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Abstract Gear eccentricities are one of the practi-
cal types of the manufacturing errors that affect the
dynamic performance of a planetary gear train (PGT).
Previous research about the effects of the gear eccen-
tricities is abundant, and many of them focus on the
parallel shaft gear set. However, almost none of them
have considered the influence of the gear eccentrici-
ties on the mesh stiffness. In fact, the existence of the
gear eccentricities can change the center distance and
the mesh positions of a meshing gear pair, which will
directly affect the mesh stiffness. Situation can be even
more complex for the PGT with either sun gear eccen-
tricities or planet gear eccentricities or both of them.
Based on that, a newdynamicmodel of a PGTwith gear
eccentricities is established. The planar motions of the
PGT and the mesh stiffness are integrated and solved
simultaneously where the mesh stiffness is determined
by the actual mesh positions of the meshing gear pair.
The mesh stiffness is calculated by the energy poten-
tial method. The time-varying center distance caused
by the gear eccentricities is also considered, which can
result in the change of line of action, pressure angle,
contact ratio and mesh positions. The influence of gear
eccentricities on the dynamic performance of a 4-planet
PGT is studied. Some useful results are derived at last.
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1 Introduction

Planetary gear trains (PGTs) are widely used in the
industry applications (e.g., wind turbine, aerospace,
etc.) due to their significant advantages including com-
pactness, high power density, as well as the reduced
noise and vibration. There have been numerous stud-
ies on the PGTs in various aspects. Most attentions are
attracted on the vibration, load sharing and noise of
PGTs as they are the primary concerns in applications.

The primary advantage of a PGT is that it can carry
more load than a parallel shaft gear set as the power
is split nearly equally among planets. To achieve this
objective, it is essential to guarantee the equal load shar-
ing among planets. As a result, strict restrictions on the
manufacturing and assembly tolerances, such as the
pinhole position errors, the tooth profile errors and the
gear eccentricity errors (i.e., gear eccentricities) [1–3],
are required for the PGTs. Moreover, gear eccentrici-
ties can induce dynamic excitation and complex modu-
lationswhichwill further influence the overall dynamic
performance [4]. A series of papers were completed by
Hidaka who studied the dynamic behavior of a PGT
showing that the load sharing in a three-planet gear
set is perfectly equal if one of the central members is
allowed to float [5,6]. Kahraman et al. [1,2] established
a lumped parameter model to investigate the influ-
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2 Z. Cao et al.

ence of the carrier pin hole and planet run-out errors
on the planet load sharing under dynamic condition.
They divided manufacturing errors into three groups:
time-invariant and assembly-independent errors, time-
invariant and assembly-dependent errors, as well as
time-varying and assembly-dependent errors. Cheon
and Parker [7] analyzed the effects of gear eccentricity
errors and othermanufacturing errors on bearing forces
and critical tooth stress by using a hybrid finite element
method. Meanwhile, Chaari et al. [4] and Chen and
Shao [8] studied the dynamic behavior of a PGT with
the gear eccentricity errors, tooth profile errors consid-
ering the gyroscopic effect. They indicated that the gear
mesh frequencywasmodulated by the gear eccentricity
errors, and for larger eccentricity errors the transmis-
sion would deteriorate with the gear mesh frequency
drowned in the defect signal. Inalpolat and Kahra-
man [9] introduced a discrete dynamicmodel to predict
the modulation sidebands of the PGTs. Their model
was formed by assuming that the mesh interface dis-
placement excitations were amplitude- and frequency-
modulated due to the gear eccentricity errors. However,
the influence of gear eccentricity errors on the mesh
stiffness was not discussed. Kim et al. [10] noticed that
the existence of gear eccentricities and bearing defor-
mations can change the center distance, line of action
(LOA), pressure angle and contact ratio of a mesh-
ing gear pair. They proposed a dynamic model that
firstly regards them as time-varying variables in lit-
erature. However, they used the traditional mesh stiff-
ness model (square wave form) proposed by Kahraman
et al. [1] that is independent on the actual mesh posi-
tions. Recently, Gu and Velex [11] proposed an origi-
nal lumped parameter model to study the dynamic load
sharing characteristics of a PGT with the pinhole posi-
tion errors and gear run-out errors where the tooth exci-
tation associatedwith toothmeshwere derived from the
instantaneous contact condition.

In most of the above-mentioned lumped parameter
models, gear eccentricity errors were usually simulated
as the displacement excitations by projecting eccentric-
ity errors on theLOAandoffline of action (OLOA) [10–
12]. Some researchers have already noticed that gear
eccentricity errors can induce time-varying LOA, pres-
sure angle and contact ratio, and discovered that the
dynamic response of gear transmission system may
be modulated. However, almost all of them treated the
mesh stiffness model as the same as the case without
gear eccentricities. The influence of gear eccentrici-

ties on the mesh stiffness was completely neglected. In
fact, gear eccentricities can change the center distance
and mesh positions of a meshing gear pair, which will
directly affect the mesh stiffness. Situation can be even
more complex for the PGT with either sun gear eccen-
tricities or planet gear eccentricities or both of them.
Hence, in this paper, a new dynamic model of an N-
planet PGT with gear eccentricity errors is proposed.
The eccentricity errors are intrinsically incorporated
into the dynamic model of the PGT by considering the
time-varying distance caused by the gear eccentricity
errors. The mesh stiffness is calculated based on the
potential energy method according to the actual mesh
positions of a meshing gear pair. Dynamic characteris-
tics of a 4-planet PGTwith gear eccentricity errors will
be presented base on the proposed model.

2 Dynamic model of a planetary gear set with gear
eccentricities

Figure 1 shows the overall dynamic model of an N -
planet planetary gear set. Each component (sun, ring,
carrier and every planet) is represented by a rigid disk
with three degrees of freedom (DOF), i.e., translations
in the horizontal and vertical directions, and rotation
along its central axis. The coordinate is built on a rotat-
ing carrier reference framewith a constant carrier rotat-
ing speed �c, which is fixed to the carrier with origin
O . The translations of component j in the horizon-
tal and vertical direction are denoted by x j and y j ,

Fig. 1 Lumped parameter model of an N -planet planetary gear
set
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Effects of the gear eccentricities on the dynamic performance 3

respectively (j = s, c, r and pn representing the sun,
the carrier, the ring and the nth planet respectively).
The infinitesimal rotation θ j is fluctuating around the
relative nominal rotation (rigid body motion) of the
j th component with a rotating speed w j in the rotating
reference, whereas the absolute rotating speed of j th
component in the static reference is w j + �c. There-
fore, the gross rotation of component j is w j t + θ j in
the rotating reference. The elastic linear support of each
component is represented by two linear springs in two
perpendicular directions, which are denoted by k jx and
k jy , respectively. The torsional constraint on the each
center member (sun, ring, and carrier) is denoted by the
stiffness k jθ . The nth sun–planet and ring-planet mesh
behaviors are represented by time-varying springs par-
allel to their corresponding LOA, denoted as kspn and
krpn.

The sun gear is assumed as the input element and
rotates in the anticlockwise direction. The carrier is
the output element, and the ring gear keeps fixed. The
mass and the polar moment of inertia of each member
of the PGT are denoted asm j and I j , respectively. The
base radius of each member is indicated by rbj , and the
distance between the centers of sun/ring and planets is
indicated by Rc.

2.1 Actual mesh positions and mesh deformations of
a meshing gear pair

For involute spur gear mesh, the mesh force is trans-
mitted along LOA and the deformation is also mea-
sured along the LOAdirection.When eccentricity error
occurs on either the sun, or the planet, or the ring gear,
its base circlewill rotate around its corresponding rotat-
ing center. Consequently, the LOA is changing with the
rotation of base circle. In the dynamic model of PGT,
it is assumed that the mesh force is in the new LOA
direction. In addition, bearing deformations will lead
to the translation of the gears that will also influence the
direction of LOA. For the sake of completeness, bear-
ing deformations are included in this study. Apart from
the gear eccentricities and the bearing deformations, no
other factors are considered to affect the LOA.

Figure 2 shows the planar motions of the sun gear
and the nth planet. Line NsNpn is the original LOA,
which should be tangent with the base circles of sun
gear (rbs) and nth planet (rbpn). As the sun gear and
the planet rotate, the contact region of the conjugated

Fig. 2 Planar motions of the sun and the nth planet

tooth pair moves and the mesh deformation of the nth
planet–sun at a specific time instant t is obtained by cal-
culating the overlap between the two un-deformed gear
teeth. Once the positions of the planet and the sun gear
are known, the mesh deformation of the nth planet–sun
at t can be determined according to the geometry of the
gear teeth [13]. In order to calculate the mesh deforma-
tion, an arbitrary initial position needs to be set as the
reference. Similar to most of the other studies [13,14],
the moment when the 1st planet firstly contacts at pitch
point with the sun is defined as the initial state. The
initial positions of other sun–planet meshes are deter-
mined according to the phasing relationship, which
depends on the direction of planet rotation. Detailed
discussions about it can be found in [14].

The eccentricity error of each component in PGT is
defined by two parameters, the amplitude e j and the
initial phase angle ε j , as illustrated in Fig. 2. If one or
more members of PGT have the eccentricity error, for
example, if the nth planet has eccentricity amplitude
of epn , and the sun gear has eccentricity amplitude of
es , the geometric center of the sun will translate from
Os to O ′

s , and the planet from Opn to O ′
pn . The LOA

will be changed from line NsNpn to line N ′
s N

′
pn . An

overlap or gap will thus be generated between the gear
meshes in the new LOA. So, in the initial condition of
PGT, some of the sun–planet meshesmay be in contact,
while some others in separation.

Under a certain load, the sun has translational
motions xs , ys and rotational motionws t +θs , whereas
the nth planet has translational motions xpn , ypn and
rotational motion wpnt + θpn . The rotational motion
of the sun will move its geometric center from O ′

s to
O ′′′
s , whereas the rotational motion of the nth planet

will move its geometric center from O ′
pn to O ′′′

pn . In
addition, the translational motions of the sun will fur-
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4 Z. Cao et al.

Fig. 3 Variations of mesh
positions and LOA with
eccentric sun and planet
gears

Fig. 4 Equivalent motions
of the final positions of the
gear centers

ther move O ′′′
s to O ′′

s and the translational motions of
the nth planet will further move O ′′′

pn to O ′′
pn . These

center movements are shown in Fig. 3. In a word, the
final positions of gear centers are achieved by two suc-
cessive steps, i.e., rotational motion from O ′

j to O ′′′
j

and translational motions from O ′′′
j to O ′′

j , as shown in
Fig. 4.

It can be noticed that the center distance and the
pressure angle between the nth planet and the sun or
ring gear have changed because of the bearing defor-
mations and gear eccentricities. At a specific time t ,
the mesh deformation is determined by the overlap (or
gap) between the conjugated tooth pair. The new center
distance of the sun–planet or the ring-planet is given as:

d ′
in =

√
d2in_x + d2in_y (1)

where

din_x = Rc cosϕn + xpn − xi

+ epn cos(wpt + εpn + θpn)

− ei cos(wi t + θi + εi ) (2)

din_y = Rc sin ϕn + ypn − yi

+ epn sin(wpt + εpn + θpn)

− ei sin(wi t + θi + εi ) (3)

where i = s for the sun–planet and i = r for the
ring-planet. ϕn is the spacing angle of nth planet as
illustrated in Fig. 1.

The new pressure angle is

α′
in = a cos

rbi + s1rbp
d ′
in

(4)

where s1 = 1 for i = s and s1 = −1 for i = r . The roll
angle is used to locate the contact point of the conju-
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Effects of the gear eccentricities on the dynamic performance 5

gated tooth pair. The length of δi pn along the new LOA
is given by

δi pn = rbiβin + s1rbpβ
i
pn + s2d

′
in sin α′

in (5)

where the roll angle of the sun/ring gear is,

βin = α′
in − αi + s2(ϕ

i
n − ϕn) + θ0in + s1(wi t + θi )

(6)

and the roll angle of the nth planet is,

β i
pn = α′

in − αi + s2(ϕ
i
n − ϕn) + θ i0pn + s1(wpt + θpn

(7)

where s2 = −1 for i = s representing the sun–planet
mesh and s2 = 1 for i = r representing the ring-planet
mesh. ϕi

n is the angle between the line connecting the
centers of the nth planet and the i th member (i.e., the
sun or the ring) and the horizontal axis. θ0in is the initial
roll angle of the i thmembermeshingwith thenth planet
when there is no error. θ i0pn is the initial roll angle of the
nth plant meshing with the i th member when there is
no error.

2.2 Calculation of the mesh stiffness based on the
actual mesh positions

Mesh stiffness is an important intrinsic excitation to the
gear transmission systems. Even if there are no manu-
facturing errors or assembly errors, gear transmission
systems will still exhibit vibration problem due to the
fluctuation of the number of tooth pair in the mesh
zone [15,16]. For the PGT, mesh stiffness will also
affect its stability, natural frequency and vibration char-
acteristic [17–20]. For ideal gear meshes, mesh stiff-
ness is a periodic function whose period is the time
interval of two neighboring teeth entering into the con-
tact zone. As one of the inputs to the dynamic equations
of motion, mesh stiffness should be obtained before
solving equations.

The mesh stiffness of a conjugated gear pair can be
calculated by the analytical methods [21–23], or the
finite element methods [24,25], or the hybrid meth-
ods [26,27]. The general approach to acquire the mesh
stiffness is to fix the driven gear and adjust the posi-
tion of driving gear to make them in contact. Then, the
gears are loaded and the mesh stiffness value at this
angular position can be calculated. Rotating the driv-
ing gear to the other angular positions and repeating
the previous steps, the mesh stiffness values at these

new positions can be obtained. When the sun, planets
and ring have eccentricity errors, if the normal mesh
stiffness is still used, the following problems arise: (1)
the introduction of the eccentricity error will make the
theoretical geometric center of the component consid-
ered rotating in a circle rather than fixed. Therefore,
LOA will change with the theoretical geometric cen-
ter circulating around the rotating center. Meanwhile,
the contact ratio is no longer constant and the period
of the mesh stiffness is time varying as the center dis-
tance between gear centers is changing; (2) suppos-
ing the angular position of the driving gear is known,
the actual contact positions of the conjugated tooth
pair with the gear eccentricities will differ from that
of the case without the gear eccentricities, which will
further change the magnitude variation of the mesh
stiffness.

The mesh stiffness of a conjugated gear pair is
related to the deflection of each tooth treated as a non-
uniform cantilever beam fixed to the rigid fillet foun-
dation, the deflection of the rigid tooth caused by the
flexible fillet foundation (i.e., gear body), and the hertz
contact deformation. The elastic deformation of one
tooth as a beam contains bending, shearing, and axial
deformations. Since the mesh stiffness is usually cal-
culated when the conjugated tooth pair is in contact, its
value will be different in different contact positions.
In this study, a more realistic method is taken into
consideration. The mesh stiffness is obtained based
on the un-deformed gear profile as shown in Fig. 5.
Intersections between the LOA and teeth profiles of
the mating tooth pair are the acting points of the mesh
force.

The bending, shearing and axial compressive stiff-
ness of an external spur gear (i.e., the sun and planets of
the PGT as shown in Fig. 1) tooth under a mesh force
F are given as [23]:

1

kb
=

∫ d

0

[F(d − x)cos α1 − Fh sin α1]2
2E Ix

dα

=
∫ α2

−α1

3
{
1 + cos α1[(α2 − α)sin α − cos α]

}2
(α2 − α)cos α

2EL [sin α + (α2 − α)cos α]3
dα

(8)

1

Ks
=

∫ 0

d

1.2 cos2 α1

GAx
dx

=
∫ α2

−α1

1.2 (1 + ν)(α2 − α)cos α cos2α1

GL [sin α + (α2 − α)cos α]
dα

(9)
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6 Z. Cao et al.

Fig. 5 Calculation of the
mesh stiffness of an
eccentric planetary gear set
a mesh position of the
eccentric planetary gear set,
b non-uniform cantilever
beam model of the spur gear
tooth

1

Ka
=

∫ d

0

sin2 α1

E Ax
dx

=
∫ α2

−α1

(α2 − α) cosα sin2 α1

2EL [sin α + (α2 − α) cosα]
dα

(10)

where α2 is the half base tooth angle shown in Fig. 5b.
α1 is related with the roll angle in Eqs. (6) and (7).
That is, for the sun gear α1 = βsn − αs2, and for the
nth planet α1 = βs

pn − αp2. αs2 and αp2 are the half
base tooth angles of the sun and planet. The deriva-
tions of the bending, shearing and axial compressive
stiffness of an internal spur gear (i.e., the ring of the
PGT as shown in Fig. 1) is similar to those of the exter-
nal spur gear and will not be detailed here. Explicit
explanations can be found in [28]. It should be noted
that the upper limit of the integral should be replaced
by the actual roll angle of the ring gear.

The total stiffness of a meshing tooth pair from a
meshing gear pair (sun–planet or ring-planet) is repre-
sented by

Kip = 1
/ (

1

Kbi
+ 1

Ksi
+ 1

Kai
+ 1

K f i

+ 1

Kbp
+ 1

Ksp
+ 1

Kap
+ 1

K f p
+ 1

Kh

)
(11)

where Kh is the hertz contact stiffness; K f is the stiff-
ness due to the fillet foundation, and i = s or r, repre-
senting the sun and the ring respectively. Their expres-
sions can be found in [23].

The total stiffness of a meshing gear pair is the sum
of the stiffness of allmeshing tooth pairs.With the time-
varying center distance and the elastic tooth deforma-
tions considered, the contact ratio should be recalcu-
lated. Whether the teeth are in contact or not depends
on the actual roll angles of the sun/ring gear and the
planet gear. The total mesh stiffness of the nth planet–
sun mesh is,

kspn =
⎧
⎨
⎩

M∑
k=1

kkspn, γsnl ≤βk
sn ≤ γsnu, γpnl ≤βk

pns ≤γpnu

0, else

(12)

where

γsnl =
(
d ′
sn sin(a

′
sn) −

√
r2as − r2bs

)/
rbp (13)

γsnu = tan

(
a cos

rbs
ras

)
(14)

γpnl =
(
d ′
sn sin(α

′
sn) +

√
r2ap − r2bp

) /
rbs (15)

γpnu = tan

(
α cos

rbp
rap

)
(16)

and M is the total number of tooth pair in mesh of the
nth planet–sun mesh. kkspn is the mesh stiffness of the
kth tooth pair of the nth planet–sun mesh. ras and rap
are the radii of addendum circles of the sun and the
planet, respectively. The total mesh stiffness of the nth
planet-ring mesh is

krpn =
⎧
⎨
⎩

M ′∑
k=1

kkrpn, ρrnl ≤ βk
rn ≤ ρrnu, ρrnl≤βk

pnr≤ρrnu

0, else

(17)

where

ρrnl =
(√

r2ar − r2ar − d ′
rn sin(a

′
rn)

)/
rbp (18)

ρsnu = tan

(
a cos

rbp
rap

)
(19)

γpnl = tan

(
a cos

rbr
rar

)
(20)

γpnu =
(√

r2ap − r2bp − d ′
rn sin(a

′
rn)

) /
rbs (21)
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Effects of the gear eccentricities on the dynamic performance 7

Table 1 Parameters of the planetary gear train

Sun Ring Planet Carrier

Number of teeth 30 70 20

Module (mm) 1.7 1.7 1.7

Pressure angle (◦) 21.34 21.34 21.34

Mass (kg) 0.46 0.588 0.177 3

Moment of inertia (kgm2) 1.53 × 10−4 2.3 × 10−3 2.51 × 10−5 2.7 × 10−3

Bearing stiffness (N/m) 108 108 108 108

Torsional stiffness (Nm/rad) 0 5.54 × 107 0 0

Face width (mm) 25 25 25

Fig. 6 Comparisons between the mesh stiffnesses and mesh
forces obtained by the proposed model and the model in [1] with
es = 20µm and fm = 3500Hz a stiffness of the 1st planet–sun

mesh, b stiffness of the 1st planet-ring mesh, cmesh force of the
1st planet–sun mesh, d mesh force of the 1st planet-ring mesh

M ′ is the total number of tooth pair in mesh of the nth
planet-ring mesh. kkrpn is the mesh stiffness of the kth
tooth pair of the nth planet-ring mesh. rar is the radius
of addendum circle of the ring.

2.3 Lumped parameter model of a planetary gear set

The lumped parameter model of an N -planet PGT is
shown in Fig. 1. The dynamic mesh force between an
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8 Z. Cao et al.

Fig. 7 Comparisons between the mesh stiffnesses obtained by
the proposed model and traditional model with ep1 = 300µm
and fm = 3500Hz a stiffness of the 1st planet–sun mesh, b

enlarged view of (a), c stiffness of the 1st planet-ring mesh, d
enlarged view of (c)

engaged gear pair is

Fipn = Kipnδi pn (22)

The total number of DOF in this model is 3N + 9.
Based on the force and moment equilibrium, the gov-
erning equations of motion of this model are

mc(ẍc − 2�c ẏc − �2
c xc)

+
N∑

n=1

kp(xc − xpn − Rcθc sin ϕn) + kcxc = 0

mc(ÿc + 2�c ẋc − �2
c yc)

+
N∑

n=1

kp(yc − ypn + Rcθc cosϕn) + kc yc = 0

Icθ̈c −
N∑

n=1

kp(xc − xpn − Rcθc sin ϕn)Rc sin ϕn

+
N∑

n=1

kp(yc − ypn + Rcθc cosϕn)Rc cosϕn

+ kcθ θc = Tc

mr (ẍr − 2�c ẏr−�2
c xr )−

N∑
n=1

Frpn sin ϕrn + kr xr = 0

mr (ÿr + 2�c ẋr−�2
c yr )+

N∑
n=1

Frpn cosϕrn + kr yr = 0

Ir θ̈r +
N∑

n=1

Frpnrbr + krθ θr = 0
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Effects of the gear eccentricities on the dynamic performance 9

Fig. 8 Comparisons between the amplitude spectrums of the 1st planet’s torsional vibration θp1 obtained by the proposed model and
traditional model with es = 300µm and fm = 3500Hz

ms(ẍs−2wc ẏs−w2
c xs)−

N∑
n=1

Fspn sin ϕsn+ks xs = 0

ms(ÿs+2wc ẋs−w2
c ys)+

N∑
n=1

Fspn cosϕsn+ks ys = 0

Is θ̈s +
N∑

n=1

Fspnrbs + ksθ θs = Ts

m p(ẍ pn − 2�c ẏpn + �2
c(xpn + Rc cosϕn))

+ Fspn sin ϕsn + Frpn sin ϕrn − kp(xc − xpn

− Rcθc sin ϕn) = 0

mp(ÿpn + 2�c ẋ pn − �2
c(ypn + Rc sin ϕn))

− Fspn cosϕsn − Frpn cosϕrn

− kp(yc − ypn + Rcθc cosϕn) = 0

Ip θ̈pn + Fspnrbp − Frpnrbp = 0 (23)

where ϕsn = ϕs
n − a′

sn, ϕrn = ϕr
n + a′

rn , k j ( j = c, r ,
s and p representing the carrier, ring, sun and planets,
respectively) is the radial stiffness of the corresponding
bearing. k jθ is the torsional stiffness. Tc and Ts are the
external torques applied on the carrier and the sun gear,
respectively.

3 Results and discussion

A4-planet PGT is used to study the dynamic character-
istics of the system with gear eccentricity errors. The

sun gear is the input element and rotates in the anti-
clockwise direction. The carrier is the output element
and the ring gear keeps fixed. The input torque on the
sun gear is 600Nm, and the output torque on the carrier
is 2000Nm. The mesh frequency of the PGT is set as
fm=3500Hz. The values of key system parameters are
shown in Table 1. Unless otherwise explicitly stated,
these parameters’ values are used for all of the follow-
ing simulations. Themesh stiffnesses of the sun–planet
and the ring-planet are calculated based on the potential
energy method according to the actual mesh positions
of the conjugated (meshing) gear pair introduced in
Sect. 2. A fixed step four order Runge–Kutta method
is adopted to solve the differential equations of motion
of the PGT.

3.1 Effects of eccentricity error on the mesh stiffness,
dynamic response and load sharing characteristics

In the first case, a light load and small gear eccentrici-
ties are applied on the PGT.The external load on the sun
gear is set as 30Nm .The amplitude of sun gear eccen-
tricity is set as es = 30µm, and all the other bodies
are assumed to have no eccentricity error (i.e., epi =
er = 0). Results from the proposed model will be com-
pared with those from the traditional method in [1]
in order to exhibit the new findings. In [1], the mesh
stiffness is approximately simulated by rectangular
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10 Z. Cao et al.

Fig. 9 Amplitude spectrums of the 1st planet’s torsional vibration θp1 with es = 200µm, ep1 = 200µm and fm = 3500Hz obtained
by the a traditional model, b proposed model

waves and the eccentricity error is considered as a
displacement excitation. In this model, the mesh stiff-
ness is calculated based on the potential energymethod
according to the actual mesh positions induced by

the gear eccentricity errors as well as the bearing
deformations.

The simulated time-history mesh stiffness curves
of the 1st planet–sun mesh and 1st planet-ring mesh
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Effects of the gear eccentricities on the dynamic performance 11

Fig. 10 Comparisons between the time-history LSR curves calculated by the proposed model and the traditional model with es =
300µm and fm = 3000Hz: a LSR of the sun–planet, b enlarged view of (a)

are shown in Fig. 6a, b. The mesh forces of the 1st
planet–sun mesh 1st and planet-ring mesh are shown
in Fig.6c, d. It can be found that the mesh stiffnesses
and mesh forces yielded by both methods agree well
except slight differences in amplitudes. This is because
the load is light, the amplitudes of gear eccentricities
are small, and the geometric centers of gears translate
in a small range. Therefore, gear actual mesh positions
are slightly affected. The fact that these two models
generate similar results in case of small translations
validates the proposed model to a certain extent.

A larger sun gear eccentricity (es = 300µm) is con-
sidered this time to investigate its influence on themesh
stiffness and dynamic behavior of the PGT. The mesh
stiffnesses calculated from both methods are shown in
Fig. 7. It can be seen that in the traditional model,
the mesh stiffness wave in each mesh cycle is same,
whereas in the proposed method, the amplitude and
frequency of the mesh stiffness wave in each mesh
cycle are periodically changing depending on the rota-
tion of the eccentric sun gear. The amplitude difference
is due to the periodic change of the actual mesh posi-
tions, whereas the frequency difference is due to the
varying contact zones defined by Eqs. (13)–(16) for
the sun–planet mesh and Eqs. (18)–(21) for the ring-
planet mesh. These phenomena demonstrate that the
influence of large gear eccentricity on the mesh stiff-
ness is obvious, and the proposed model is more realis-
tic and accurate than the traditional model to yield the
mesh stiffness.

Figure 8 compares the amplitude spectrums of the
1st planet’s torsion vibration θp1 simulated by the pro-

posed model and traditional model [1] with sun eccen-
tricity es = 300µm. The abscissa ranges from 3000 to
15000Hz to highlight the mesh frequency (3500Hz)
and its harmonics. There are sidebands appearing
around the gear mesh frequency and its harmonics in
the spectrums from both models. Compared with the
results of traditionalmodel, the amplitude of the second
harmonic of mesh frequency is smaller and the side-
bands 2 fm ± fs are larger in results of proposedmodel.
More sidebands 2 fm ± 2 fs are found in the spectrum
obtained from the proposed model. The sidebands are
symmetric about the second harmonic of mesh fre-
quency in the spectrum obtained from the traditional
model, whereas there are asymmetric in the proposed
model.Meanwhile, the samephenomenon appears near
the third and fourth harmonics of mesh frequency. This
is because, in the proposed model, the calculated mesh
stiffness is much more complex than the rectangular-
shape mesh stiffness approximated by the traditional
model. Its amplitude and frequency are different for
eachmesh cycle.Hence, the 1st planet’s torsional vibra-
tion θp1 is complicatedly modulated under the sinu-
soidal displacement excitation and complex mesh stiff-
ness excitation.

Dynamic characteristics of the PGT with sun gear
and one planet having eccentricity errors are also ana-
lyzed. Eccentricity errors with es = 200µm, ep1 =
200µm at εs = εp1 = 0 are applied to the PGT.
Spectrums of the 1st planet’s torsional vibration θp1
obtained by both models are plotted in Fig. 9. Simi-
larly, the frequency ranges are limited from 3000 to
15000Hz. Major differences can be seen around the
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Fig. 11 Influence of the amount of 1st planet eccentricity amplitude ep1 on the amaximum LSR of the 1st planet–sun, bmesh stiffness
of the 1st planet–sun, c amplitude spectrum of the 1st planet’s torsional vibration ( fm=3500Hz)

second, third and fourth harmonics of mesh frequency.
In the spectrum of traditional method, only 2 fm ± fs
and 2 fm ± f p ( f p = fm/Z p) appear around the 2 fm ,
whereas in the proposed method, the side frequencies
are much more abundant. Apart from the 2 fm ± n f s
and 2 fm ± n f p (n is integer), there are many other
sidebands 2 fm ± n f s ± f1 around the 2 fm , where f1
is the greatest common divisor of fs and f p. It should
be noted that the amplitude spectrum characteristics
may be different for other rotational speeds and planet
arrangements such as 3-planet or 5-planet etc.

Dynamic load sharing ratio (LSR) is a parameter
evaluating the dynamic load sharing among planets and
the dynamic factor of a PGT. It is defined as the ratio of
the actual dynamic load and the designed static load [1].
For a specific planet n, the dynamic LSR includes
the sun–planet LSR and the ring-planet LSR, denoted
by Lspn and Lrpn respectively. Figure 10 shows the
dynamic LSR of a sun–planet with es = 300um. It is
found that the maximum dynamic LSR calculated by
the proposed method is larger than that by the tradi-
tional method.
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Figure 11a depicts the variation of maximum
dynamic LSR under 7 different amounts of 1st planet
eccentricity error ep1. Figure 11b, c shows the time-
history mesh stiffness curves and the frequency res-
ponses of 1st planet’s torsional vibration θp1 under
three different amounts of 1st planet eccentricity error
ep1. The maximum dynamic LSR of the 1st planet–sun
is nearly linearly growing with the amplitude of gear
eccentricity ep1 increasing from 0 to 400µm. There is
a positive correlation between the peak-to-peak value
of mesh stiffness and the amplitude of the eccentricity
error as shown in Fig. 11b. In Fig. 11c, the larger the
amplitude of the 1st planet eccentricity, the more abun-

Fig. 12 Maximum LSR of the 1st plane-sun with eccentric
planet 1 under different initial phase angles

dant of the side frequencies around the mesh frequency
harmonics, and the larger of the amplitudes of these
side frequency components. Therefore, the transmis-
sion efficiency of the PGT declines as the eccentricity
error increases.

3.2 Load sharing characteristics of the PGT under
different assembly configurations

Eccentricity error is a time-varying and assembly-
dependent error [1,2]. Under different assembly con-
figurations, load sharing characteristics of the PGT are
performed.We first consider that only the 1st planet has
the eccentricity error (ep1 = 100µm). Figure 12 shows
the variation of the maximum dynamic load sharing
ratio Lsp1 of the PGT when the initial phase angle εp1
varies from 0◦ to 360◦. It can be found that Lsp1 is not
constant and ranged from 2.07 to 2.26. The reason for
the variation is that the dynamic LSR is the product of
the load sharing ratio and the dynamic factor. Since the
tangential component of the planet eccentric error (for
the nth planet, the tangential direction is perpendicular
to the line connecting the center of the sun and the cen-
ter of the nth planet) leads to the unequal load sharing
among planets, the static LSR reaches its maximum
value whenever the 1st planet rotates to the position
where the eccentricity error is in the tangential direc-
tion. The dynamic factor is a periodic function with the
frequency fm . Although the initial phase angle will not
influence the maximum value of the static LSR, it will

Fig. 13 LSR of the PGT with two eccentric planets a two neighboring eccentric planets with ep1 = 100µm and ep2 = 100µm, b two
diametrically opposed eccentric planets with ep1 = 100µm and ep3 = 100µm
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affect the phase difference between themaximum static
LSR and the dynamic factor and further influence the
maximum dynamic LSR.

Next, we consider that two planets have eccentric-
ity errors, which can be divided into two cases, i.e.,
two neighboring planets or two diametrically opposed
planets having eccentricity errors. Assuming planets 1
and 2 (i.e., neighboring planets), or planets 1 and 3 (i.e.,
diametrically opposed planets), have the same ampli-
tude of eccentricity error, which is 100µm. Their ini-
tial phase angles are allowed to range from 0◦ to 360◦
incrementally. In Fig. 13a, when the initial phase angle
of planet 2 is 90◦ larger than that of planet 1, the PGT
gets a better dynamic load sharing characteristic. How-
ever, when the initial phase angle of planet 2 is 90◦ less
than that of planet 1, the PGT gets a worse dynamic
load sharing characteristic. In Fig. 13b, when the ini-
tial phase angle of planet 1 is equal to that of planet
3, a better dynamic load sharing characteristic can be
achieved. The dynamic LSR of the first case is ranged
from 1.85 to 2.85, whereas the dynamic LSR of the sec-
ond case is ranged from 1.87 to 2.42. The above results
indicate that the initial phase angle of the gear eccen-
tricity error will affect the dynamic characteristics of
the PGT significantly. Therefore, appropriate assem-
bly configuration can help to achieve better dynamic
LSR. For example, for a 4-planet PGT consisting of
two eccentric planets and two perfect planets, the two
eccentric planets should be installed adjacently with
their initial phase positions perpendicular to each other,
or installed diagonally with their initial phase positions
in the same direction.

4 Conclusion

In this study, a new dynamic model of the PGT with
gear eccentricities is established. The main improve-
ment of the proposed model against previous models
is that the influence of gear eccentricities on the mesh
stiffness of a meshing gear pair (sun–planet or ring-
planet) is considered. A 4-planet planetary gear is used
as an example to analyze the dynamic characteristics
(i.e., 1st planet’s torsional vibration and LSR) of the
PGT with various amounts and initial phase angles
of the gear eccentricities. Meanwhile, the influence of
gear eccentricities on the mesh stiffness of the meshing
gear pair with gear eccentricities is quantitatively dis-
cussed. Although the eccentricity error is exclusively

analyzed in this paper, othermanufacturing errors, such
as the pinion position error, can be easily incorporated
in this model.

The main conclusions are listed below.

(1) The eccentricity error of a meshing gear pair within
the PGTwill lead to cycle-to-cycle variations in the
magnitude and frequency of mesh stiffness, which
would result in complex modulation phenomenon
on the dynamic response of PGT.

(2) The increase in the magnitude of gear eccentricity
error will not only deteriorate the dynamic LSR of
PGT, but also affect the dynamic transmission of
PGT.

(3) The assembly configuration of the planet eccentric-
ity error has great influence on the dynamic LSR of
PGT. Simulation results illustrate that appropriate
assembly configuration can help to achieve better
dynamic LSR.
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