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Abstract This paper reports various chaotic phenom-
ena that occur in a single-linkflexible joint (SLFJ) robot
manipulator. Four different cases along with subcases
are considered here to show different types of chaotic
behaviour in a flexible manipulator dynamics. In the
first three cases, a partial state feedback as joint veloc-
ity andmotor rotor velocity feedback is considered, and
the resultant autonomous dynamics is considered for
analyses. In the fourth case, the manipulator dynam-
ics is considered as a non-autonomous system. The
system has (1) one stable spiral and one saddle-node
foci, (2) two saddle-node foci and (3) one marginally
stable nature of equilibrium points. We found single-
and multi-scroll chaotic orbits in these cases. However,
with the motor rotor velocity feedback, the system has
two unstable equilibria. One of them has an index-4
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spiral repellor. In the non-autonomous case, the SLFJ
robot manipulator system has an inverse crisis route
to chaos and exhibits (1) transient chaos with a sta-
ble limit cycle and (2) chaotic behaviour. In all the
four cases, the SLFJ manipulator dynamics exhibits
coexistence of chaotic orbits, i.e. multi-stability. The
various dynamical behaviours of the system are anal-
ysed using available methods like phase portrait, Lya-
punov spectrum, instantaneous phase plot, Poincaré
map, parameter space, bifurcation diagram, 0–1 test
and frequency spectrum plot. The MATLAB simula-
tion results support various claims made about the sys-
tem. These claims are further confirmed and validated
by circuit implementation using NI Multisim.

Keywords Chaos in a single-link flexible joint ·
Multi-scroll · Stable and unstable equilibria ·
Bifurcation diagram · Lyapunov spectrum ·
Non-autonomous system · Transient chaos ·
Coexistence of chaotic orbits (i.e. multi-stability)

1 Introduction

The performance and desired operations of an elec-
tromechanical system depend on the dynamics and sta-
bility analyses of its mathematical model. An improper
choice of a control torque causes an irregular oscilla-
tion in the response of a system. One of such irregular
nature of oscillations is known as chaotic phenomenon
[1–5]. The chaotic behaviour appears in a deterministic
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Table 1 Analyses of the available literature on chaotic behaviour in some flexible manipulator and flexible beam

Category of papers Sub-classification/remarks References
of papers

Synchronisation of SLFJ
with chaotic gyroscope
for chaotic behaviour

[46–48]

Dynamical analyses Finding of chaotic behaviour:

Dynamical analyses in a slender beam [39–42]

Finding of chaotic behaviour in a cantilever beam [32–37]

Chaos control in a spatially redundant manipulator with flexible link [31]

Chaos in a three-beam structure with attached mass and three-mode interactions [49]

Chaotic behaviour in a four-bar mechanism having revolute joint [50]

Chaotic behaviour in a single-link Cartesian manipulator [24,49–51]

Bifurcation analysis and chaotic behaviour in an SLFJ robot manipulator This work

Coexistence of single- and multi-scroll chaotic attractors in an SLFJ robot
manipulator

This work

A SLFJ robot manipulator with index-4 spiral repellor type of equilibria This work

nonlinear system and is highly sensitive to initial condi-
tions. Advancement and development of chaos theory
increase the applicability of chaotic systems. Recently,
chaotic systems are used in many applications like
biomedical, artificial neural network, secure communi-
cations, information technology, robotics, image pro-
cessing and cryptography [6–8]. Chaotic and hyper-
chaotic systems are classified as either self-excited
attractors or hidden attractors chaotic systems [9–16].
In the case of hidden attractor chaotic systems, its basin
of attraction does not intersect with small open neigh-
bourhood of equilibrium points of the system [9–14].

Chaotic phenomena are observed in many elec-
tromechanical and electronics systems like perma-
nent magnet synchronous motor [17], reluctance motor
drive [18], permanent magnet DC motor drive [19],
electrical solar drive system [20], brushless DC motor
[21], drilling system with induction motor [22], rigid
robot manipulator [23–25], Duffing oscillator [26] and
pendulum [27]. Hidden attractors with and without
equilibria are seen in translational oscillator–rotational
actuator, drilling system actuated by a DC motor and
drilling system actuated by an induction motor [28].
Motivated by the above discussion on the chaotic
behaviour of electromechanical systems, this paper
explores the possibility of generation of various chaotic
behaviours in a single-link flexible joint robot manipu-
lator using different choices of control input. The study
of chaotic behaviours in an electromechanical system

may be desirable in some cases [27,28]. Application of
chaotic dynamics in a robot is categorically discussed
in [29]. The potential applications of chaos in robot
research are a chaotic mobile robot, chaotic optimisa-
tion algorithm and chaos in bipedal locomotion [29].
Another important application is the use of anti-control
to show different complex dynamical behaviours in
robot dynamics [23,24]. Flexible manipulators (FMs)
are used in many fields like industry, medical and
defence [30]. FMs are more used in industrial applica-
tions in comparison with their rigid counterparts. Some
advantages of FMs are low power consumption and
light weight [30]. Some challenges are also associated
with flexible manipulators like under-actuation, non-
collocation, non-minimum phase and nonlinearity [30]
which create problems in the controller design. Non-
linear oscillation and chaotic behaviours of some flex-
ible links [31], cantilever beam [32–37], elastic link-
age mechanism [38], a slender beam [39–42], spatially
redundant manipulator [31], etc., are reported in the lit-
erature. The literature available on chaotic behaviour in
some flexible beams and flexible manipulators is listed
in Table 1. It is observed from Table 1 and accord-
ing to the best of authors’ knowledge, no paper is
reported in the literature on the generation and analy-
ses of chaotic behaviours in a single-link flexible joint
manipulator.

Recently, chaotic/hyperchaotic systems are used in
many directions like control [23], anti-control [50],
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Table 2 Classification of 4-D chaotic/hyperchaotic systems
based on the nature of equilibria

Characteristics of
equilibrium points

Reference
of paper

No equilibrium [54,55]

One unstable [56]

One stable [57]

Two stable [58]

Two unstable [59]

One stable one unstable This work

Three stable

Three unstable [60]

Two stable one unstable [61]

Four unstable [62]

Two stable two unstable

Three unstable one stable

Many stable equilibria [64]

Many equilibria [64,65,79]

synchronisation [21], optimisation of Lyapunov expo-
nents [52,53] and applications [6–8].Above-said resea-
rch directions are discussed and analysed in fractional
order also [43–45]. Equilibrium point plays an impor-
tant role in the classification of chaotic systems. In
the past decade, many chaotic or hyperchaotic systems
have been reported with different natures of equilib-
rium points. A list of classification of 4-D chaotic or
hyperchaotic systems based on the nature of equilib-
rium points (EPs) is given in Table 2.

There may be many other papers related to the
classifications which are given in Table 2. We have
searched and ensured that all different natures of
EPs are reflected in the list. It is clear from Table 2
that no 4-D chaotic system is reported with one sta-
ble and one unstable nature of equilibria. This paper
reports a 4-D SLFJ robot manipulator chaotic sys-
tem which has one unstable and one stable nature of
equilibrium points. This paper reports various chaotic
behaviours in a single-link flexible joint robot manip-
ulator. The chaotic behaviours are shown using dif-
ferent choices of control input. Such choice of con-
trol inputs for dynamical analyses and generation of
chaos in rigid manipulators can be seen in references
like in [66,67]. Moreover, in the literature of hyper-
chaotic/chaotic systems, trigonometric functions are
used for many purposes like references [71,72] use

the trigonometric sin function as a feedback con-
trol to generate hyperchaotic systems with the desired
number of positive Lyapunov exponents. Multi-scroll
chaotic attractors are generated using a trigonometric
sin function in [73–75]. A new approach for generat-
ing chaotic phenomenon called ‘chaos entanglement’
is proposed in [76] using trigonometric sin function.
Different cases/subcases are considered here using dif-
ferent choices of control inputs with various trigono-
metric functions. These cases are as given below along
with their behaviours:

1. A joint velocity feedback control (u = a cos
(2πx2)). Three subcases are considered here. These
are

i. a = 3 generates a single-scroll chaotic attractor
and the system has one stable and one unstable
equilibrium points,

ii. a = 4 generates multi-scroll chaotic attrac-
tors and system has one stable and one unstable
equilibrium points,

iii. a = 5 generates multi-scroll chaotic attractors
and the system has one marginally stable equi-
librium point. Thus, in this subcase, the system
may have hidden chaotic orbits [9–14].

2. A joint velocity feedback control (u = 3 cos
(x2 − c) tanh(100(x2 − d))); It exhibits single-
scroll chaotic attractor; parameter space between
parameter ‘c − d’ shows various behaviours like
chaotic, periodic, stable and quasi-periodic. The
system has two saddle-node foci.

3. A motor rotor velocity feedback control (u =
a cos (2πx4 − c)); It generates a single-scroll
chaotic attractor and the system has index-4 spi-
ral repellor. The bifurcation diagram for parameter
a reveals both chaotic and periodic behaviours of
the system.

4. An open-loop control as a non-autonomous system
(u = a cos(2π f t)). This case is divided into two
subcases.

A. a = 2.29 generates transient chaoswith a stable
limit cycle at the steady state. Here, the system
has an inverse crisis route to chaos,

B. a = 4 generates chaotic behaviours; the bifur-
cation diagram for parameter a results in chaos
and periodic behaviours for a wide range of val-
ues of parameter a.

123



1280 J. P. Singh et al.

In all cases, the SLFJmanipulator dynamics exhibits
coexistence of chaotic attractors i.e.multi-stability. The
complex dynamical behaviours as stated above are
analysed using various tools like phase portrait, time
series plot, Poincaré maps, 0–1 test, Lyapunov expo-
nents, Lyapunov spectrum, bifurcation diagram, instan-
taneous phase and frequency spectrum. For the first
and second cases, Lyapunov spectrum (for a range of
parameter value) is calculated. For some other cases,
Lyapunov exponents (for a particular value of the
parameter) are given in the paper. An application for
small signal detection is shown by the non-autonomous
SLFJ robot manipulator dynamics.

The novelty and contributions of the paper are sum-
marised as follows:

1. The paper reports various types of chaotic
behaviours in a single-link flexible joint (SLFJ)
robot manipulator,

2. The paper adds a new class of equilibria having one
stable and one unstable equilibrium points of a 4-D
chaotic system,

3. The system

i. has single- and multi-scroll chaotic attractors,
ii. depictsmulti-stability, i.e. coexistenceof chaotic

attractors under various conditions,
iii. has one stable and one unstable equilibrium

points,
iv. has index-4 spiral repellor types of equilibrium

point,

4. Bifurcation analysis of the SLFMdynamics reveals
that:

i. it has an inverse crisis route to chaos,
ii. it exhibits transient chaos followed by a stable

limit cycle.

Remaining part of the paper is organised as follows.
Section 2 describes the dynamics of a single-link flex-
ible joint robot manipulator. Chaotic behaviour in an
autonomous SLFJ manipulator using a partial joint
velocity feedback control is presented in Sects. 3 and 4.
Section 5 represents the chaotic behaviour in the sys-
tem using a partial motor rotor velocity feedback con-
trol. Section 6 describes the chaotic behaviour in the
non-autonomous SLFJ robot manipulator. The circuit
design and simulation using NI Multisim of the SLFJ
robot manipulator are discussed in Sect. 7. An applica-
tion of the non-autonomous SLFJ robotmanipulator for

small signal detection is given in Sect. 8. Conclusions
of the paper are presented in Sect. 9.

2 Description of a single-link flexible joint (SLFJ)
robot manipulator dynamics

The standard dynamic model of a n-link rigid robot
manipulator can be written as [68,69]

(D (q) + J ) q̈ + C (q, q̇) q̇ + g (q) = τ , (1)

where q ∈ Rn is the joint angles, D(q) ∈ Rn×n is the
inertia matrix, J is the actuator inertia matrix, g(q) is
the gravitational terms, C (q, q̇) is the centrifugal and
coriolis terms, τ ∈ Rn is the input torque. The matrix
D(q) is symmetric and D (q)−2C(q, q̇) is skew sym-
metric. For a flexible joint, the degree of freedom of the
system increases. Suppose, θ and α are the link angle
and motor angle, respectively, and k is a diagonal stiff-
ness constants matrix. For simplicity, we assume that
all the joint stiffness constants are same, so in such a
case, k may be considered as a scalar. Considering the
above facts, the dynamic model (1) for a flexible joint
manipulator can be modified as:

D (θ) θ̈ + C
(
θ, θ̇

)
θ̇ + g (θ) + k (θ − α) = 0. (2)

J α̈ − k (θ − α) = u. (3)

The model of a flexible joint robot manipulator which
is given in (2) and (3) reduces to (1) as the joint stiff-
ness k tends to infinity [70]. For a single-link flexible
joint manipulator, Eqs. (2) and (3) reduce to (4). The
schematic model of a single-link flexible joint robot
arm is shown in Fig. 1. The symbols and notations
used in Fig. 1 are defined in Table 3. The motion equa-
tions of a single-link flexible joint robot manipulator
are described as [70,77]:
⎧
⎨

⎩

I θ̈ + mgl sin (θ) + k (θ − α) = 0

J α̈ + Bα̇ − k (θ − α) = u.
(4)

Equation (4) can be rearranged as:
⎧
⎨

⎩

θ̈ = −mgl
I sin (θ) − k

I (θ − α) = 0

α̈ = − B
J α̇ + k

J (θ − α) + 1
J u,

(5)

where I, J, B, mgl, k, θ and α are the link inertia,
rotor inertia, rotor friction, nominal load, joint stiffness,
link position andmotor rotor position, respectively. The
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Fig. 1 Schematic of a
single-link flexible joint
robot arm

Table 3 Parameters of system (4) and their value [77]

Symbol and its description Value

I : link inertia 1 kgm2

J : rotor inertia 0.3 kgm2

B: rotor friction 0.102 kgm2/s

mgl : nominal payload 5Nm

k : joint stiffness 100.2Nm

value of the parameters is given in Table 3. Considering
p1 = mgl

I , p2 = k
I , p3 = k

J , p4 = B
J , p5 =

1
J , x1 = θ, x2 = θ̇ , x3 = α, x4 = α̇, the SLFJ
manipulator dynamics (5) can be written as:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ1 = x2
ẋ2 = −p1sin (x1) − p2(x1 − x3)

ẋ3 = x4
ẋ4 = p3 (x1 − x3) − p4x4 + p5u,

(6)

where x1, x2, x3 and x4 are the link position, link
angular velocity, motor rotor position and motor rotor
angular velocity, respectively, and u is the control input.
The Jacobian matrix of system (6) when u = 0 can be
written as

J1 =

⎡

⎢⎢
⎣

0 1 0 0
−p1cos (x1) − p2 0 p2 0

0
p3

0
0

0
−p3

1
−p4

⎤

⎥⎥
⎦ . (7)

The rank of the Jacobian matrix (7) is four. In next
two sections, input u is considered as a partial state
feedback of link velocity and motor velocity. Thus, the
closed-loop system behaves as an autonomous system.
In these cases, system (6) is termed as autonomous.

When the control input u is considered as function
of time t , the open-loop system (6) is termed as non-
autonomous.

3 Case 1: Single- and multi-scroll chaotic
attractors in an SLFJ manipulator dynamics
using a partial joint velocity feedback control
(u = acos (2πx2))

Here, three different subcases are considered with dif-
ferent control input in (6). Control torque is selected as
a partial state feedback of joint velocity. The dynamics
of the SLFJ manipulator is considered as in (8) for the
three subcases in this section:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ1 = x2
ẋ2 = −p1sin (x1) − p2(x1 − x3)

ẋ3 = x4
ẋ4 = p3 (x1 − x3) − p4x4 + p5 a cos (2πx2) .

(8)

In system (8), the amplitude of the control input, a, is
considered as a bifurcation parameter. With the varia-
tion of this parameter a, the SLFJ manipulator dynam-
ics depicts different behaviours. Such analyses are pre-
sented in next three subsections. The Jacobian matrix
of system (8) can be described as

J2=
⎡

⎢
⎣

0 1 0 0
−p1cos (x1) − p2 0 p2 0

0
p3

0
−p5a 2π sin (2πx2)

0
−p3

1
−p4

⎤

⎥
⎦ .

(9)

It is seen from (9) that with a variation of parameter a
and keeping other parameters of the system fixed, the
natures of eigenvalues of system (8) change.
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Fig. 2 Lyapunov spectrum
of system (8) with the
changes in the amplitude of
control input with initial
conditions x (0) =
(0.8, 0.001, 0.1, 0.001)T
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Fig. 3 Bifurcation diagram
of system (8) with the
changes in parameter a with
initial conditions x (0) =
(0.8, 0.001, 0.1, 0.001)T

The Lyapunov spectrum and the bifurcation dia-
gram of system (8) with variation in parameter a but
keeping others fixed are calculated to show the vari-
ous dynamical behaviours of system (8). TheLyapunov
spectrum is calculated by finding Lyapunov exponents
with x (0) = (0.8, 0.001, 0.1, 0.001)T initial con-
ditions and by using Wolf algorithm [78] in MATLAB
14-a simulation environment. The Lyapunov spectrum
and bifurcation diagram of system (8) with the varia-
tion of parameter a are shown in Figs. 2 and 3, respec-
tively. The Lyapunov spectrum and the bifurcation dia-
gram are plotted by keeping x(0) fixed and varying one
parameter, in a range, of the system. It helps us to find a
correlation of conclusion from these two plots. Positive
Lyapunov exponents usually indicate chaos [78–80].
Thus, it is noted from Fig. 2 that the system has chaotic
behaviour [79]. The chaotic behaviour of the system is
also validated from the bifurcation diagram, shown in

Fig. 3. It is observed from Figs. 2 and 3 that system (8)
has chaotic behaviour for a > 2.451 and has periodic
behaviour for low value of the parameter a. It is also
apparent that the system has a large range of parameter
for chaotic behaviour.

3.1 Case 1(I): Control input (u = 3cos (2πx2))

The equilibrium points and eigenvalues of Case1(I) of
system (8) are given in Table 4. It is observable from
Table 4 that the system has one stable and one unsta-
ble equilibrium points. The chaotic orbits of Case1(I)
of system (8) are shown in Fig. 4. It is noted from
Fig. 4 that the system has single-scroll chaotic orbits.
The shape of chaotic orbits remain same irrespective
of the observation time. The aperiodic nature of orbits
shown in Fig. 4 indicates the chaotic behaviour of the
system.
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Coexistence of single- and multi-scroll chaotic 1283

Table 4 Equilibria and their corresponding eigenvalues of Case 1(I) of system (8)

Equilibrium points Eigenvalues Nature

E1 = (0.6435, 0, 0.6735, 0) λi = (−0.0397 ± 1.7522 i, −0.13026 ± 20.85402 i) Stable

E2 = (2.498, 0, 2.528, 0) λi = (1.71821, −0.131379 ± 20.80979i) Unstable

−1 −0.5 0 0.5 1
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2

x
1

(a)

x 2

−1 −0.5 0 0.5 1

−4

−2

0

2

4

x
3

(b)

x 4

Fig. 4 Chaotic orbits of Case 1(I) of system (8) with x (0) =
(0.8, 0.001, 0.1, 0.001)T, �t = 0.01

3.2 Case 1(II): Control input (u = 4cos (2πx2) )

With this control input, the equilibrium points and
eigenvalues of system (8) are given in Table 5. It is
observed from Table 5 that in Case 1(II) of system
(8) has one stable and one unstable nature of equilib-
rium points. Two-scroll and four-scroll chaotic orbits
are observed in Case 1(II) of system (8) with obser-
vation time T = 5500 time unit and T = 8200 time
unit, respectively, and are shown in Figs. 5 and 6. In
MATLAB, we used time variable in the format like
T = 0 : 0.001 : 1000. Here, 1000 is termed as the

−8 −6 −4 −2 0 2
−4

−2

0

2

4

x
1

(a)

x 2

−8 −6 −4 −2 0 2

−5

0

5

x
3

(b)

x 4

Fig. 5 Two-scroll chaotic orbits in Case 1(II) of system (8) with
x (0) = (0.8, 0.1, 0.1, 0.001)T, �t = 0.01 and T = 5500

observation time and�t = 0.001 is the step size. Here,
the unit of time could be in second (s). It is apparent
from Figs. 5 and 6 that with the increase in the obser-
vation time, the system has increased number of scroll.
The Poincaré maps in Case 1(II) of system (8) when
x1 = 0 and x4 = 0 are shown in Fig. 7. The ran-
dom locations of dots in the Poincaré maps and aperi-
odic behaviour of phase portraits validate the chaotic
nature of system (8). The system exhibits various-scroll
chaotic orbits with a change in observation time and
initial conditions. Some such examples are given in
Table 6.

Table 5 Equilibria and their corresponding eigenvalues of Case 1(II) of system (8)

Equilibrium points Eigenvalues Nature

E1 = (0.9272, 0, 0.9672, 0) λi = (−0.03959 ± 1.517763 i, −0.130408 ± 20.848433 i) Stable

E2 = (2.2142, 0, 2.2542, 0) λi = (1.482435, −1.559951 −0.131242 ± 20.81525i) Unstable
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Fig. 6 Four-scroll chaotic orbits in Case 1(II) of system (8) with
x (0) = (0.1, 0.1, 0.1, 0.001)T, �t = 0.01 and T = 8200
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x
1
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Fig. 7 Poincaremaps inCase 1(II) of system (8): a across x3−x4
when x1 = 0 and b across x1 − x2 when x4 = 0

3.3 Case 1(III): Control input (u = 5cos (2πx2))

For this case, the equilibrium point and eigenvalues of
system (8) when u = 5cos (2πx2) are given in Table 7.

Table 6 Initial conditions and shape of attractors in Case 1(II)
of system (8) with �t = 0.01.

Initial conditions Observation
time

Shape

x (0) = (0.1, 0.1, 0.1, 0.001)T T = 1000 Single-scroll

x (0) = (0.1, 0.1, 0.1, 0.001)T T = 2000 Two-scroll

x (0) = (0.1, 0.1, 0.1, 0.001)T T = 5000 Three-scroll

x (0) = (0.1, 0.1, 0.1, 0.001)T T = 8200 Four-scroll

x (0) = (0.1, 0.1, 0.1, 0.001)T T > 8200 point

x (0) = (0.1, 0.001, 0.1, 0.001)T T = 2000 Single-scroll

x (0) = (0.1, 0.001, 0.1, 0.001)T T = 10000 Two-scroll

x (0) = (0.8, 0.001, 0.1, 0.001)T T < 3200 Single-scroll

x (0) = (0.8, 0.001, 0.1, 0.001)T T > 3200 Two-scroll

It is seen from Table 7 that for Case 1(III) of system
(8) has only one marginally stable equilibrium point.
Since one of the eigenvalues of Case 1(III) of system
(8) is zero, thus the Jacobian matrix in this case has
rank less than four. Since eigenvalues of the system are
marginally stable nature, thus in Case 1(III), the system
may have hidden chaotic orbits [57].

The system (Case 1(III)) generates different shapes
of various-scroll chaotic orbits depending upon the
choice of initial conditions and observation times. Two-
scroll and eight-scroll chaotic orbits in Case 1(III) of
system (8) are shown in Figs. 8 and 9, respectively.
The coexistence of chaotic orbits in Case 1(III) of
system (8) is shown in Fig. 10. It is seen from Fig.
10 that system has coexistence of two-scroll and five-
scroll chaotic orbits during 1500 < T < 6500 obser-
vation time. Thus, the system exhibits multi-stability
with the change in initial conditions. It is also noted
from above results in Figs. 8, 9 and 10 that with the
increase in observation time, the number of scroll of
system (8) increases. Therefore,we can say that the sys-
tem may have infinite number of scroll at a very large
time.

4 Case 2: Single-scroll chaotic attractors in an
SLFJ manipulator dynamics using a partial joint
velocity feedback control input
(u = 3cos (x2 − c) tanh(100(x2 − d)))

In Case 1(II) and Case 1(III), the responses change
with an increase in the observation time. In this sec-
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Coexistence of single- and multi-scroll chaotic 1285

Table 7 Equilibria and their corresponding eigenvalues in Case 1(III) of system (8)

Equilibrium points Eigenvalues Nature

E1 = (1.5707, 0, 1.6207, 0) λi = (0, − 0.0783447 −0.130827 ± 20.831763 i) Marginally stable

0 5 10
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−2

0

2

4

x
1

(a)

x 2

0 5 10
−10

−5

0

5

10

x
3

(b)

x 4

Fig. 8 A two-scroll chaotic orbits for Case 1(III) of system (8)
with x (0) = (0.8, 0.1, 0.1, 0.001)T, �t = 0.01 and T =
2500

tion, a piecewise linear term is multiplied with the con-
trol input. It is shown that system (8) has single-scroll
chaotic orbits irrespective of the observation time. The
system dynamics and Jacobian matrix of Case 2 are
given in (10) and (11), respectively.

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ẋ1 = x2
ẋ2 = −p1sin (x1) − p2 (x1 − x3)

ẋ3 = x4
ẋ4 = p3 (x1 − x3) − p4x4 + p5 a cos (x2 − c)

tanh(100 (x2 − d)).

(10)

J3 =

⎡

⎢⎢
⎣

0 1 0 0
−p1cos (x1) − p2 0 p2 0

0
p3

0
p5(A)

0
−p3

1
−p4

⎤

⎥⎥
⎦

(11)

A = −a cos (x2 − c)
(
100 tanh(100 (x2 − d))2

− 100
) − a sin(x2 − c)tanh(100 x2−100 d).

The equilibrium points and eigenvalues of system
(10) are given in Table 8. The equilibrium points
and eigenvalues of system (10) are calculated with
tanh(...) function by using MATLAB 14-a simula-
tion method. It is seen from Table 8 that system
(10) has two unstable equilibrium points. The sys-
tem has single-scroll chaotic orbits with x (0) =
(0.5, 0.001, 0.1, 0.001)T,�t = 0.01, a = 3, c =
0.5, d = 0.5. The chaotic orbits of system (10) with
�t = 0.01, c = 0.5, d = 0.5 after ignoring the initial
transient parts are shown in Fig. 11. It is observed from
Fig. 11 that the system has a bounded chaotic orbits.
Here, our analysis says that the number of scrolls of
system (10) remains fixed irrespective of the observa-
tion time. The parameter space to show the effect of
variation of parameters c and d is shown in Fig. 12.

Fig. 9 Seven-scroll chaotic
orbits for Case 1(III) of
system (8) with x (0) =
(0.5, 0.001, 0.1, 0.001)T, �t =
0.01 and T = 15000
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Fig. 10 a Coexistence of
single-scroll chaotic orbits
at 2500 ≤ T ≤ 3500 and b
coexistence of two-scroll
and five-scroll chaotic orbits
at 1500 < T < 6500 of
system (8) with x (0) =
(±0.5, 0.1, 0.1, 0.001)Tand �t =
0.01 in Case 1(III)

Table 8 Equilibria and their corresponding eigenvalues of system (10) with c = 0.5, d = 0.5

Equilibrium points Eigenvalues Nature

E1 = (−0.2457, 0, −0.2579, 0) λi = (0.424 ± 20.876, −0.5947 ∓ 1.7036) Unstable

E2 = (3.387, 0, 3.3752, 0) λi = (1.3139, 0.4177 ∓ 20.8285, −2.4895) Unstable

The parameter space of the system for different values
of c and d is shown by calculating the Lyapunov expo-
nents. It is seen from Fig. 12 that the SLFJ manipulator
dynamics under Case 2 has chaotic, periodic and stable
behaviours with different values of c and d.

5 Case 3: Single-scroll chaotic attractors in an
SLFJ manipulator dynamics using a partial
motor rotor feedback control
(u = a cos(2π(x4 − c)))

The control input is considered as a partial joint velocity
feedback control in Sects. 3 and 4. However, in this
section, themotor rotor velocity feedback is considered
as a control input. The SLFJ manipulator dynamics is
reproduced with u = a cos (2π (x4 − 0.3)) in (12).
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ1 = x2
ẋ2 = −p1sin (x1) − p2 (x1 − x3)

ẋ3 = x4
ẋ4= p3 (x1−x3)− p4x4+ p5a cos (2π(x4−0.3)) .

(12)
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Fig. 11 Chaotic orbits of system (10) with x (0) =
(0.5, 0.1, 0.1, 0.001)T, �t = 0.01 and T = 500

123



Coexistence of single- and multi-scroll chaotic 1287

Fig. 12 Parameter space between parameters c and d of system
(10) where red, blue, green and yellow indicate chaotic, periodic,
stable and quasi-periodic behaviours, respectively. (Color figure
online)

The Jacobian matrix of system (12) is given in (13).

J4 =

⎡

⎢⎢
⎣

0 1 0 0
−p1cos (x1) − p2 0 p2 0

0
p3

0
0

0 1
−p3 A

⎤

⎥⎥
⎦ (13)

where A = −p4 − p5a 2π sin (2π(x4 − 0.3)).
The equilibrium points and eigenvalues of system

(12) are given in Table 9. It is seen from Table 9 that
system (12) has two unstable equilibrium points. The
equilibrium point E1 of system (12) has index-4 spiral
repellor which is unique in the literature.

The chaotic orbits of system (12) with a =
4, x (0) = (0.5, 0.001, 0.1, 0.001)T, �t = 0.01,
and ignoring the initial transient responses are shown in
Fig. 13.The coexistence of chaotic orbits of system (12)
with initial conditions (±0.5, 0.001, 0.1, 0.001)T

is shown in Fig. 14. It is noted from Fig. 14 that sys-
tem (12) has multi-stability with the change in initial
conditions. Frequency spectra of x1 and x2 signals of
system (12) are shown in Fig. 15. Random locations
of peaks in the spectra of Fig. 15 indicate the chaotic
behaviour of system (12). The bifurcation diagram of
system (12) with variation of parameter a is shown in
Fig. 16. It is seen fromFig. 16 that system (12) has vari-
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−2
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2

x
3

(b)

x 4
Fig. 13 Chaotic orbits of system (12) with x (0) =
(0.5, 0.001, 0.1, 0.001)T, �t = 0.01 and T = 500

ous behaviours like periodic and chaotic with variation
of the amplitude of the control input. It is observed
from Fig. 16 that for smaller value of, i.e. a < 1.7 and
larger value of i.e. a > 4.98, system (12) has periodic
behaviour.

6 Case 4: Self-excited attractors in an SLFJ
manipulator dynamics using an open-loop
control input (u = a cos (2π f t))

In previous sections, joint velocity and motor rotor
velocity are considered as a control input u. So, the
closed-loop SLFJ manipulator behaves as an auton-
omous system. In this section, an open-loop control
input u = a cos (2π f t) is considered as a function of
time t , and thus, the SLFJ manipulator dynamics (6)
becomes non-autonomous as described in (14).

Table 9 Equilibria and their corresponding eigenvalues of system (12) with a = 4

Equilibrium points Eigenvalues Nature

E1 = (3.4038, 0, 3.3915, 0) λi = (75.1241, 2.0891 ± 10.5252i, 0.1864) Unstable

E2 = (−0.2622, 0, −0.2746, 0) λi = (75.1243, 2.28240 ± 10.09857i, −0.20029) Unstable
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x(0)=(−0.5, 0.001, 0.1, 0.001)T

x(0)=(0.5, 0.001, 0.1, 0.001)T

Fig. 14 Coexistence of chaotic orbits of system (12) with
x (0) = (±0.5, 0.001, 0.1, 0.001)T, �t = 0.01, a =
4 and 3000 ≤ T ≤ 3500

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ẋ1 = x2

ẋ2 = −p1sin (x1) − p2 (x1 − x3)

ẋ3 = x4

ẋ4 = p3 (x1 − x3) − p4x4 + p5 a cos (2π f t) .

(14)

Two different subcases are considered with changes
in the amplitude of the control input to show differ-
ent chaotic behaviours in system (14). System (14)
is a dissipative chaotic system whose divergence is
∇v = −p4. Thus, the volume of system (14) decays
exponentially at a rate equal to p4 with p4 > 0. There-
fore, there may exist attractor for system (14). System
(14) is not invariant under the coordinate transforma-
tion and has asymmetry to its coordinate axes, plane
and space.

6.1 Case 4(A): Control input (u = 2.29cos (2π f t))

Using this control input, system (14) with the original
parameters exhibit transient chaotic behaviour when
x (0) = (0.1, 0.001, 0.1, 0.1)T. Time response and
phase portraits of system (14) are shown in Fig. 17.
It is seen from Fig. 17a that system (14) has chaotic
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Fig. 15 Frequency spectra of system (12) with x (0) =
(0.5, 0.001, 0.1, 0.001)T

behaviour during transient phase (0 < T < 780) and
has a stable limit cycle for time T > 780. The tran-
sient chaotic and stable limit cycle behaviours of sys-
tem (14) are shown in Figs. 17b, c, respectively. The
transient chaotic behaviour of system (14) is analysed
using other numerical tools like Lyapunov exponents
and instantaneous phase plot.

6.1.1 Lyapunov exponents

Lyapunov exponents of system (14) are calculated
to know the chaotic and periodic behaviours of sys-
tem (14) for Case 4(A). Here, Wolf algorithm [78] is
used to calculate Lyapunov exponents (LEs). The LEs
of system (14) with x (0) = (0.1, 0.001, 0.1, 0.1)T,

�t = 0.01 and observation time T = 1200 are shown
in Fig. 18. It is seen from Fig. 18 that the highest
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Fig. 16 Bifurcation
diagram of system (12)
with x (0) = (0.5, 0.001,
0.1, 0.001)T

Fig. 17 Transient chaotic
behaviour of Case 4(A) of
system (14) with x (0) =
(0.1, 0.001, 0.1, 0.1)T,

�t = 0.01: a time series, b
transient chaotic orbit for
0 < T < 780 and c stable
limit cycle for T > 780
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Lyapunov exponent is positive during transient chaotic
region (0 < T < 780), and thus, the systemhas chaotic
behaviour. However, the highest Lyapunov exponent is
zero at T > 780, and hence, the system has limit cycle
behaviour.

6.1.2 Instantaneous phase (IP)

Here, Hilbert transformation (HT) method [81] is used
to calculate the instantaneous phase (∅I ) in Case 4(A)
of system (14). Suppose s (t) is the complex form of a
signal x(t) in the form given as follows: [82],

s (t) = x (t) + x̃ (t) = A(t)ei∅I (t), (15)

with A(t) and ∅I (t) as the amplitude and phase, respec-
tively, of signal x(t), where x̃ (t)is defined as

x̃ (t) = 1

π
PV

(∫ ∞

−∞
x(τ )

x(t − τ)
dτ

)
. (16)

In (16), PV is the Cauchy principle component in HT.
The instantaneous phase of a chaotic system increases
monotonically with respect to time, whereas it remains
constant for a periodic system. The instantaneous phase
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Fig. 18 Lyapunov
exponents of Case 4(A) of
system (14) with x (0) =
(0.1, 0.001, 0.1, 0.1)T

and �t = 0.01
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Fig. 19 Instantaneous phase (IP) of x1 signal of Case 4(A) of
system (14): a during transient chaotic region and b in stable
limit cycle region

of x1 signal in Case 4(A) of system (14) is shown in
Fig. 19. It is seen from Fig. 19 that during transient
chaotic region, the instantaneous phase of the signal
x1(t) increases monotonically with time, whereas dur-
ing limit cycle region, the instantaneous phase is almost
constant.
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5
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x 4

Fig. 20 Chaotic orbits of Case 4(B) of system (14) with x (0) =
(0.1, 0.001, 0.1, 0.001)T, �t = 0.01 and T = 1000

6.2 Case 4(B): Control input (u = 4cos(2π f t))

In this subcase, system (14) is chaotic and its chaotic
orbits are shown in Fig. 20. Coexistence of chaotic
orbits in Case 4(B) of system (14) is shown in Fig. 21.
The chaotic orbits in Fig. 20 are generated with T =
1000 observation time and ignoring initial transient
responses. The chaotic behaviour in Case 4(B) of sys-
tem (14) is also validated by using Poincaré map. The
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Fig. 21 Coexistence of chaotic orbits of Case 4(B) of sys-
tem (14) with x (0) = (±0.1, 0.001, 0.1, 0.001)T, �t =
0.01 and 2500 < T < 3000

−200 −100 0 100 200

−0.2

−0.1

0

0.1

0.2

x
3

x 4

Fig. 22 Poincaré map of Case 4(B) of system (14) with x1 =
0, x (0) = (0.1, 0.001, 0.1, 0.001)T, �t = 0.01,
across x3 − x4

Poincaré map is plotted about x1 = 0 in x3 − x4 plane
and is shown in Fig. 22. The random location of the
dots in Fig. 22 indicates that Case 4(B) of system (14)
has chaotic behaviour.

6.3 An inverse crisis route to chaos in (14)

It is seen in Case 4(A) and Case 4(B) that with the vari-
ation in amplitude of the control input, the responses
of the SLFJ manipulator change. For smaller values of
the amplitude of the control input u, system (14) has

transient chaotic behaviour, and for larger values, the
system has chaotic behaviour. Bifurcation diagram is
plotted to know the variation of such changes. Bifurca-
tion diagram with a variation of parameter a of system
(14) is shown in Fig. 23. It is seen from Fig. 23 that
system (14) has different dynamical behaviours like
periodic and chaotic with the variation of amplitude a.
The system has transient chaotic behaviour for initial
values of parameter a and has chaotic behaviour for
larger values of parameter a. Thus, the system has an
inverse crisis route to chaos [82]. This indicates another
interesting property of system (14). The periodic nature
of system (14) with a = 2 is shown in Fig. 24.

6.4 Chaos validation of Case 4(B) using 0–1 test

The 0–1 test is used to classify the periodic and chaotic
behaviours of a system. For a chaotic system, the out-
comes of the 0–1 test are approximately equal to one,
and for a periodic response, it is equal to zero. Here, the
original dynamics is transformed into translation vari-
able (pc (n) , qc (n)) and average growth rate of mean
square displacement (Mc(n)) [83,84] is measured. The
variables (pc (n) , qc (n)) are defined as

⎧
⎨

⎩

pc (n) = ∑n
j=1 x( j)cos jc

qc (n) = ∑n
j=1 x( j)sin jc,

(17)

where c is an arbitrarily chosen variable in the range
(0−2π) and x( j) is the time series of any state variable
of the system. The phase variables pc (n) and qc (n)

represent a random Brownian-like motion for a chaotic
system, whereas the behaviour is a bounded motion
for a periodic signal. The mean square displacement
Mc(n) is defined in (18) [83,84]

Mc(n) = lim
N→∞

1

N

N∑

k=1

× {
[pc (k+n)− pc(k)]

2+[qc (k+n)−qc(k)]2
}

(18)

The Mc (n) grows exponentially for the chaotic
behaviour, whereas it varies periodically for a periodic
behaviour. The asymptotic growth rate (kc) is defined
in (19) [83–85]

kc = lim
n→∞

log Mc(n)

log n
. (19)
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Fig. 23 Bifurcation
diagram of system (14) by
varying amplitude
of control input with x (0) =
(0.1, 0.001, 0.1, 0.001)T

and �t = 0.01
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Fig. 24 Periodic orbits for system (14) when ampli-
tude of control input is a = 2 with x (0) =
(0.1, 0.001, 0.1, 0.001)Tand �t = 0.01

The value of the growth rate for a chaotic signal is
approximately equal to one and the same for a periodic
signal approximately equals to zero. Phase plane of
translation variables (pc, qc), asymptotic growth rate
(kc) and mean square displacement (Mc (n)) in Case
4(B) of system (14) with initial conditions x (0) =
(0.1, 0.001, 0.1, 0.001)T are shown in Fig. 25. It
is obvious from Fig. 25 that the phase plane across the
translation variables (pc, qc) is Brownian-likemotion,
asymptotic growth rate has constant one values and the

mean square displacement (Mc (n)) grows monotoni-
cally. These all confirms that Case 4(B) of system (14)
has chaotic behaviour. For Case 4(B), the system has
k = 0.9987 ≈ 1 which indicates the chaotic nature of
the signal.

7 Circuit design and implementation of the SLFJ
manipulator

The designed circuit of system (8) for Case 1(I) is
shown in Fig. 26. The circuit is designed using NIMul-
tisim 12 software. Several chaotic systems are imple-
mented and verified using NI Multisim [86–90]. NI
Multisim components are based on actual circuit com-
ponents. Simulation results obtained using NI Multi-
sim are in consistence with the actual circuit results
[87]. The circuit (Fig. 26) of system (8) for Case
1(I) consists of four integration lines for four states
of the system. The circuit consists of four capacitors
(C1,C2,C3,C4), 17 resistors, six op-amp (741) and
two analog behavioural model (ABM) blocks. Here,
ABM block is used for the implementation of sin and
cos terms. The circuit equations corresponding to each
state in Case 1(I) of system (8) can be written using
Kirchhoff’s law as:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1= 1
RC1

[
R
R1 x2

]

ẋ2= 1
RC2

[
− R

R4 x1 + R
R5 x3 − R

R6 sin(x1)
]

ẋ3= 1
RC3

[
R
R9 x4

]

ẋ4= 1
RC4

[
R
R13 x1− R

R12 x3− R
R15 x4+ R

R14 (3 cos(2πx2))
]
,

(20)
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Fig. 25 0–1 test of x2
signal of Case 4(B) of
system (14) x (0) =
(0.01, 0.001, 0.001, 0.1)T,
�t = 1 : a phase plane
between pc (n) and qc(n), b
asymptotic growth rate (kc)
and c mean square
displacement Mc (n)
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Fig. 26 Circuit implementation of Case 1(I) of system (8)

where the variables x1, x2, x3, x4 are the output
of op-amp integrators u1, u3, u5, u7. Case 1(I) of
system (8) is equivalent to (20) with τ = t/RC ,
R = 400, R

p1
= 80 = R6, R

p2
= 4 = R4 = R5,

R
p3

= 1.25 = R12 = R13, R
p4

= 1200 = R15,
R
p5

= 120 = R14 and a = 3. Chaotic attractors in Case

1(I) of system (8) obtained using the circuit implemen-
tation are shown in Fig. 27. The circuit implementation
of Case 1(II) and Case 1(III) is same as that of Case
1(I) except for some small changes in values of C1 =
C2 = C3 = C4 = 1.0 nF , v1 = 4 cos(2πx2) and
C1 = C2 = C3 = C4 = 1.0 nF , v1 = 5 cos(2πx2)
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Fig. 27 Chaotic attractors in Case 1(I) of system (8) obtained
using NI Multisim circuit implementation

for Case 1(II) and Case 1(III), respectively. The chaotic
attractors in Case 1(II) of system (8) obtained using the
circuit implementation are shown in Fig. 28. Similarly,
the circuit design of system (10) and (12) is same as in
theCase 1(I) of system (8)which is shown in Fig. 26 but
with the changes inC1 = C2 = C3 = C4 = 10.0 nF ,
v1 = 3 cos(x2 − 0.5) tanh(100(x2 − 0.5)) and C1 =
C2 = C3 = C4 = 1.0 nF , v1 = 4 cos(2π(x4 − 0.3)),
respectively, for system (10) and (12). Chaotic attrac-
tors of system (10) and (12) obtained using circuit
implementation are shown in Figs. 29 and 30, respec-
tively. It is observed from Fig. 20 that x1 and x3
states of Case 4(B) are approximately in the ranges of
[−300, 200] and [−300, 200], respectively. Thus, the
x1 and x3 states are scaled and the new system variables
are defined as u = x1

100 , v = x2, z = x3
100 , w = x4. The

circuit equations corresponding to each state of Case
4(B) with new variables can be written using Kirch-
hoff’s law as:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

u̇ = 1
RC1

[ R
100R1v

]

v̇ = 1
RC2

[−100( R
R4u − R

R5 z) − R
R6 sin(100u)

]

ż = 1
RC3

[ R
100R9w

]

ẇ = 1
RC4

[ 1
100 (

R
R13u− R

R12 z)

− R
R15w+ R

R14 (a cos(2π f t))
]
.

(21)

The circuit design in Case 4(B) of system (14) is
shown in Fig. 31. Chaotic attractors for Case 4(B)
obtained using circuit implementation are shown in
Fig. 32. It is observed from Figs. 27, 28, 29, 30 and 32
that the results obtained by circuit implementation of
systems (8), (10), (12) and (14) confirm the MATLAB

Fig. 28 Chaotic attractors in Case 1(II) of system (8) obtained
using NI Multisim circuit implementation

Fig. 29 Chaotic attractors forCase 2 obtained usingNIMultisim
circuit implementation

simulation results in Figs. 4, 5, 11, 13 and 20, respec-
tively.

8 Application of an SLFJ manipulator for a weak
signal detection

In this section, an application of an SLFJ manipula-
tor robot dynamics for detecting a weak signal is dis-
cussed. The non-autonomous manipulator dynamics
defined in (14) is used for this purpose. Figure 23
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Fig. 30 Chaotic attractors forCase 3 obtained usingNIMultisim
circuit implementation

and calculation show that when a = 2.892565334,
system (14) is chaotic. When a is increased by a
small value of 10−9 to a = 2.892565335, system (14)
depicts periodic behaviour. Hence, we may consider
aT = 2.892565334 as the threshold value of the param-
eter of system (14). Thus, with the addition of a signal
having amplitude equal to or greater than 10−9, the
system changes its state from chaotic to the large-scale
periodic state. Therefore, system (14) can generate an
alarm for the indication of a weak signal.

Application of system (14) for detecting a weak sig-
nal with various frequency can be achieved by fre-

Fig. 32 Chaotic attractors in Case 4(B) of system (14) obtained
using NI Multisim circuit implementation

quency transformation as discussed below. Consider-
ing t = w0T , we can define as x(t) = x(w0T ); then,
the transformed dynamics for (14) can be written as:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ẋ1 = w0(x2)

ẋ2 = w0(−p1sin (x1) − p2 (x1 − x3))

ẋ3 = w0(x4)

ẋ4 = w0(p3 (x1−x3)− p4x4+ p5 a cos(ww0T )).

(22)

Fig. 31 Circuit implementation in Case 4(B) of system (14)
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In order to detect a weak signal using system (22), an
input (v) consists of theweak signal and noise is added.
The expression is defined as:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = w0(x2)

ẋ2 = w0(−p1sin (x1) − p2 (x1 − x3))

ẋ3 = w0(x4)

ẋ4 = w0(p3 (x1 − x3) − p4x4
+ p5 a cos(ww0T ) + v),

(23)

where v = q sin(w0T ) + N (T ), q sin(w0T ) is
the weak signal and N (T ) is the white Gaussian
noise (WGN). The simulation results suggest that sys-
tem (22) can detect the weak signal with very high
frequency. The smallest signal-to-noise ratio (SNR)
threshold can be achieved using (22) with w0 = 107

rad/s, weak signal amplitude q = 10−9, detection
threshold aT = 2.892565335 and noise power PN =
10−11, which is given as:

SNR(db) = 10 log
0.5(q)2

pN

= 10 log
0.5(10−9)2

10−11 = −73.010. (24)

9 Conclusions

In this paper, a single-link flexible joint manipulator
dynamics is studied to show the occurrence of var-
ious chaotic behaviours. The generation of chaos in
a SLFJ manipulator is shown for the first time to
the best of authors’ knowledge. The study has also
added a new nature of equilibria in the classification of
chaotic/hyperchaotic systems. A total of seven differ-
ent cases/subcases are considered with the variation of
control input. In three cases (five subcases), the closed-
loop system is autonomous as the control input is con-
sidered as a partial state feedback control like joint
velocity feedback andmotor rotor velocity feedback. In
the remaining case (two subcases), the open-loop sys-
tem is non-autonomous since the control input is con-
sidered as a function of time. When the control input
is considered as the joint velocity feedback, the sys-
tem has (1) one stable spiral and one unstable saddle-
node equilibrium points and (2) one marginally stable
equilibrium point, in two subcases. When the control

input is considered as the motor rotor velocity feed-
back, the SLFJ manipulator dynamics has two unstable
equilibria in which one equilibrium point has index-4
spiral repellor nature. In the autonomous cases, the sys-
tem depicts chaotic behaviour with single- and multi-
scroll chaotic orbits. In non-autonomous cases, the sys-
tem has (1) transient chaotic behaviour with a stable
limit cycle at its steady state and (2) chaotic behaviour
with a change in the amplitude of the control input.
The systemexhibits coexistence, (i.e.multi-stability) of
chaotic orbits in all cases.Various tools are used to anal-
yse the complex dynamics behaviour of the proposed
SLFJ manipulator dynamics like phase portrait, time
series plot, Poincaré map, bifurcation diagram, Lya-
punov spectrum, frequency spectrum, instantaneous
phase plot and 0–1 test. Chaotic nature of the proposed
system is also validated using circuit implementation
in NI Multisim software. The results obtained using
the circuit have good agreement with the MATLAB
simulation results. Finally, an application of proposed
non-autonomous SLFJ manipulator for a weak signal
detection is shown in the paper.
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