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Abstract This study is concernedwith forceddamped
purely nonlinear oscillators and their behaviour at dif-
ferent excitation frequencies. First, their dynamics is
considered numerically for the response determined in
the vicinity of a backbone curve with the aim of detect-
ing coexisting responses that have not been found ana-
lytically so far.Both the cases of lowandhigh excitation
amplitudes are investigated. Second, the angular exci-
tation frequency is lowered significantly for different
powers of nonlinearity, and the system’s behaviour is
examined qualitatively, which has not been considered
previously related to a general class of purely nonlinear
oscillators. It is illustrated that the response at a low-
valued angular excitation frequency has a formof burst-
ing oscillations, consisting of fast oscillations around
a slow flow. Finally, approximate analytical solutions
are presented for the slow and fast flow for a general
class of purely nonlinear oscillators.
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1 Introduction

Purely nonlinear oscillators represent a distinctive class
of nonlinear oscillators whose restoring force Fr does
not have a linear term but contains only a monomial
term that is a power function of the displacement x :

Fr ∝ sgn (x) |x |α , (1)

where α is any positive real number higher than unity.
The sign and absolute value functions are used in this
definition to assure that Fr is an odd function of the dis-
placement for all the values of α defined. Alternatively,
the restoring force can also be written down as:

Fr ∝ x |x |α−1 . (2)

The well-known example of this class of oscilla-
tors is a pure cubic one α = 3, which can be obtained
approximately by combining and tuning the parameters
of several linear springs: two oblique ones with one
vertical spring [1]. Besides being related to physical
configurations [1,2], this type of a restoring force can
also be related to purely nonlinear material properties
[3]. Non-integer powers the force–displacement rela-
tionship have also been recognized in the suspension
of the vehicle, micro-actuators and in the interaction
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between the beads in the study of impulse propaga-
tion in a chain of elastic beads (see [4] and the refer-
ences cited therein). Furthermore, power-law charac-
teristics of the restoring force provide smooth approx-
imations of non-smooth forces, as occurs for example
in piecewise linear systems. The previous reasons pro-
vide a strongmotivation for examining thoroughly their
dynamic behaviour.

Undamped and damped unforced (free) responses
of purely nonlinear one-degree-of-freedom oscillators
have beenwidely examined by different techniques [5].
However, there has been a significantly smaller num-
ber of studies of harmonically excited purely nonlinear
oscillators with an arbitrary positive power of nonlin-
earity. These studies can be divided into two groups:
those concerned with pure cubic cases [6–8] and those
covering a wider range of the power of nonlinearity
[9–11]. To determine different types of their steady-
state forced response, Hayashi [6] applied either the
harmonic balance method or a perturbation technique
in which an amplitude and a phase are expanded in
terms of a small ordering parameter. For the appli-
cation of the latter, he added a linear geometric term
to both sides of the equation of motion. Burton [7]
considered undamped harmonically excited pure cubic
oscillators with an arbitrary magnitude of the ordering
parameter. He utilized the Lindstedt–Poincaré method,
but introduced a new expansion parameter, transform-
ing a strongly nonlinear system to a weakly nonlin-
ear system. He also showed that the approach with the
square of the excitation frequency expanded in terms
of the detuning yields the more accurate low order
frequency–amplitude equation than the case when one
uses a linear form of the forcing frequency in this rela-
tionship. Burton and Rahman [8] developed amultiple-
scale technique for the damped harmonically excited
system and also introduced a new expansion param-
eter, defined it as a deviation between the square of
the excitation frequency and a backbone curve. In
addition, they generalized their approach to the case
of a nonlinear restoring force with any odd power
of nonlinearity. In [9], a steady-state response in the
vicinity of a backbone curve and the corresponding
frequency–response curves are obtained for linearly
viscously damped externally excited oscillators with
weak and strong nonlinearity by using trigonometric
functions. In [10], the extension to any power-form
damping term is provided. Elliptic functions are uti-
lized in [11] to deal with the existence of a gen-

eral non-conservative term in the equation of motion
and to improve the accuracy of the approximate solu-
tion.

The following study aims at extending considera-
tions of the dynamics of harmonically excited viscously
damped purely nonlinear oscillators governed by

ẍ + 2ζ ẋ + εx |x |α−1 = F cos(�t), (3)

where the coefficient ε is positive, but not necessar-
ily small. The goal is to provide further insights into
their dynamical behaviour in two respects: first, to
detect other coexisting responses that could not be
found analytically in [9] for the same parameter val-
ues (Sect. 2), and second, to show how the system
behaves when the angular excitation frequency is low-
ered significantly for different powers of nonlinearity
(Sect. 3), which has not considered so far for a general
class of purely nonlinear oscillators. These investiga-
tions contain both numerical and analytical considera-
tions.

2 Overall dynamical behaviour

According to the results from [9], the frequency–
response curves of the oscillators governed by Eq. (3)
are given by

�2 = b1α εaα−1 − 2ζ 2

∓
√

F2

a2
− 4ζ 2b1α εaα−1 + 4ζ 4, (4)

where a is the amplitude of the term that has the fre-
quency � (note that the response obtained contains the
third harmonic as well), while the constant b1α depends
on the power of nonlinearity as follows:

b1α = 2√
π

�
(
1 + α

2

)
�

( 3+α
2

) , (5)

with � being the Euler–Gamma function [12]. This
approximate result, which is valid close to the back-
bone curve for ε that need not to be small, will be
used to illustrate the frequency–response curves and
to point out the frequencies at which additional numer-
ical insights will be provided as a results of systematic
numerical investigations for low and high excitation
amplitude.
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2.1 Numerical simulations

2.1.1 Low excitation amplitude

First, the following set of the system parameters is
used: ζ = 0.025, ε = 0.1 and F = 0.1. Note
that these values correspond to the values used in
Fig. 4 in [9]. The frequency–response curves are pro-
duced herein based on Eqs. (4) and (5) for differ-
ent powers of nonlinearity to emphasize the impor-
tant findings detected numerically, as explained below.
So, Fig. 1 presented herein contains six frequency–
response curves. To complement this presentation, the
brute force bifurcation diagram is reported in Fig. 2

Fig. 1 Frequency–response curves defined by Eqs. (4) and (5)
forα = 1 and different powers of nonlinearity and for ζ = 0.025,
ε = 0.1 and F = 0.1

Fig. 2 Bifurcation diagram for increasing α and for ζ = 0.025,
ε = 0.1, F = 0.1 and � = 0.5 (this value is also labelled in
Fig. 1)

for � = 0.5 (indicated in Fig. 1) for increasing α.
To draw this picture (as well as forthcoming Fig. 5),
the considered α interval is subdivided in 300 points.
For each of these α-values, fourth-order Runge–Kutta
numerical simulations (with 30 time steps per excita-
tion period T = 2π/�) are performed, and after a
transient of 150 periods, the values of x at each period
are reported. The intermediate branches (e.g. those of
the minor attractors) are detected using an initial point
taken from the relevant basin of attraction, for a value
of α in between the range of existence of the attrac-
tor.

Five attractors can be seen: the most important is
reported in green (colours are seen in the online version
of the paper)—it is a non-resonant attractor that exists
for all values of α. The resonant attractor is reported
in red, and it is born by a Saddle-Node (SN) bifurca-
tion at α ≈ 1.745. It always exists and is stable above
this threshold in the considered range of α. It is also
seen that the non-resonant attractor is a unique attrac-
tor below α ≈ 1.745.

There are also three minor attractors, which influ-
ence the global dynamics. The first two are two period-
2 oscillations (reported in black and orange in Fig. 2),
which are born by a SN bifurcation at α ∼= 3.01. They
exist in a small interval, then undergo a classical Period-
Doubling (PD) cascade ending with a Boundary Crises
(BC) at α ≈ 3.34. They are symmetric with respect
to each other. It should be pointed out that it is not so
common to have period-2 oscillations born via a SN
bifurcation, as period 2 oscillations usually come from
PD bifurcations. Thus, this represents a characteristic
of the system under consideration.

The third minor attractor, which is reported in
magenta, has period 3. It is born by a SN bifurcation
at α ≈ 3.16, undergoes a PitchFork (PF)—or symme-
try breaking—bifurcation at α ≈ 4.04 (note that this
is barely visible in Fig. 2), then a PD cascade follows
ending with a final BC at α ≈ 4.28.

As another numerical insight, the basins of attrac-
tions just after the SN bifurcation appearance of the
resonant attractor is reported in Fig. 3. Note that all of
them correspond to the powers of nonlinearity used in
Fig. 1. It is seen in Fig. 3a that for α ≈ 1.7456 the
non-resonant (green) attractor is dominant. The basins
boundaries are smooth.

For increasingα, the resonant (red) attractor becomes
dominant (Fig. 3b), and the basins boundaries start to
become wavy.
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(a) (b)

(c) (d)

(e) (f)

Fig. 3 Basins of attraction for ζ = 0.025, ε = 0.1, F = 0.1, � = 0.5 and a α = 1.7456, b α = 2.5, c α = 3.3, d α = 3.8, e α = 5
and f α = 6. The colour of the basin of each attractor is the same used for the corresponding path in Fig. 2. (Color figure online)
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Fig. 4 Frequency–response curves defined by Eqs. (4) and (5)
for different powers of nonlinearity and for ζ = 0.1, ε = 10 and
F = 10

For α = 3.3 (Fig. 3c), one can see five attractors that
coexists in a very narrow domain. The boundaries of
the red basins are still regular, while very oscillating.
On the other hand, the boundaries of the basins of the
non-resonant one and of the minor attractors (magenta,
black andorange) are fractals,which affects the dynam-
ical integrity [13,14] of these solutions.

The fractality of the basins of the small amplitude
solutions survives after the disappearance of the period-
2 solutions (Fig. 3d).

After the third minor attractor (magenta) disap-
pearance, also the basin of a resonant attractor (red)
becomes fractal (Fig. 3e), likely as a consequence of
heteroclinic bifurcations occurred in the meanwhile.
This situation persists up to very large values of α

(Fig. 3f), where the fractality is very extended for large
values of x .

2.1.2 High excitation amplitude

Second, as a representative of a high excitation ampli-
tude case, the following set of the system parameters
is used: ζ = 0.1, ε = 10 and F = 10. These are the
parameters also used in Fig. 5 of [9]. Herein, based
on Eqs. (4), (5) and for different powers of nonlin-
earity, four frequency–response curves are plotted in
Fig. 4. These frequency–response curveswill be related
to numerical results reported subsequently.

The bifurcation diagram is shown in Fig. 5 for
increasing values of the power of nonlinearity α. There

Fig. 5 Bifurcation diagram for increasing α and for ζ = 0.1,
ε = 10, F = 10 and � = 6 (this value is also labelled in Fig. 4)

are the same five attractors already seen in Fig. 2 for a
low excitation amplitude: a period-1 non-resonant one
(green); period-1 resonant one (red); two symmetric
period-2 ones (black and orange); period-3 (magenta).
They have the same qualitative behaviour, in particular
the sequence of bifurcations leading to their appear-
ance/disappearance. However, they differ from a quan-
titative point of view. For example, the non-resonant
attractor is born via a SN bifurcation at α ≈ 1.66.

There is a new, period-9 attractor, reported in blue
in Fig. 5. It is born by a SN, undergoes a PF, then a PD
cascade up to a BC, where it disappears. It exists in a
very narrow range of the power of nonlinearity (3.09 <

α < 3.26), and thus it is aminor attractor. There are also
two other very minor attractors, of period 6, reported in
grey and light orange and in Fig. 5, symmetric between
each other (see forthcomingFig. 8f, g). They exists only
in the neighbourhood of α = 2.7.

The basins of attraction appearing just after the res-
onant attractor is born are reported in Fig. 6a. The res-
onant attractor has a very large amplitude (note that, to
have the resonant attractor inside the considered win-
dow, the axes of Fig. 6a are larger than those of the
others in Fig. 6), and initially its basin is small.

By increasingα, the red basin rapidly becomes dom-
inant, as shown in Fig. 6b. It is also possible to see
in this figure the existence of a main non-resonant
attractor (green basin), and a minor period 3 (magenta
basin) and period 2 (black and orange basins) attrac-
tors. Theyhave fractal basin boundaries,with the fractal
behaviour increasing for large oscillation amplitudes.
The boundaries of the resonant attractor, on the other
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(a) (b)

(c) (d)

Fig. 6 Basins of attraction for ζ = 0.1, ε = 10, F = 10,� = 6 and a α = 1.66, b α = 2.7, c α = 3.1 and d α = 4.0. The colour of the
basin of each attractor is the same used for the corresponding path in Fig. 5, as well as the same used in Fig. 7. (Color figure online)

hand, are smooth. There are also two very minor period
6 attractors (grey and light orange basins): their basins
surround the basins of the period 2 attractors, and they
are very small. Thus, these very minor attractors exist
in an extremely narrow value of the parameters, and,
what is more, they are difficult to be detected due to
their very small basins in the existence range.

By further increasing α, one can observe four dif-
ferent coexisting attractors shown in Fig. 6c. Period
2 attractors have been substituted by a period 9 (blue
basin) attractor yet seen in Fig. 5. The basins are even
more fractal with respect to the previous case, entail-
ing a further reduction of the dynamical integrity, i.e.,

the compact part of the basin of attraction around the
corresponding attractor [13,14], and thus diminishing
the robustness and then the practical usability of the
bounded attractors.

Finally, when the period 9 disappears, only the res-
onant and non-resonant attractors remains, as seen in
Fig. 6d. We note that the red tongues of the basin of
the resonant attractor are entering the (green) basin of
the non-resonant attractor, starting a fractalization that
further develops by increasing α.

The main dynamical characteristic highlighted by
the previous simulations is the occurrence of minor
attractors.
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Fig. 7 Basins of attraction for ζ = 0.1, ε = 10, F = 10, � = 6
and α = 3.0. (Color figure online)

It is worth highlighting that it is very difficult to
detect these minor attractors, as one needs to build the
basins of attraction just for a value of α belonging to
their very narrow existence range.

Six minor attractors, coexisting with the three major
attractors, are reported in Fig. 7. Two period 4 attractors
appear after the PD of the period 2 attractors previously
seen. In addition, there are: one period 5 attractor, two
symmetric period 6 attractors and a period 7 attractor.
Their phase portraits are reported in Fig. 8.

Since the minor attractors exist in a very narrow
range (even smaller than that of P6 in Fig. 5), they are
not reported in the bifurcation diagram of Fig. 5.

As expected, all periodic attractors with an even
period exist with their symmetric counterparts, while
this does not occur to odd-periodic attractors.

Figure 7 highlights another distinguished peculiarity
of the considered system, namely the coexistence of
many attractors (up to nine) of almost all periods (only
period 2 is missing in Fig. 7).

Although we have not continued the research of
minor attractors, we are quite sure that many other of
them exists spread in the parameters space.

2.2 Analytical approximations of periodic solutions

In this section, we look for an analytical approximation
of periodic solutions

x(t) = a sin(�t), (6)

of the governing Eq. (3) rewriting it as

ẍ + 2ζ ẋ + εx |x |α−1 = F sin(n�t + φ). (7)

The integer n is introduced to consider period n oscil-
lations, while the phase φ is due to damping. Inserting

it in the excitation instead of in the solution is suitable
to facilitate the following mathematical computations.
For the same reasons, we consider the sine function
instead of the cosine function.

The equations for the unknown a and φ are obtained
by the Galerkin method. Multiplying Eq. (7) with
sin(�t), integrating it from t = −π/� to t = π/� and
remembering that x(t) is odd with respect to t = 0 and
that sin(�t) is always positive in [0, π/�], we obtain

− a�2 + 2F sin(πn) cos(φ)

π(n2 − 1)
+ εaαb1α = 0, (8)

where b1α is defined by Eq. (5).
Multiplying Eq. (7) with cos(�t) and integrating it

from t = −π/� to t = π/�, one can derive

2aζ� + 2F sin(πn)n sin(φ)

π(n2 − 1)
= 0. (9)

For n �= 1, Eqs. (8) and (9) are satisfied by ζ = 0 and

a
α−1
2 = �

√
1

εb1α
. (10)

This provides the relation between the frequency and
the amplitude of undamped free oscillations, and its
geometric presentation gives a backbone curve. It is
worth to note that for α < 1, one has a → ∞ for
� → 0, so that the amplitude is inversely proportional
to the frequency, while for α > 1, one has a → 0 for
� → 0, and the amplitude in directly proportional to
the frequency.

If 1 < α < 3, then da
dα → 0 for � → 0, so that for

small values of � the vibration amplitude is infinites-
imal, while for α > 3 we have da

dα → ∞ for � → 0,
namely even for very small �s the oscillation has a
finite amplitude. For α = 3 the relation between a and
� is linear, this making the cubic case a special one.

Since F disappears, the proposed analytical approx-
imation is not able to detect forced oscillations with
n �= 1.

When n = 1, Eqs. (8) and (9) simplify to

− �2a − F cos(φ) + εaαb1α = 0, (11)

and

2�aζ − F sin(φ) = 0. (12)

Eliminating the phase angle φ from the previous equa-
tions, one derives

(2�aζ )2 +
(
εaαb1α − �2a

)2 = F2, (13)
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Fig. 8 Phase portraits of the nine attractors from Fig. 7. The red crosses are the points in the stroboscopic Poincarè map. a P1
non-resonant, b P1 resonant, c P3, d P4, e P4, f P5, g P7, h P6, i P6. The symmetry of the two period 4 and period 6 attractors is evident
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which provides the amplitude of the oscillation a as
a function of the system parameters ζ , ε and α and
the excitation amplitude F and frequency �. When
solved for �, this equations turns into Eq. (4). The fact
that the same equation is obtained here with a different
analytical technique confirms its reliability.

3 Dynamical behaviour at decreasing and low
angular excitation frequency

3.1 Numerical insight

In order to give additional insights into the dynamic
behaviour when � is decreased from the values used
in Sect. 2.1.2, Fig. 9 is created showing the responses
obtained numerically from Eq. (3) and superimposed
onto the S-curve (nullcline):

εx |x |α−1 = F. (14)

This curve is plotted as a red dashed line, while the
response is plotted in black as changing with the exci-
tation force F cos(�t). The power of nonlinearity is
fixed to α = 2.5, while the excitation frequency is
decreased, taking the values: � = 6, 4, 2, 0.6, 0.4, 0.2.
The shape of the response with respect to the lower
and upper branch of the S-curve can be used to inter-
pret the content of the responses, whose change in the
character is shown for illustration in the time domain
as well. When � is very small, as shown in Fig. 10a, b
for α = 2.5, � = 0.06, the time response consists
of the damped fast oscillations along the slow flow,
which coincides with the branches of the S-curve (14).
The hysteretic path followed by the time response is
indicated by the arrows in Fig. 10a: starting from the
left down part at Point A, the flow goes along the lower
red branch of the S-curve, then jumps from the lower
branch to the upper branch, passes through Point C on
it and starts oscillating around the upper branch with
a decreasing amplitude, then changes the direction at
Point D, goes back along the upper branch, then jumps
down, passes through Point B and oscillates around the
lower branch until Point A. This hysteretic behaviour
repeats afterwards periodically.

The way how the hysteretic behaviour looks like
when imposed on the S-curve for the fixed low-valued
excitation angular frequency and an increasing power
of nonlinearity is shown in Fig. 11 for the α = 1.66,

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 9 Responses obtainednumerically fromEq. (3) for ζ = 0.1,
ε = 10, F = 10, α = 2.5 superimposed onto the S-curve (14)
(left) and the corresponding time-histories plotted for: a � = 6,
b � = 4, c � = 2, d � = 0.6, e � = 0.4, f � = 0.2
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(a)

(b)

Fig. 10 a Response obtained numerically from Eq. (3) for ζ =
0.1, ε = 10, F = 10, α = 2.5, � = 0.06 superimposed onto the
S-curve (14) with some characteristic points of a hysteretic path
labelled, b the corresponding time-histories and the slow flow
(red dashed line) defined by Eqs. (18) and (19). (Color figure
online)

3.1, 4, which are the parameters used in Fig. 6. The
corresponding time responses are also presented.

A remark should be made here about the fact that
the (fast dynamics) bursting oscillations are generated
when the solution passes through x = 0, namely at the
unique non-smooth point of the restoring force. Thus,
its mechanical motivation is clear, and it is remark-
able that this very weak non-smoothness (the force is
continuous, and only its derivative of order [α] + 1 is
discontinuous) has so important dynamical effects.

3.2 Analytical approximations of bursting oscillations

In has been illustrated above that purely nonlinear oscil-
lators subject to external excitation with low-valued
angular frequency can exhibit a response that consists
of fast flowoscillations around the periodical slowflow.
The aim of the following analysis is to obtain approx-

imate analytical expressions for these slow and fast
flows and the overall response. So, the overall solu-
tion is represented as the sum of the slow flow xs and
the fast flow Xf ,

x = xs + Xf . (15)

Substituting this into Eq. (3), one can collect the slow
and fast flow terms and separate the original equation
into the governing equation for the slow flow:

x ′′
s + 2ζ x ′

s + εsgn (xs) |xs|α = F cos (τ ) , (16)

where the primes denote differentiation with respect
to slow time τ = �t (please note that given a low-
valued �, one holds � � 1), and also the approximate
governing equation for the fast flow truncated to X3

f :

Ẍf + 2ζ Ẋf + εα|xs|α−1Xf + εα (α − 1)

sgn (xs) |xs|α−2X2
f + εα (α − 1) (α − 2) |xs|α−3

X3
f = 0, (17)

The governing equation for the slow flow (16) can be
approximately solved by neglecting the damping and
the inertial term. In addition, shifting the time response
to have a zero displacement at the origin, Eq. (16) yields
the solution for the upper outer curve of the slow flow
xs,u in the form

xs,u =
(
F

ε
sin (τ )

)1/α

, 0 ≤ τ ≤ π. (18)

The lower part xs,l has a negative sign and is shifted
along a time scale for a half of a period

xs,l = −
(
F

ε
|sin (τ )|

)1/α

, π ≤ τ ≤ 2π. (19)

These analytical expressions (18), (19) are plotted in
Fig. 10b as red dashed lines and confirm that the slow
flow stretches along these curves. Note that the slow
flow and the subsequent jumps make this response
resemble the relaxation oscillations that appear in a
strongly damped classical van der Pol oscillator [15].
However, here, the fast flowalso appears along theouter
curves as reported for a bistable cubic oscillator excited
at a low external angular frequency [16].

Next, the governing equation of motion for the fast
flow (17) is to be solved. Regarding the existence of
the nonlinearity, it contains quadratic and cubic term in
Xf , i.e. it represents the Helmholtz–Duffing equation
with xs appearing in their coefficients. Such equation
was derived in [17] for a bistable oscillator with cubic
nonlinearity excited at low angular frequency and it
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(a)

(b)

(c)

Fig. 11 Hysteretic behaviour of the response imposed on the S-curve (left) and the corresponding time responses (right) for: a α = 1.66,
b α = 3.1, c α = 4
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involved the treatment of xs as a constant. Although
we have tried to apply the same methodology to these
purely nonlinear oscillators, an acceptable accuracy
could not be achievedwhen comparing the correspond-
ing overall bursting oscillations with the numerical
solutions of Eq. (3). A possible reason is that in bistable
oscillators considered in [17], the branches of the S-
curve along which the slow flow was stretched were
not as curvilinear as here, which explains why it could
have been taken as a constant there. Despite trying here
to approximate xs with different values (the harmonic
mean, the quadraticmean, an average value obtained by
integrating the slow over its periods), neither of them
gave a satisfactory agreementwith numerical solutions.
Thus, another approach needed to be taken with xs(τ ).
So, instead of treating xs as a constant, it is taken as
time-varying, i.e. the governing equation for the fast
flow (17) is analysed as having slowly varying coeffi-
cients. The fast flow is taken to be governed by

Ẍf + 2ζ Ẋf + εα

(
F

ε

) α−1
α | sin (τ ) | α−1

α Xf = 0. (20)

Note that the power of nonlinearity α of the origi-
nal purely nonlinear oscillator still exists in Eq. (20).
However, the quadratic and cubic terms in of Xf have
been dropped from Eq. (17). To demonstrate that this
is acceptable here, Eq. (20) was solved numerically,
summed upwith the slow flows (18), (19) and this solu-
tion is comparedwith the numerical solutions of Eq. (3)
for a high excitation amplitude and different powers of
nonlinearity: α = 1.66, 3.1, 4. Their good matching
is seen in Fig. 12a–c, which gives a reason to look for
an approximate analytical solution of Eq. (20). This
can be done by using the method for oscillators with
slowly varying frequency [18]. Looking at Eq. (20), one
can recognize this slowly varying frequency as being
defined by

ω (τ) =
√√√√

εα

(
F

ε

) α−1
α | sin (τ ) | α−1

α . (21)

In addition, as 2ζ has a small value, this damping term
can be treated as a perturbation, while given a small
value of �, it is treated as a small parameter.

The solution is assumed as

Xf = a (t) cos [ψ (t)] , (22)

Ẋf = a (t) ω (τ) sin [ψ (t)] , (23)

and the first-order differential equations for a and ψ

are given by:

da

dt
= − �a

2ω (τ)

dω

dτ
− ζ

πω (τ)

×
∫ 2π

0
aω (τ) sin2 (ψ) dψ, (24)

dψ

dt
= ω (τ) − ζ

πaω (τ)

×
∫ 2π

0
aω (τ) sin (ψ) cos (ψ) dψ. (25)

Integrating Eq. (24), the amplitude a (t) is obtained in
the form

a (t) = ∓
√√√√√ 1√

εα
( F

ε

) α−1
α | sin (�t) | α−1

α + 1
a20

e−ζ t ,

(26)

where a0 is the initial amplitude. Note that the minus
sign is used for the upper fast flow and the plus sign for
the lower flow.

Assuming ψ (0) = 0, Eq. (25) is solved to obtain
ψ (t) in the form

ψ (t) = 1

�

√√√√
εα

(
F

ε

) α−1
α

(√
π

2

�
( 3
4 − 1

4α

)
�

(
5
4 − 1

4α

)
−2F1

[
1

2
,
α + 1

4α
,
3

2
, cos2 (�t)

]
cos (�t)

)
,

(27)

where 2F1 stands for a hypergeometric function.
The approximate solution for the fast flow given by
Eqs. (22)–(27) is summed up with the slow flows (18),
(19), and this solution is plotted as amagenta dotted line
and compared with the numerical solutions of Eq. (3),
plotted as a green solid line. The comparisons carried
out for different powers of nonlinearity α are presented
in Fig. 13a–c, and a very good agreement between the
numerical and approximate analytical solution is seen.
Note that the same parameters are used as in Fig. 12a–c.
The initial amplitude a0 is obtained numerically as the
displacement fromwhich there is a jump from the lower
to the upper branch for the upper flow, and vice versa
for the lower flow. It would be valuable to direct future
research towards obtaining these jump amplitudes as
well as the hysteresis shape analytically.
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(a)

(b)

(c)

Fig. 12 Comparison of the numerical solution of Eq. (3) (green
solid line) and the approximate solution (blue dashed line)
obtained by summing up a numerical solution of the governing
equation for the fast flow (20) with the slow flow approximation
(18), (19) for: a α = 1.66, b α = 3.1, c α = 4. (Color figure
online)

4 Conclusions

This study has been concerned with a forced response
of purely nonlinear oscillators with the focus on their
response at different frequencies for various powers of
nonlinearity.

In the first part of the study, several numerical com-
putations have been done in order to capture the overall

(a)

(b)

(c)

Fig. 13 Comparison of the numerical solution of Eq. (3) (green
solid line) and the approximate solution (green dotted line)
obtained by summing up an approximate analytical solution for
the fast flow (22)–(27) with the slow flow approximation (18),
(19) for: a α = 1.66, b α = 3.1, c α = 4. (Color figure online)

attractors scenario. In addition to the main attractors
that have been identified also by previously published
analytical techniques, many other secondary attractors
have been found, including very minor ones. While
likely being not directly visible in practical applica-
tions, since they exists in a very narrow range of the
varying parameter and since they have a very small
basin of attractions, they are indeed important as they
affect the basins of attraction of the major attractors,
commonly augmenting their fractality and, thus, reduc-
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ing their robustness and safety. A maximum of nine
coexisting attractors, symmetric and non-symmetric
and of different period, have been found, showing
how the multistability is a peculiarity of the consid-
ered mechanical system. The overall attractor scenario
has been summarized by means of bifurcation dia-
grams for different powers of nonlinearity. Two dif-
ferent cases, one with low excitation amplitude and the
other with high excitation amplitude, have been con-
sidered, and it has been shown that the overall qual-
itative behaviour does not change by increasing the
excitation amplitude. Representative basins of attrac-
tion have been reported, and their fractality has been
highlighted. An approximate analytical solution of the
principal oscillation has been obtained by the Galerk-
ing method. The same solution already existing in the
literature has been re-obtained herein with a different
technique, showing the robustness of this analytical
approximation.

In the second part of the study, an insight has been
provided into the dynamic behaviour when the excita-
tion frequency is decreased gradually until low val-
ues. It has been show how this response looks like
when superimposed on the S-curve, defined by the
restoring force and the excitation. Numerical results
have also demonstrated that for the low-valued exci-
tation angular frequency, the response exhibits a hys-
teretic behaviour, which involves bursting oscillations:
it slowly moves along the lower branch of the S-curve,
then jumps onto the upper branch; subsequently, there
are damped fast oscillations around this upper branch;
then, there is a jump from the upper to lower branch
and fast damped oscillations around it appear, con-
tinuing slowly around the lower branch; afterwards,
the response repeats periodically. Approximate analyt-
ical expressions for the slow and fast flow as well as
for the overall bursting response have been obtained
for the first time for a general class of purely nonlin-
ear oscillators. Their good matching with numerical
solutions of the corresponding governing equations has
been demonstrated.
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