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Abstract In this paper, we construct an improved car-
following model by accounting for the effect of the
optimal velocity difference and a two-velocity differ-
ence. The effect of this model is examined through
the linear stability analysis. The TDGL equation and
the mKdV equation are derived from nonlinear analy-
sis. Then, the energy consumption and the stability in
car-following models considering the optimal velocity
difference and a two-velocity difference are discussed.
Moreover, numerical simulation shows that the new
model can improve the stability of traffic flow, which
is consistent with the theoretical analysis.
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1 Introduction

In recent years, traffic jams have attracted much atten-
tion because of its complex mechanism. Many traffic
flowmodels have been developed to investigate the traf-
fic jams [1–11], such as car-following models [12–18],
cellular automation models [19–22], gas kinetic mod-
els [23–25], and hydrodynamic lattice models [26–28].

The optimal velocity model (for short OVM) pro-
posed firstly by Bando [29] was further researched
[30,35], which has successfully revealed the dynamic
evolution of traffic jam in a simple way. Subsequently,
Helbing and Tilch [36] developed a generalized force
model (for short GFM) by considering negative veloc-
ity difference on the basis of OVM. It overcome
the shortcomings of high acceleration and unrealis-
tic deceleration occurring in the OVM. In 2001, by
introducing positive relative velocity into the GFM,
Jiang [37] developed the full velocity difference model
(FVDM). Jiang’s expanded study [10,11] shows that
theFVDMis in agreementwith thefield data better than
OVMandGFM.Ge [38] proposed the two-velocity dif-
ference model (for short, TVDM) by considering the
ITS application. Nakayama [18] presented the addi-
tional energy consumption with respect to the stable
statue for all vehicles.

The aforementioned models can describe many
complex traffic phenomena. However, these models
cannot be employed to study the optimal velocity dif-
ference and a two-velocity difference of the leading
car and the current car, because they did not consider
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two factor simultaneously [39]. In fact, the optimal
speed difference and the two speed difference reflect
the whole traffic situation. A leading car can send the
velocity changes signal command to the follower, and
the following car can obtain the leading car’s running
state information to control its speed. By considering
the optimal velocity difference term, not only the sta-
bility of traffic flow can be improved, but also the dis-
advantage of collision and unrealistic deceleration can
be avoided. In view of this, the improved car-following
model is presented to investigate the traffic flow.

Real traffic is affected by many complicated fac-
tors such as passerby, capability, driver’s sensitivity
and so on [18–41]. These factors on the traffic flow
are treated as disturbance to cause change of vehicle
velocity. These changes of velocity result in the addi-
tional consumption of energy compared to the case of
no disturbance. By comparison of energy consumption
in order to reduce air pollution.

Based on the optimal speed and the two speed differ-
ence, this paper investigated an improved car-following
model. In Sect. 2, the model is presented with consider-
ing the two-velocity difference and the optimal velocity
difference. The model is analyzed by using linear sta-
bility theory. In Sect. 3, our model is analyzed by the
nonlinear analysis near the critical point, and the TDGL
equation and its corresponding solution are obtained.
In Sect. 4, the mKdV equation is derived. In Sect. 5,
numerical simulation is given. In Sect. 6, the conclu-
sions are drawn.

2 The car-following model and linear stability
analysis

According to the above mentioned idea, we derived an
improved car-following model considering the optimal
velocity difference and a two-velocity difference. The
motion equation is given as follows:

dvn[t]
dt

= a
[
V (�xn[t]) + k(V (�xn+1[t])

−V [�xn(t)]) − vn(t)] + λ [p�vn[t]
+(1 − p)�vn+1[t]

]
(1)

where a is the sensitivity which corresponds to the
inverse of the delay time, k is the optimal velocity dif-
ference parameter and λ is the two-velocity difference
parameter. The optimal velocity function is proposed

V (�xn[t]) = vmax

2
[tanh(�xn(t) − hc) + tanh(hc)]

(2)

where vmax is the maximal velocity. The function
V (.) is a monotonically increasing function with an
upper bound(maximal velocity) and has a turning point
�xn = hc : V ′′(hc) = 0. Therefore, we can derive the
TDGL equation from Eq. (1), which could describe
traffic jam. For convenience of linear analysis, Eq. (1)
can be rewritten:

d2xn(t)

dt2
= a

[
V (�xn[t]) + k(V (�xn+1[t])

−V [�xn(t)]) − dxn(t)

dt

]
+ λ

[
p

(
dxn+1(t)

dt

−dxn(t)

dt

)
+ (1 − p)

(
dxn+2(t)

dt
− dxn+1(t)

dt

)]

(3)

Furthermore, Eq. (3) can be rewritten in terms of the
headway:

d2�xn(t)

dt2
= a

[
V (�xn+1[t]) − V (�xn[t]) + k(V (�xn+2[t])

−2V (�xn+1[t]) + V [�xn(t)]) − d�xn(t)

dt

]

+λ

[
p

(
dxn+2(t)

dt
− 2

dxn+1(t)

dt
+ dn(t)

dt

)

+(1 − p)

(
dxn+3(t)

dt
− 2

dxn+2

dt
+ dxn+1(t)

dt

)]

(4)

The change in energy�En for the vehicle n between
the two successive time step in defined as:

�En = 1

2

[
v2n(t) − v2n(t − 1)

]
(5)

where vn(t) and vn(t − 1) are the velocity of vehicle n
in the two successive time step.

Then, linear stability analysis can be conducted. It
is obvious that the traffic flow can reach the steady
state when the vehicle run with constant headway h
and constant velocity V (h). Therefore, the steady-state
solution is given as

x0n (t) = hn + V (h)t, h = L

N
(6)

where N is the total vehicle number and L is the road
length. Suppose yn(t) is a small deviation from the
steady state xn0 (t) : xn(t) = xn0 (t) + yn(t). Substitute
it into Eq. (3) and linearize it which yields
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Fig. 1 The phase diagram of the model according to different values of parameter k and λ

dyn2(t)

dt2
= a

[
V ′(h)�yn(t) + k(V ′(h)�yn+1(t)

−V ′(h)�yn[t]) − dyn(t)

dt

]

+λ

[
p

(
dyn+1(t)

dt
− dyn(t)

dt

)

+(1 − p)

(
dyn+2(t)

dt
− dyn+1(t)

dt

)]
(7)

where �yn(t) = yn+1(t) − yn(t) and V ′(h) =
dV (�xn)dt |�xn = h. Expanding yn(t) = exp(ikn +
zt), it reads

z2 = a[V ′(eik − 1) + kV ′(eik − 1)2 − z]
+ λz[p(eik − 1) + (1 − p)(e2ik − eik)] (8)

where V ′ = V ′(h). Let z = z1(ik) + z2(ik)2 + · · · ,
then the first-and second-order terms of ik are:

z1 = V ′(h), z2 = V ′

2
+ kV ′ + λz1 − z21

a
(9)

For small disturbance with long wavelengths, the uni-
form traffic flow is instable in the condition that

a <
2(V ′ − λ)

1 + 2k
(10)

The stability condition is given:

a = 2(V ′ − λ)

1 + 2k
(11)

The result is relevant with the parameter k. (vmax =
2, hc = 4)

Figure 1 shows the phase diagram in the (h, a)-plane
where h is the headway and a is sensitivity. The solid
lines show the results of the neutral stability curves
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Table 1 The coefficients
m j of the model

m1 m2 m3

V ′ − b 1
2V

′ + λτb − λb 1
6V

′ + kV ′ + 3
2bλτ(1 − p)

m4 m5 m6 m7

V ′′′
12

1
24V

′ + 7
12V

′k + λτb
( 7
6 − p

) 1
12V

′′′ + 5
6V

′′′k λτ(2p − 1) − 2τb

with different λ and k. It shows the stable region and
the critical points increase with increasing the value of
the parameter λ and k.

From the pattern (a) of Fig. 1 with λ = 0 and k = 0,
the neutral stability line and the critical point are con-
sistent with these in OVM which proposed by Bando
et al. It is very unstable.

From the pattern (a), (b) and (c) of Fig. 1, we use
the fixed k. With the increase of λ λ = 0, 0.1, 0.3,
the stable region gradually increase. As can be seen
from the pattern (a), (b) and (c) of Fig. 1, the stable
region gradually increases with the increase of k (k =
0, 0.3, 0.5) and the fixed λ. The traffic flow is more
stable.

Obviously, we can see that our model is more stable
than OVM. Especially, from the pattern (d) of Fig. 1,
the stable region reaches the best rangewhen the values
are selected as λ = 0.3, k = 0.5.

3 TDGL equation

In car-following models, by deriving the nonlinear
wave equation,wedepicted the propagationbehavior of
traffic jam. Equation is derived by using the long wave-
length mode for describing the traffic flow on coarse-
grained scale. The slowly vary behavior at long waves
near the critical point is analyzed. The slow scales for
space variable j and time variable t are introduced, and
the slow variable X and T is defined as follows:

X = ε( j + bt), T = ε3t, 0 < ε � 1 (12)

The headway �xn(t) = hc + εR(X, T ) is set as:

�xn(t) = hc + εR(X, T ) (13)

By bringing Eqs. (12)–(13) into (4), and expanding
to the fifth-order of ε. We obtain the following expres-
sion:

ε2m1∂X R+ε3m2∂
2
X R+ε4[m3∂

3
X R+m4∂X R

3−∂T R]
+ ε5[m5∂

4
X R + m6∂

2
X R

3 + m7∂X∂T R] = 0 (14)

Here, the coefficients m j are given in Table 1. Now,
we consider the traffic flow near critical point τ = (1+
ε2)τc. By taking b = V ′, the second-order and third-
order terms of ε is eliminated from Eq. (14), which
leads to the simplified equation as follows:

ε4∂T R = ε4
(
1

6
V ′+kV ′+ 3λτV ′(1− p)

2

)
∂3X R

+ ε4
1

12
V ′′′∂X R3−ε3

(
λV ′− 1

2
V ′−λV ′τ

)
∂2X R

+ ε5
[
1

24
V ′ + 7

12
V ′k + λV ′τ

(
7

6
− p

)

+ (λ(2p−1)−2b)

(
1

6
V ′+kV ′+ 3

2
λV ′τ(1− p)

)]
∂4X R

+ ε5
(

1

12
V ′′′ + 5

6
V ′′′k

)
∂2X R3 (15)

By transforming variable X and T into variable x =
ε−1X and t = ε−3T , and taking S(x, t) = εR(X, T ),
Eq. (15) is rewritten as follows:

∂t R =
(
1

6
V ′ + kV ′ + 3λV ′τ(1 − p)

2

)
∂3x R

+ 1

12
V ′′′∂x R3 −

(
λV ′ − 1

2
V ′ − λV ′τ

)
∂2x R

+
[
1

24
V ′ + 7

12
V ′k + λV ′τ

(
7

6
− p

)

+(λ(2p − 1) − 2b)

(
1

6
V ′ + kV ′ + 3

2
τλb(1 − p)

)]
∂4x R

+
(

1

12
V ′′′ + 5

6
V ′′′k

)
∂2x R

3 (16)

By adding term
2V ′(λV ′τ+ 1

2 V
′−λV ′)

1
12 V

′+ 5
6 V

′′′k ∂x S on both left and

right sides of Eq. (16) and performing t1 = t and x1 =
x − 2V ′(λV ′τ+ 1

2 V
′−λV ′)

1
12 V

′+ 5
6 V

′′′k for Eq. (16), we get

∂t1 S=
(

∂x1−
2V ′ (λV ′τ + 1

2V
′ − λV ′)

1
12V

′ − 5
6V

′′′k
∂2x1

)[ (
1

6
V ′

+ kV ′ 3λV ′τ(1 − p)

2

)
∂2x1S+

1
12V

′ + 5
6V

′′′k
2V ′′′ S

+ 1

2V ′ (λV ′τ + 1
2V

′ − λV ′) S
3

]

(17)
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Table 2 The coefficients ji
of the model

j1 j2 j3

1
6V

′ − 2λb3V ′
1−k

1
12V

′′′ 1
24V

′ + 7
12V

′k + λb
(
7
6 −p

)
(1+2k)

2(V ′−λ)

j4 j5

1
12V

′′′ + 5
6V

′′′k λb(1+2k)
2(V ′−λ)

We define the thermodynamic potentials:

φ(S) =
1
12V

′ + 5
6V

′′′k
4V ′′′ S2

+ 1

8V ′(λV ′τ + 1
2V

′ − λV ′)
S4 (18)

By rewritten Eqs. (17) with (18), the TDGL equation
is derived

∂t1 S = −
⎛

⎝∂x1 +
2V ′ (λV ′τ + 1

2V
′−λV ′)

1
12 V

′+ 5
6V

′′′k
∂2x1

⎞

⎠ δ	(S)

δS
(19)

	(S) =
∫

dx1

[
1

2

(
1

6
V ′+kV ′+ 3λV ′τ(1− p)

2

)
(dx1S)2+φ(S)

]

(20)

where δ	(S)/δS indicates the function derivative. The
TDGL Eq. (19) has two steady-state solutions except
trivial solution S = 0: one is the uniform solution

S(x1, t1) = ±
[
V ′ + 10V ′′′k

4V ′′′ S2
] 1

2

(21)

And the other is the kink solution

S(x1, t1) = ±
[
V ′ + 10V ′′′k

4V ′′′ S2
] 1

2

× tanh

{(
C

A + B

) 1
2 × (x1 − x0)

}

(22)

where x0 is constant. A = 1
24V

′+ 7
12V

′k+λV ′τ( 76−p),
B = (λ(2p − 1) − 2b)( 16V

′ + kV ′ + 3
2τλb(1 − p)),

C = ( 12V
′ + λV ′τ − λV ′). Equation (22) represents

the coexisting phase. By the condition

∂φ/∂S = 0, ∂2φ/∂S2 > 0 (23)

We obtain the coexisting curve from Eq. (18) in
terms of the original parameters

(�x)co = hc ±
[
V ′ + 10V ′′′k

4V ′′′ S2
] 1

2

(24)

The spinodal line is given by the condition

∂2φ/∂S2 = 0 (25)

FromEq. (23), we obtain the spinodal line described
by the following equation

(�x)co = hc ±
{

3(V ′ − λ)

(2γ τ0V ′ − 1)V ′′′
[
(2bγ τ0 − 1) − 2(τλb − τb)

V ′

]} 1
2

(26)

The critical point is given by the condition ∂φ/∂S = 0
and Eq. (25)

(�x)c = hc, ac = 2(V ′ − λ)

2γ τ0V ′ − 1
(27)

4 mKdV Equation

Similarly with the derivation of the TDGL equation,
we study the slowly varying behavior at long wave-
lengths near the critical point. We extract slow scale
for space variable n and time variable t . By inserting
ac = 2(V ′−λ)

1+2k ,a = (1+ε2)ac intoEq. (14), one obtains:

ε4( j1∂
3
X R + j2∂X R

3 − ∂T R)

+ε5( j3∂
4
X R + j4∂

2
X R

3 + j5∂
2
X ) = 0 (28)

Here, the coefficients ji are given in Table 2.
In the table V ′ = dV (�xn)/d�xn|�xn = hc,

V ′′′ = d3V (�xn)/d�x3n |�xn = hc.
In order to derive the regularized equation, we make

the following transformation:

T = 1

j1
T ′, R =

√
j1
j2

(29)

So the standard mKdV equation with an O(ξ) correc-
tion term is obtained as follows:

∂T ′ R′ = ∂3X R
′ − ∂X R

′3 − ε

[
j3
j1

∂2X R
′

+ j4
j1

∂4X R
′ + j5

j2
∂2X R

′3
]

(30)
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Fig. 2 Space-time evolution of the headway after t = 10, 000

If we ignore the O(ε), they are just the mKdV equa-
tions with a kink solution as the desired solution:

R′
o(X, T ′) = √

ctanh

√
c

2
(X − cT ′) (31)

Then, assuming that R′(X, T ′) = Ro
′(X, T ′) +

εR1
′(X, T ′), we take into account the O(ε) correction.

For the purpose of determining the selected value of
the velocity c for the kink solution, it is necessary to
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Fig. 3 The headway profile at t = 10, 000 under the different value of k and λ

satisfy the solvability condition. As (Ro
′, M[Ro

′] ≡∫ +∞
−∞ dX ′Ro

′M[R′]), where M[Ro
′] = j3

j1
∂2X R

′ +
j4
j1

∂4X R
′ + j5

j2
∂2X R

′3. We get the general velocity c:

c = 5 j2 j3
2 j2 j4 − 3 j1 j5

(32)
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Hence, the general kink–antikink soliton solution of
the headway, from the mKdV equation is obtained:

�xn(t) = hc ±
√

j1c

j2
(
τ

τc
− 1) × tanh

√
c

2

(
τ

τc
− 1

)

×
[
n + (1 − cj1)

(
τ

τc
− 1

)
t

]
(33)

where V ′′′ < 0, this kink soliton solution also rep-
resents the coexisting phase, and the kink solution
(33) agrees with the solution (22) obtained from the
TDGL equation. Thus, the jamming transition can be
described by both the TDGL equation with a nontrav-
elling solution and the mKdV equation with a propa-
gating solution.

5 Numerical simulation

In this section, we test the validity of the theoreti-
cal results by numerical simulation. With the periodic
boundary condition, the initial conditions are given as
follows:

�x j (0) = �x0 = 4.0,�x j (1) = �x0 = 4.0,
for j �= 50, 51, �x j (1) = 4.0 − 0.5, for j =
50,�x j (1) = 4.0 + 0.5, for j = 51.

We choose the total number of cars and the sensitiv-
ity as N = 100 and a = 1.05.

Figure 2 shows the space-time evolution of the head-
way after t = 104 time steps under the different param-
eter k and λ. It can exhibit the kink–antikink solutions
propagating backwards. It can be seen that the traf-
fic flow becomes more stable with the k and λ. From
pattern (a) with k = 0 and λ = 0, it corresponds to
the OVM model. It is obviously that the traffic flow
are very unstable. When a small disturbance is added
into the uniform traffic flow, the propagating backward
stop-and-go traffic jam appears which is very similar to
themKdV solution. The traffic jams diminish gradually
from pattern (a) to pattern (b) with k = 0.3 and λ = 0
to pattern (c) with k = 0.5 and λ = 0. Pattern (d) with
k = 0, λ = 0.1 and pattern (e) with k = 0, λ = 0.3, the
traffic congestion is more stable than in pattern (a). Pat-
tern (f) with k = 0.5, λ = 0.3, the traffic flow is very
stability. It is found that the new consideration plays
the positive function on stabilization of traffic flow. It
is obvious that the amplitude of the kink–antikink soli-
ton weakens gradually with increasing the parameter k
and the parameter λ. Furthermore, it demonstrates that

-40 -20 0 20 40 60
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Fig. 4 Profile of energy consumption of each vehicle in different
k and λ

the new consideration is enough to suppress the traffic
congestion efficiently.

Figure 3 shows the headway profile obtained at
t = 10, 000 corresponding to panels in Fig. 2; the sim-
ilar results are obtained from Fig. 2. So, the simulation
results are in agreement with the theoretical analysis

Figure 4 shows the distribution of energy consump-
tion for the different parameters k and λ. The change
in the profile of kinetic energy in each model is loop.
They divided into two regions with �En > 0 and
�En < 0. �En > 0 indicates that the vehicles
will leave the congestion region in the state of accel-
eration process. �En < 0 indicates that the vehi-
cles will enter the congestion region in the state of
deceleration process. The area of the parameter with
k = 0, λ = 0 model is the largest and those of the
parameter with k = 0.5, λ = 0.3 model is the minimal
of all. The parameter with k = 0, λ = 0 model is the
most unstable and the stability of the parameter with
k = 0.5, λ = 0.3 model is the best of all. The stability
of the parameter with k = 0.3, λ = 0.1 model is better
than OVM. As a result, the smaller loop of the kinetic
energy change , the more stable traffic flow is.

6 Conclusion

In this paper, an improved car-following model of traf-
fic flow is put forward to describe traffic behaviors.
The above analysis confirms that the optimal veloc-
ity difference and a two-velocity difference effect did
improve the stability of traffic flow. We obtain the neu-
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tral stability line and the critical point through the lin-
ear stability analysis. The TDGL equation has been
derived to describe traffic behavior near the critical
point by applying the reductive perturbation method.
Furthermore, the mKdV equation has been derived and
showed the connection between the TDGL and the
mKdV equations. When the optimal velocity differ-
ence and a two-velocity difference are considered in
ourmodel, it is enough to enhance the stability of traffic
flow and reduce the energy consumption. Also, numer-
ical simulation results confirm that the stable region
grows increasingly large with the optimal velocity dif-
ference and a two-velocity difference effect. The pre-
ceding analytical results show that the optimal velocity
difference and a two-velocity difference effect should
be taken into account.
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