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Abstract A (2+1)-dimensional N-coupled nonlinear
Schrödinger equation with spatially modulated cubic–
quintic nonlinearity and transverse modulation is stud-
ied, and vector multipole and vortex soliton solutions
are analytically obtained. When the modulation depth
q is chosen as 0 and 1, vector multipole and vortex
solitons are constructed, respectively. The number of
“petals” for the multipole solitons and vortex solitons
is related to the value of the topological charge m, and
the number of layers in the multipole solitons and vor-
tex solitons is determined by the value of the soliton
order number n.

Keywords Vector multipole solitons · Vector vortex
solitons · Cubic–quintic nonlinearity · Spatially
modulated nonlinearity

1 Introduction

Dynamics of optical solitons has exhibited novel and
vital properties and exists extensive application inmany
different real backgrounds of nonlinear optics [1–5].
Spatial and spatiotemporal solitons formwith the coac-
tion of diffraction, dispersion nonlinearity and/or exter-
nal potential [6–9]. As the subject of intensive theoret-
ical and experimental studies, spatial and spatiotempo-
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ral solitons exhibit different types of localized struc-
tures including fundamental solitons [10,11], similari-
tons [12,13], vortex solitons [14,15], Hollow multi-
pole soliton [16,17], roguewaves [18,19] andHermite–
Gaussian solitons [15,20], and so on.

When the optical field frequency approaches a reso-
nant frequency of the optical fiber material, the Kerr
nonlinearity is not enough to describe self-focusing
effect and cubic–quintic (CQ) nonlinearities are con-
sidered. According to the work of Pusharov et al. [21],
CQ nonlinearities are introduced into the governing
equation of the propagation of optical wave, that is,
nonlinear Schrödinger equation (NLSE) by consider-
ing the refractive index nonlinearity as n = n0 +
n2|u|2 + n4|u|4, where u is the electric field ampli-
tude, n2 = 3χ(3)/(8n0), n4 = 5χ(5)/(16n0) with the
linear refractive index coefficient n0, and two compo-
nents of the corresponding nonlinear dielectric tensors
χ(3) and χ(5). Temporal and spatial solitons in the CQ
nonlinear media have extensively studied [22,23]. His-
torically, the topological quasi-soliton solutions for the
variable-coefficient CQNLSEwere reported in the pio-
neering work of Serkin et al. [24]. Avelar et al. [25]
obtained periodic wave and soliton solutions with CQ
nonlinearities modulated in space and time. Competing
CQ nonlinearity in the bulk medium generates stable
vortex solitons [26].

Vector spatial solitons with two or more compo-
nents can mutually self-trap in the nonlinear medium
and have much more application in the control of opti-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11071-017-3725-5&domain=pdf


1270 Y.-Y. Wang et al.

cal beam diffraction, design of the logic gates, all-
optical switching devices and information transforma-
tion [27,28]. When two optical waves of different fre-
quencies co-propagate in a medium and interact non-
linearly through the medium, or when two polarization
components of awave interact nonlinearly at some cen-
tral frequency, the Manakov equation can describe the
propagation of solitons [29]. Multicomponent struc-
tures for N fields governed by a coupled NLSE make
vector solitons possess richer dynamical propagation
behaviors than the scalar solitons [29,30]. Self-trapping
of scalar and vector dipole spatial solitons in 2D Kerr
media were studied [31]. However, spatial vector soli-
tons in CQ nonlinear medium are relatively few stud-
ied. In this paper, we study spatial vector multipole
and vortex solitons in a CQ nonlinear medium and
discuss the form and structure pattern of these soli-
tons.

2 Exact vector soliton solutions of CQNLSE

The evolution of vector beams consisting ofN mutually
incoherent components co-propagating in a CQ non-
linear medium with the spatially modulated refractive
index n = n0 + n1R(r) + n2g3(r)|u|2 + n4g5(r)|u|4
can be described by the following N-coupled (2+1)-
dimensional variable-coefficient CQNLSE

i
∂uk
∂z

= −1

2
∇2⊥uk + g3(r)

N∑

k=1

|uk |2uk

+ g5(r)
N∑

k=1

|uk |4uk + R(r)uk, (1)

where uk(z, r, ϕ)(k = 1, 2, . . . N ) are the slowly vary-
ing envelopes with the propagation distance z and the
polar coordinates r and ϕ in the transverse plane, as
well as the 2D Laplacian ∇2⊥ = ∂2

∂r2
+ 1

r
∂
∂r + 1

r2
∂2

∂ϕ2 .
The cubic nonlinearity coefficient g3(r), quintic non-
linearity coefficient g5(r) and the transverse modula-
tion R(r) are all functions of radial coordinate r ≡
(x, y). The transverse x , y and longitudinal z coordi-
nates, respectively, are normalized to the beam width
w0 = (2k20n1)

−1/4 and diffraction length Ld = k0w2
0

with the wave number k0 = 2πn0/λ at the input wave-
length λ. If uk represents the macroscopic wave func-
tion of the condensate, R(r) is the external potential,
Eq. (1) is the coupled CQ Gross–Pitaevskii equation in
Bose–Einstein condensates.

We look for the spatially localized stationary exact
solution of Eq. (1) in the form

uk(r, ϕ, z) = A(r)Φk(ϕ) exp(−iκz), (2)

where κ is the propagation constant, and A(r) is a real
function for the localization demand limr→±∞ A(r) =
0.

Substituting Eq. (2) into Eq. (1) leads to

r2

A

{
∂2A

∂r2
+ 1

r

∂A

∂r
+ 2[κ − R(r)]A

−2g3(r)A
3 − 2g5(r)A

5
}

= l2, (3)

− 1

Φk

∂2Φk

∂ϕ2 = l2, (4)

with the self-consistency condition
∑N

k=1 |Φk |2 = 1,
and the topological charge l.

From Eq. (4), we obtain solution

Φk = Ck cos(lϕ) + Dk sin(lϕ). (5)

In the following, we consider two-component case
with N = 2, thus C1 = 1, D1 = iq,C2 = 0,C2 =√
1 + q2 with q(0 ≤ q ≤ 1). The limit value q = 1

corresponds to vortex soliton, andq = 0 corresponds to
the multipole soliton, where the topological charge l =
1−5 denotes dipole, quadrupole, hexapole, octopole
and dodecagon solitons.

Assuming A(r) ≡ ρ(r)U [χ(r)], g3(r) ≡
G3r−2ρ−6(r)/2, g5(r) ≡ G5r−2ρ−8(r)/2, with χ(r)
≡ ∫ r

0 ρ−2(s)s−1ds, Eq. (3) is split into two equations

ρ′′ + 1

r
ρ′ +

[
2κ − 2R(r) − l2

r2

]
ρ = E

r2ρ3 ,

− d2U

dχ2 + G3U
3 + G5U

5 = EU, (6)

where E,G3 and G5 are constants. Note that via the
procedure above, the coupled CQNLSE (1) is reduced
to solvable stationary CQNLSE (6), which has rich
solutions such as Jacobian elliptic function solution and
soliton solution [32].

Therefore, it is crucial to construct exact solutions
of Eq. (2) to obtain solutions of the underlying cou-
pled CQNLSE (1). Equation (2) is not easily solved.
Physical solutions impose several restrictions on ρ:
expressions for R(r), g3(r) and g5(r) hint thatρ cannot
change its sign and diverges (ρ → ∞ ) at r → ∞; thus,
the inhomogeneous nonlinearity strength is bounded
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and the integration in R(r) converges. If E is a nonzero
constant, then Eq. (2) is the Ermakov–Pinney equation
[33]; thus, solution of ρ(r) becomes

ρ =
√
1

r
(αφ2

1 + 2βφ1φ2 + γφ2
2), (7)

where E = (αγ − β2)W 2 with three constants α, β, γ

and constant Wronskian W = φ1φ2r − φ2φ1r with
φ1(r) and φ2(r) being two linearly independent solu-
tions of φrr + [2κ − 2R(r) − l2/r2]φ = 0.

Especially, when E = 0 in Eq. (2), if R(r) is
the transverse parabolic modulation with R(r) =
1
2ω

2r2, then ρ can be found in terms of the Whit-
taker’s M and W functions [34], namely, ρ(r) =
r−1[c1M(κ/2

√
2ω, l/2,

√
2ωr2)+c2W (κ/2

√
2ω, l/2,√

2ωr2)], where the restrictions on ρ require c1c2 > 0.
Without the transverse modulation with ω = 0, ρ

becomes ρ(r) = c3BJ (l,
√
2κr)+c4BY (l,

√
2κr), BJ

and BY being, respectively, the Bessel functions of the
first and second kinds [35], and constants satisfying
c3c4 > 0.

Considering the localization condition A(0) =
A(∞) = 0, when G5 = −3G2

3/(16δ
2) with δ =

2
√
E/(m2 + 4), Eq. (6) has the following exact solu-

tion

U = 2nmλ√
G3/2

sn [2nλχ(r),m]√
1 + dn [2nλχ(r),m]

, (8)

where the soliton order number n = 1, 2, 3, . . ., sn(·)
and dn(·) are the Jacobian elliptic sine function and
the Jacobian elliptic function of the third kind, respec-
tively, and λ ≡ K (m)/χ(∞)with the complete elliptic
integral of the first kind K (m) and modulus m. From
solution (8), G3 > 0 and G5 < 0, thus solution (8)
exists only in the focusing cubic and defocusing quin-
tic medium.

Therefore, from Eqs. (2), (5), (7) and (8), we can
obtain the spatially localized stationary exact solution
of Eq. (1).

3 Vector multipole and vortex solitons

Vector multipole and vortex solitons in the presence
of the parabolic transverse modulation R = ω2r2/2
present abundant structures. Vector multipole and vor-
tex solitons with the intensity of (a), (e), (i) and (m)
component |u1|2, (b), (f), (j) and (n) component |u2|2,

(c), (g), (k) and (o) total quantity |u|2 = |u1|2 + |u2|2
and (d), (h), (l) and (p) phase are shown in Figs. 1, 2, 3
and 4.

If n = 1, the mutually complementary two-petal
structures for components |u1|2 and |u2|2 in Fig. 1a,
b constitute a ring structure in Fig. 1c, and the phase
of this ring structure is a half-circle in Fig. 1d. The
mutually complementary four-“petal” structures for
components |u1|2 and |u2|2 in Fig. 1e, f also con-
stitute a ring structure in Fig. 1g, and the phase of
this ring structure is two opposite slices of sectors
in Fig. 1h. The mutually complementary six-“petal”
structures for components |u1|2 and |u2|2 in Fig. 1i,
j also constitute a ring structure in Fig. 1k, and the
phase of this ring structure is three slices of sectors
and the angle between two adjacent sectors is 60◦
in Fig. 1l. The mutually complementary eight-“petal”
structures for components |u1|2 and |u2|2 in Fig. 1m,
n also constitute a ring structure in Fig. 1o, and the
phase of this ring structure is four slices of sectors,
and the angle between two adjacent sectors is 45◦ in
Fig. 1p. Therefore, there exist the mutually comple-
mentary 2m-“petal” structures for components |u1|2
and |u2|2, and the phase is made up of m-slices of sec-
tors. With the add of m, the hole in the center of the
ring enlarges.

With the increase of the soliton order number n,
the layer of multipole solitons adds in Figs. 2 and 3.
If n = 2, the structure and phase of multipole soli-
tons possess two layers in Fig. 2, and if n = 3, 4,
the structures and phases of multipole solitons pos-
sess three and four layers, respectively, in Fig. 3. From
phase patterns for (d), (h), (l) and (p) in Figs. 1, 2
and 3, we know these ring-like solitons for (c), (g),
(k) and (o) in Figs. 1, 2 and 3 are not vortex solitons
because the phases are all not a 2π jump around their
cores.

When q = 1, vortex solitons with the intensity of
(a), (e), (i) and (m) component |u1|2, (b), (f), (j) and
(n) component |u2|2, (c), (g), (k) and (o) total quan-
tity |u|2 = |u1|2 + |u2|2 and (d), (h), (l) and (p) phase
are shown in Fig. 4 in presence of the parabolic trans-
verse modulation R = ω2r2/2. Similar to multipole
solitons, the soliton order number n decides the layer
of vortex solitons. If n = 1−4, vortex solitons pos-
sess one to four layers, respectively. Moreover, the
value of m is related to the number of “petal” for vor-
tex solitons, that is, vortex solitons possess the struc-
tures with 2m-“petal.” From these plots in Fig. 4d, h,
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Fig. 1 (Color online)
Multipole solitons with the
intensity of a, e, i,m
component |u1|2, b, f, j, n
component |u2|2, c, g, k, o
total quantity
|u|2 = |u1|2 + |u2|2 and d,
h, l, p phase in the presence
of the parabolic transverse
modulation R = ω2r2/2.
The parameters are chosen
as c1 = 0.8, c2 = 0.7, κ =
0.3, ω = 0.005,G3 =
50, q = 0, n = 1 with
(a)-(d) m = 1, (e)-(h)
m = 2, (i)-(l) m = 3,
(m)-(p) m = 4

Fig. 2 (Color online)
Multipole solitons with the
intensity of a, e, i,m
component |u1|2, b, f, j, n
component |u2|2, c, g, k, o
total quantity
|u|2 = |u1|2 + |u2|2 and d,
h, l, p phase in presence of
the parabolic transverse
modulation R = ω2r2/2.
The parameters are chosen
as the same as those in
Fig. 1 except for n = 2
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Fig. 3 (Color online)
Multipole solitons with the
intensity of a, e, i,m
component |u1|2, b, f, j, n
component |u2|2, c, g, k, o
total quantity
|u|2 = |u1|2 + |u2|2 and d,
h, l, p phase in the presence
of the parabolic transverse
modulation R = ω2r2/2.
The parameters are chosen
as the same as those in
Fig. 1 except for a–d
m = 1, n = 3, e–h
m = 3, n = 3, i–l
m = 1, n = 4, m–p
m = 3, n = 4

Fig. 4 (Color online)
Vortex solitons with the
intensity of a, e, i,m
component |u1|2, b, f, j, n
component |u2|2, c, g, k, o
total quantity
|u|2 = |u1|2 + |u2|2 and d,
h, l, p phase in presence of
the parabolic transverse
modulation R = ω2r2/2.
The parameters are chosen
as the same as those in
Fig. 1 except for q = 1 with
a–d m = 1, n = 1, e–h
m = 2, n = 2, i–l
m = 3, n = 3, m–p
m = 4, n = 4

l, p, all phases exhibit a 2π jump around their cores,
and thus, these structures in Fig. 4 are all vortex soli-
tons.

We find that localized structures without the trans-
verse modulation are similar to those in the presence
of the parabolic transverse modulation in Figs. 1, 2, 3
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and 4. For the limit of length, we neglect these related
discussions.

4 Summary

In summary, we study a (2+1)-dimensional N-coupled
NLSE with spatially modulated cubic–quintic non-
linearity and transverse modulation, and analytically
derive vector multipole and vortex soliton solutions. If
themodulation depthq is chosen as 0 and 1, vectormul-
tipole and vortex solitons are constructed, respectively.
The number of “petals” for the multipole solitons and
vortex solitons is decided by the value of 2m with the
topological charge m, and the number of layers in the
multipole solitons and vortex solitons is related to the
value of the soliton order number n.
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