 + 2χ5(r)ρ

4
}

= l(l + 1), (5)

Following the scheme proposed in Refs. [28–31], if
we assumeρ(r) ≡ �(r)Ψ [ζ(r)]whereΨ (ζ ) satisfying

d2Ψ

dζ 2 + G1Ψ + G3Ψ
3 + G5Ψ

5 = 0, (6)

with three constants G1,G3 and G5 and consider
ζ(r) ≡ ∫ r

0 �−2(s)s−1ds, then Eq. (5) transforms into

�′′ + 2

r
�′ +

[
2σ + 2R(r) − l(l + 1)

r2

]
� = G1

r4�3 , (7)

andnonlinear functionsχ3(r) andχ5(r) satisfyχ3(r) =
G3r−2�−6(r)/2, χ5(r) = G5r−2�−8(r)/2.

If we choose �(r) = η(r)/r , then Eq. (7) changes
into the Ermakov–Pinney equation as ηrr + [2σ +
2R(r) − l(l + 1)/r2]η = G1/η

3 [38]. If G1 is
a constant, then η(r) can be expressed as η =√

αξ21 + 2βξ1ξ2 + γ ξ22 where G1 = (αγ − β2)W 2

with three constants α, β, γ and Wronskian W =
ξ1ξ2r−ξ2ξ1r = constantwith ξ1(r) and ξ2(r) being two
linearly independent solutions of ξrr + [2σ + 2R(r) −
l(l + 1)/r2]ξ = 0. Further, if G1 = 0 and R(r) is the
parabolic transverse modulation with R(r) = 1

2ω
2r2,

then �(r) = r− 3
2 [c1M( σ

2ω , l
2 + 1

4 , ωr
2)+c2U( σ

2ω , l
2 +

1
4 , ωr

2)] with the Whittaker’s M and U functions [39],
and constants c1c2 > 0. Without considering the trans-

verse modulation with R(r) = 0, �(r) = r− 1
2 [c3 J (l +

1/2,
√
2σr) + c4Y (l + 1/2,

√
2σr)] with the Bessel

functions of the first kind J and second kind Y , and
constants c3c4 > 0.

Using a one-to-one correspondence between Eq. (3)
and Eq. (6) with G1 = 0,G3 = 2

3μn
2K 2(m)(m4 −

m2+1),G5 = 1
9μ

2n2K 2(m)(m2−2)(2m2−1)(m2+

1), we obtain two families of exact vortex soliton solu-
tions for Eq. (3) as

φ1n =
√
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2π(l + k)! Pk

l

(cos θ)
3�(r)sn[λK (m),m]√
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ikϕ−iσ z,

(8)

with λ = nζ + 1 for n = 1, 3, 5, . . . , while for n =
2, 4, 6, . . . ,

φ2n =
√

(2l + 1)(l − k)!
2π(l + k)! Pk

l

(cos θ)
3�(r)sn[nK (m)ζ,m]√

3μ[3 − (m2 + 1)sn2[nK (m)ζ,m]] e
ikϕ−iσ z,

(9)

where μ is a real constant, the integer n is associ-
ated with the soliton order number, sn is the Jaco-
bian elliptic sine function with the modulus m and
K (m) = ∫ π/2

0 [1 − m2 sin2(ξ)]−1/2dξ is elliptic inte-
gral of the first kind [40].

3 Construction of vortex solitons

Solutions (8) and (9) describe vortex solitons with dif-
ferent configurations. For the disappearing transverse
modulation R = 0, vortex solitons of solutions (8)
and (9) with different values of k and l are shown in
Fig. 1. When k = l = 0, localized spheres of solutions
(8) and (9) are displayed in Fig. 1a, b, respectively.
When k = 0, l = 1, solution (9) describes a cylinder
as shown in Fig. 1d, and solution (8) describes a sphere
surrounded by a cylinder as shown in Fig. 1c. When
k = l = 1, two discs with symmetrical distribution on
two sides of the plane t = 0 are constructed in Fig. 1f,
and two symmetrical spheres surrounded by two discs
are constructed in Fig. 1e. In Fig. 1g for solution (8)
with k = 0, l = 2, a pair of drip-shaped structures
embed above and below the torus-shaped structure in
the middle, and the whole structure is surrounded by a
cylinder, which also appears in Fig. 1h for solution (9).
When k = 1, l = 2, two cones with symmetrical distri-
bution on two sides of the plane t = 0 are constructed
in Fig. 1j, and two symmetrical toruses surrounded by
two cones are constructed in Fig. 1i. When k = l = 2,
structures in Fig. 1k, l are similar to those in Fig. 1e, f,
and the difference is that the distance between two discs
adds. In Fig. 1m for solution (8) with k = 1, l = 3, a
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Fig. 1 (Color online) Vortex solitons with (a, c, e, g, i, k, m, o,
q) solution (8) and (b, d, f, h, j, l, n, p, r) solution (9) for the
disappearing transverse modulation R = 0. The parameters are
chosen as σ = 0.3, μ = 0.1,m = 0.1, c3 = 1, c4 = 1.5, n = 1

with a, b k = l = 0; c, d k = 0, l = 1; e, f k = l = 1; g, h
k = 0, l = 2; i, j k = 1, l = 2; k, l k = l = 2;m, n k = 1, l = 3;
o, p k = 2, l = 4 and q, r k = 3, l = 5
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Fig. 2 (Color online) Vortex solitons with solution (8) for the disappearing transverse modulation R = 0. The parameters are chosen
as those in Fig. 1 except for a k = 0, l = 1, n = 3, b k = l = 1, n = 7 and c k = 2, l = 4, n = 3

pair of drip-shaped structures also appear above and
below the pair of torus-shaped structures in the middle,
and the whole structure is surrounded by two cones,
where every cone is closed by a disc at the end. These
cones also are shown in Fig. 1n for solution (9). When
k = 2, l = 4, structures in Fig. 1o, p are similar to
those in Fig. 1m, n, and the difference is that all parts
of structures enlarge. When k = 3, l = 5, two nested
structures with the arranges of two cones closed by a
disc at the end one by one distribute symmetrically on
two sides of the plane t = 0 in Fig. 1r, and inside
the whole structure in Fig. 1r, a pair of drip-shaped
structures also exist above and below the pair of torus-
shaped structures in the middle in Fig. 1q. From these
structures in Fig. 1e, f, k, l, and Fig. 1m–p, we find that
similar structures can be constructed for the same value
of l − k.

Figure 2 displays multi-layer structures of vortex
solitons for n = 3, 7. Compared Fig. 1c for n = 1 with
Fig. 2a for n = 3 and Fig. 1o for n = 1 with Fig. 2c for
n = 3, there is an extra layer structure in both structures
for n = 3. Compared Fig. 1e for n = 1 with Fig. 2b
for n = 7, there are three extra layers in the structure
for n = 7. Therefore, the number of the inner layer
structure getting rid of the package covering layer is
related to (n − 1)/2+ 1 with the soliton order number
n.

Figure 3 shows phases of vortex solitons with solu-
tions (8) and (9) for the disappearing transverse mod-
ulation R = 0 at t = 0 when k, l, n are chosen as
different values. All phases of vortex solitons in Fig. 3

exist an azimuthal jump around their cores with differ-
ent values of k, l, n. In Fig. 3a, there exist two azimuthal
jumps, and every jump realizes the change in 2π ; how-
ever, the phase change from the first jump to second
jump is π . In Fig. 3b, there exist three azimuthal jumps
with 2π phase change in every jump, and two jumps
one after another realize the change in π ; thus, two
changes totally produce the change in 2π . In Fig. 3c,
there exist six jumps, that is, five change in two jumps
one after another, and thus, totally produces the change
in 5π . Similar analysis for Figs. 3d–i can be used, and
we omit it for the limit of length.

In the presence of the parabolic transverse modu-
lation R = � 2r2/2, vortex solitons can be also con-
structed. Figure 4 presents some cases of vortex soli-
tonswith the intensity and corresponding phases.When
k = 0, l = 1, solution (9) with n = 1 describes a
cylinder with bell mouthed shape in Fig. 4b, and solu-
tion (8) with n = 2 describes a torus-shaped structure
surrounded by a cylinder with bell mouthed shape in
Fig. 4a. When k = l = 1, two trays with symmetri-
cal distribution on two sides of the plane t = 0 are
constructed in Fig. 4d, and two symmetrical flattened
ellipsoids surrounded by two trays are constructed in
Fig. 4c. From the phase plot in Fig. 4e, when m =
l = 1, it is similar to the case for the disappearing
transverse modulation R = 0, that is, there exist two
azimuthal jumps with 2π phase change in every jump,
and two jumps one after another realize the change in
π . However, when k = l = 2, 3, 4, the phase change in
vortex soliton in presence of the parabolic transverse
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Fig. 3 (Color online) Phases of vortex solitons with solutions
(8) and (9) for the disappearing transverse modulation R = 0 at
t = 0. The parameters are chosen as those in Fig. 1 except for a
k = l = 1, n = 1, b k = l = 1, n = 2, c k = l = 2, n = 1, d

k = l = 2, n = 2, e k = l = 3, n = 1, f k = l = 3, n = 2, g
k = l = 1, n = 5, h k = l = 2, n = 3 and i k = 3, l = 5, n = 3

modulation R = � 2r2/2 is different from those for
the disappearing transverse modulation R = 0. From
Fig. 4f–h, all phases of vortex soliton exist k-jumpwith
different values of the topological charge k, and every
jump realizes the change in 2π/k; thus, k-jumps totally
realize the azimuthal change in 2π around their cores.

4 Conclusion

In conclusion, with the help of the variable separation
principle with the similarity transformation, we derive

two families of vortex soliton solution in the spatially
modulated CQ nonlinear media governed by a (3+1)-
dimensional CQNLSE with spatially modulated non-
linearity and transverse modulation. For the disappear-
ing and parabolic transverse modulations, vortex soli-
tons with different configurations are constructed. The
similar configurations of vortex solitons exist for the
same value of l − k with the topological charge k and
degree number l. Moreover, the number of the inner
layer structure of vortex solitons getting rid of the pack-
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Fig. 4 (Color online) a–d Intensity and e–f phase of vortex
solitons in the presence of the parabolic transverse modulation
R = ω2r2/2. The parameters are chosen as those in Fig. 1 except

for ω = 0.01 with a k = 0, l = 1, n = 1, b k = 0, l = 1, n = 2,
c, e k = l = 1, n = 1; d k = l = 1, n = 2, f k = l = 2, n = 1,
g k = l = 3, n = 1 and h k = l = 4, n = 1

age covering layer is related to (n − 1)/2 + 1 with the
soliton order number n. For the disappearing transverse
modulation, there exist phase azimuthal jumps around
their cores of vortex solitons with 2π phase change
in every jump, and any two jumps one after another
realize the change in π . For the parabolic transverse
modulation, all phases of vortex solitons exist k-jump
with different values of the topological charge k, and
every jump realizes the change in 2π/k; thus, k-jumps
totally realize the azimuthal change in 2π around their
cores.
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