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Abstract The global robust regulation problem is
studied for a class of cascade nonlinear systems sub-
ject to the external disturbance. The considered system
represents more general classes of nonlinear uncertain
systems, for example, the much weaker integral input-
to-state stable (iISS) cascaded subsystem, the unknown
control coefficients, the unmeasured states appearing
in the nonlinear uncertainties and the external distur-
bance additively in the input channel. Combined the
ideas of the Nussbaum-type gain and the disturbance as
a generalized state, a dynamic extended state observer
(ESO) based on a Riccati differential equation is con-
structed to overcome these difficulties. It is shown that
the global robust regulation problem is well addressed
by the proposed method. In the simulation part, the fan
speed control system is used as a practical example to
demonstrate its efficacy.
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1 Introduction

Nonlinear systems control has received considerable
attention in the control community, and phenomenal
progress has beenmadeduring the last decades.Numer-
ous novel methodologies for nonlinear feedback con-
trol have been generated to control the engineering sys-
tems [1]. One of the influential notions is the input-to-
state stability (ISS) invented by Sontag [2] in the late
1980s, which has become a central concept in non-
linear systems analysis. As an integral variant of ISS,
integral input-to-state stability (iISS) is another mean-
ingful but much weaker notion. Since it is introduced
in [3,4], there has an ever increasing interest in this
topic [5–9] recently. It is noted that in [10], supposing
the dynamic uncertainty subject to the iISS property,
a unifying framework is presented for global output
feedback regulation control from ISS to iISS, which
extends many known classes of output feedback form
systems in several directions. Subsequently, some fur-
ther results were obtained based on such class of non-
linear systems, see [11–14], etc.

However, all aforementioned output regulation con-
troller does not consider the uncertain external distur-
bance except in [14]. It is known that the uncertainties
that arise from external disturbance are essentially the
major concern in the nonlinear control design. During
the past two decades, many fruitful results have been
proposed to reject the external disturbances [15,16].
Recently, the extended state observer (ESO) by Han in
his pioneer works [17] is regarded as the major cre-
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ativity toward the active disturbance rejection control
(ADRC). As written in [18], the ESO not only pos-
sesses the state observation capability but also pro-
vides real-time estimation of generalized disturbances
between the plant and the model of the considered sys-
tem, such as external disturbances andmodeling uncer-
tainties caused by parameter deviations. Based on the
ADRC strategy together with the ESO, the robust con-
trol was addressed for several classes of nonlinear sys-
tems with disturbances and uncertainties in [19–22].
Another fruitful tool is the disturbance observer-based
control (DOBC) techniqueproposed in [23],whichpro-
vides a promising approach to handle the system dis-
turbances and improve robustness [24–27] when the
system states are available.

In this paper, we further investigate the output reg-
ulation control problem for a class of cascade nonlin-
ear systems subject to the external disturbance. The
studied system is a perturbed version of its counter-
part in [10,11]. The purpose of this paper is to con-
struct a robust regulation controller via output feed-
back for a more general class of nonlinear uncertain
system in the presence of external disturbance, which
does not require to be square integrable or vanishing
at the origin. Using the idea of ESO, we generalize
the disturbance as an extended state, and then, design
a novel observer whose gain is updated by a time-
varying Riccati differential equation. The main con-
tributions contained in this paper are highlighted as
follows:

(1) The disturbance attenuation is addressed for a
class of nonlinear systems with external disturbance
in the control input channel. Different from the exist-
ing related works in [14], the external disturbance does
not require to be square integrable. Consequently, the
proposed control algorithm allows a larger class of dis-
turbance signals, such as the constant signal.

(2) The system in question can accommodate some
serious uncertainties such as the unknown control coef-
ficients, which makes the state compensator design
extremely difficult in the case of the unavailable system
states. Technically, this hurdle is tactfully overcome by
introducing a coordinate transformation and designing
an ESO based a Riccati differential equation.

(3) The global set-point regulation control is solved
for the fan speed control systems in the presence of
external disturbances. This result improves the existing
works where the external disturbance in the armature
voltage is not considered.

Notations The following notations are adopted in
the paper. If x is a possibly time-varying vector,
then |x(t)| is the Euclidean norm of x at time t ,

‖x‖p =
[ ∫ ∞

0 |x(τ )|pdτ
] 1

p
, p ∈ [1,∞), ‖x‖∞ =

sup0≤t |x(t)|, and x ∈ L p when ‖x‖p exists, x ∈ L∞
when ‖x‖∞ exists. AT denotes its transpose for a
matrix A. For a n-dimension vector x = (x1, . . . , xn) ∈
Rn , we denote x[i] = (x1, . . . , xi )when i = 2, . . . , n−
1. π1(s) = O(π2(s)) as s → 0+ means that π1(s) ≤
c1π2(s) for some constant c1 > 0 and all s in a
small neighborhood of zero, and π1(s) = O(π2(s))
as s → ∞ means that π1(s) ≤ c1π2(s) for some con-
stant c2 > 0 and all large enough s.

2 Model description and scheme

2.1 Problem formulation

In this paper, we study the following class of cascade
nonlinear systems described by

ζ̇ = q(ζ, y)

ẋi = bi xi+1 + λi (t)xi + gi (ζ, y), i = 1, . . . , n − 1,

ẋn = bnu + λn(t)xn + gn(ζ, y)+ d(t)

y = x1 (1)

where (ζ, x) ∈ Rr × Rn are system states, u ∈ R
is control input, and y = x1 is the observable out-
put. λi (t)(i = 1, . . . , n) are known time-varying func-
tions, and d(t) represents the unknown external dis-
turbance. The signs of nonzero control coefficients
b1, . . . , bn−1 as well as the high-frequency gain bn are
not known a priori. The uncertain functions q(·) and
gi (·)(i = 1, . . . , n) are supposed to be locally Lips-
chitz for existence and uniqueness of solutions. The
state (x2, . . . , xn) and the state ζ of the ζ -subsystem,
which is referred to as the inverse system, are not
assumed to be measurable.

The objective of this paper is to design a robust con-
troller to globally asymptotically regulate system (1)
to the origin using only the output signal. For future
reference, we record the following definition [28].

Definition 1 System (1) is said to be globally asymp-
totically regulated by the following time-varyingoutput
feedback controller

˙̂x = ν(t, x̂, y), u = μ(t, x̂, y) (2)
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in such a way that, for all initial conditions (ζ(0), x(0),
x̂(0)), the solutions of the closed-loop system (1) and
(2) are well defined and bounded on [0,+∞). In par-
ticular, ζ(t) and x(t) converge to zero as t → ∞.

The following assumptions are needed in order to
achieve the stated control objective.

Assumption 1 The ζ dynamics is iISS with an iISS-
Lyapunov function U0(ζ ) satisfying

∂U0

∂ζ
q(ζ, y) ≤ −α(|ζ |)+ γ (|y|), (3)

where α is a positive definite continuous function, γ ∈
K∞, and moreover

γ (s) = O(s2) as s → 0+. (4)

Assumption 2 For i = 1, . . . , n, there exist two
unknown positive constants δi1 and δi2, and two known
positive semidefinite, smooth functions φi1(·) and
φi2(·), such that

|gi (ζ, y)| ≤ δi1φi1(|ζ |)+ δi2φi2(|y|). (5)

Moveover, the following additional conditions hold:

φ2i1(s) = O
(
α(s)

)
as s → 0+, (6)

and in case α is bounded,

lim sup
s→∞

φ2i1(s)

α(s)
< ∞, 1 ≤ i ≤ n. (7)

Assumption 3 The time-varying functions λi (t)(i =
1, . . . , n) are uniformly bounded and differentiable
sufficiently many times, and further assumed to have
bounded derivatives. To be precisely, for each i =
1, . . . , n, there exists a unknown positive number λ̄,
such that

sup
t≥0

{
|λi (t)|

}
≤ λ̄. (8)

Assumption 4 The external disturbance d(t) satisfies
the following properties:

d(t) ∈ L∞, ḋ(t) ∈ L∞, ḋ(t) ∈ L2. (9)

Remark 1 Few remarks are made here.
(1) As stated in [12], the system (1) represents a

larger class of nonlinear systems in output feedback
form. From Assumption 1, the cascaded ζ -subsystem
is iISS, which is a less restrictive condition than ISS.

More generally, it could allow the presence of uncer-
tainty in the supply rates of (α, γ ) such as in [8]. As the
condition C2) in [10,11], the uncertain nonlinearities
gi (η, y)(i = 1, . . . , n) in Assumption 2 are assumed
to be vanishing or unbiased. In addition, it is also not
required to satisfy any kind of polynomial bounds.

(2) Assumption 4 shows that the external distur-
bance d(t) is not required to be L2. This is in sharp
contrast to the existing closely related results, such as
[14]. Here, it does only require that ḋ(t) ∈ L2. This
is a more relaxed version of noise signals. As a simple
example, d(t) = constant is not square integrable, but
it is clear that ḋ(t) ∈ L2. It is shown that some kind of
extended state observer based on a Riccati differential
equationwill do the job in the case of such general class
of noise signals satisfying Assumption 4.

Remark 2 Considering the inverse system state ζ is
not available for feedback, as in [10,14], some local
small-gain type conditions in (4) (6) and (7) play key
roles in dealing with the unmeasured state ζ . In fact,
we have the following lemma from [10].

Lemma 1 For i = 1, . . . , n, if the local conditions
(6) and (7) are available, then the following hold true
∫ t

0
φ2i1(|ζ(s)|)ds≤ψ̄i0(|ζ(0)|)+

∫ t

0
ψi1(|y(s)|)ds,

(10)

where ψ̄i0 is a positive definite continuous function,
and ψi1 ∈ K∞ is quadratic near the origin.

2.2 A dynamic output feedback control scheme based
on ESO

In this section, we present a step-by-step procedure
to design a dynamic output feedback law to solve the
global regulation problem for system (1).

To be first, we choose the new state variables ξi ’s in
the form of

ξi = xi
bi · · ·bn , i = 1, . . . , n. (11)

With this change of coordinates, system (1) is turned
into

ξ̇i =ξi+1+λi (t)ξi+ 1

bi · · ·bn gi (ζ, y), i=1, . . . , n−1,

ξ̇n = u + λn(t)ξn + 1

bn
d(t)+ 1

bn
gn(ζ, y). (12)
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In the following context, the external disturbance
1
bn
d(t) is viewed as a generalized state. For notational

consistence, we choose the following notation

ξn+1 = 1

bn
d(t), (13)

and its derivative is defined by h(t), i.e.,

ξ̇n+1 = 1

bn
ḋ(t) = h(t). (14)

Then, one can get the following (n + 1)-order aug-
mented system

ξ̇i = ξi+1+λi (t)ξi + 1

bi · · ·bn gi (ζ, y), i=1, . . . , n−1,

ξ̇n = u + λn(t)ξn + ξn+1 + 1

bn
gn(ζ, y)

ξ̇n+1 = h(t). (15)

Remark 3 It is noted that here, if the unknown distur-
bance d(t) is assumed to be constant, then its derivative
h(t) becomes zero. This case can usually be found in
the set-point regulation or in the presence of sensor dis-
turbances. For example, in some cases, the value of the
control may not be completely known due to a desired
(unknown) equilibrium point, see [29]. It can be seen
that according toAssumption 4, actually a broader class
of external disturbance can be allowed in (1), such as
d(t) = arctan(t) or constant , which shows the distur-
bance does not require to be vanishing. In this sense,
the results reported in [10] with vanishing nonlineari-
ties can be extended to the case of nonvanishing uncer-
tainties.

Let ξ = [ξ1, ξ2, · · · , ξn, ξn+1]T , the system dynam-
ics in (15) can be rewritten into the following compact
form

ξ̇ =
(
A +�(t)

)
ξ + Cnu + Cn+1h(t)+ B·G(ζ, y)

(16)

with A=
[
0 In
0 0

]
, �(t)=diag{λ1(t), · · · , λn(t), 0},

B = diag{ 1
b1···bn ,

1
b2···bn , . . . ,

1
bn
, 0}, and

G(ζ, y) =

⎡
⎢⎢⎢⎣

g1(ζ, y)
...

gn(ζ, y)
0

⎤
⎥⎥⎥⎦ , C =

⎡
⎢⎢⎢⎣

1
0
...

0

⎤
⎥⎥⎥⎦ ,

C2 =

⎡
⎢⎢⎢⎣

0
1
...

0

⎤
⎥⎥⎥⎦ , · · · , Cn =

⎡
⎢⎢⎢⎣

0
...

1
0

⎤
⎥⎥⎥⎦ , Cn+1 =

⎡
⎢⎢⎢⎣

0
...

0
1

⎤
⎥⎥⎥⎦ .

Then, for the system (16), a modified version of
dynamic observer in [11] is designed as follows

˙̂ξ =
(
A +�(t)

)
ξ̂ + Cnu − PCCT ξ̂ , (17)

where the observer gain P(t) is updated by a time-
varying Riccati differential equation
{
Ṗ=P

(
A+�(t)

)T +
(
A+�(t)

)
P−PCCT P+ I

P(0) = P0 > 0.

(18)

Furthermore, we note that the Riccati differential
equation defined in (18) is solvable. In fact, we have
the following lemma which ensures that the observer
(17) and (18) makes sense, and its proof can be found
in [30,31].

Lemma 2 For the matrix differential equation (18),
if the functions λi (t)(i = 1, . . . , n) are known, con-
tinuous and uniformly bounded, the unique solution
P(t) = (

P(t)
)T

exists and there are two strictly pos-
itive real numbers pmin and pmax such that pmin I ≤
P(t) ≤ pmax I, t ≥ 0.

Define the observation error variables

εi = ξi − ξ̂i , i = 1, . . . , n + 1. (19)

From (12) and (17), it can be concluded that the εi ’s
satisfy the following differential equation:

ε̇ =
(
A +�(t)− PCCT

)
ε

+ PC

b1· · ·bn x1 + Cn+1h(t)+ B·G(ζ, y). (20)

In order to obtain the computable gain functions of
PC

b1···bn x1 and B·G(ζ, y), we choose a scaled error vari-
able e = (e1, . . . , en+1)

T by setting

e = 1

δ∗ ε,

δ∗ = max

{
1

|b1· · ·bn | ,
δi1

|bi · · ·bn | ,
δi2

|bi · · ·bn | , δ
2
11, δ

2
12, 1

∣∣∣∣1≤i≤n

}
.

(21)

Accordingly, (20) is turned into
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ė =
(
A+�(t)−PCCT

)
e+ PC

δ∗b1· · ·bn x1

+ 1

δ∗
Cn+1h(t)+ 1

δ∗
B·G(ζ, y). (22)

Take the error e as the (unmeasured) state, and the
error system (22) is iISS with inputs (ζ, y) and h(t). In
fact, we have the following proposition, and its proof
is given in “Appendix.”

Proposition 1 For the e-subsystem (22), we choose the
Lyapunov function

Ve = eT P−1(t)e, (23)

then, its derivative is such that

V̇e ≤ −1

2
eT P−2(t)e + 8

n∑
i=1

φ2i1(|ζ |)

+ y2 + 8
n∑

i=1

φ2i2(|y|)+ 4h2(t). (24)

Now, we are ready to present the anti-disturbance
regulation controller using the backstepping method
in a recursive manner. For notational convenience, we
denote b = b1· · ·bn in what follows. The augmented
system convenient for feedback design is in the form of

ζ̇ = q(ζ, y)

ė =
(
A +�(t)− PCCT

)
e + PC

δ∗b
x1

+ 1

δ∗
Cn+1h(t)+ 1

δ∗
B·G(ζ, y)

ẋ1 = b̂ξ2 + bδ∗e2 + λ1(t)x1 + g1(ζ, y)
˙̂ξ i = ξ̂i+1 + λi (t )̂ξi − CT

i PC ξ̂1, i = 2, . . . , n − 1,
˙̂ξn = ξ̂n+1 + λn(t )̂ξn + u − CT

n PC ξ̂1
˙̂ξn+1 = −CT

n+1PC ξ̂1. (25)

Following the conventional backstepping procedure,
for the ξ̂i -subsystem, we take the variable of ξ̂i+1 as
the virtual control, ϑi as the desired control law, and
zi = ξ̂i+1 − ϑi (i = 1, . . . , n − 1) as the error.

Step1:Choose the first Lyapunov function candidate

V1 = Ve + 1

2
y2. (26)

In view of (24), its time derivative satisfies

V̇1 ≤ −1

2
eT P−2e + y2 + 8

n∑
i=1

φ2i2(|y|)

+ y
(
bϑ1 + bz1 + bδ∗e2 + λ1(t)x1 + g1(ζ, y)

)

+ 8
n∑

i=1

φ2i1(|ζ |)+ 4h2(t). (27)

Using the completion of squares 2ab≤ 1
�
a2+�b2, a, b

∈ R, � > 0, it holds

byz1 ≤ 1

2
y2 + 1

2
b2z21, (28)

bδ∗e2y ≤ εeT P−2e + ε̄ y2, ε > 0,

ε̄ = 1

4ε
b2δ∗2 p2max > 0, (29)

yg1(ζ, y) ≤ 1

2
y2 + δ211φ211(|ζ |)+ δ212φ212(|y|). (30)

Introduce the notation

φ1(ζ ) = 8
n∑

i=1

φ2i1(|ζ |)+ δ211φ211(|ζ |), (31)

then, substitute (28), (29), (30) and (31) into (27), one
can get

V̇1 ≤ −
(
1

2
− ε

)
eT P−2e + byϑ1 + 8

n∑
i=1

φ2i2(|y|)

+ δ212φ212(|y|)+ ε̄ y2 + λ1(t)y2 + 2y2

+ 1

2
b2z21 + φ1(ζ )+ 4h2(t). (32)

As the suggestion of thework [10], we design the virtual
control law

ϑ1 = N (s)β(y)y, ṡ = κβ(y)y2 (33)

where the Nussbaum function N (·) is taken as N (s) =
s2 cos(0.5πs), κ > 0 is a design constant gain, and
β(·) ≥ 1 is a positive smooth function satisfying

β(y)y2

≥ max
{
y2, φ2i2(|y|), ψi1(|y|), γ (|y|)

∣∣1 ≤ i ≤ n
}
.

(34)

Let r = 8n + δ212 + ε̄ + λ̄+ 3, and the following holds
true due to (33) and (34):

8
n∑

i=1

φ2i2(|y|)+ δ212φ212(|y|)+ ε̄ y2 + λ1(t)y2

+2y2 ≤ rβ(y)y2. (35)
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A direct substitution (35) into (32), one can get

V̇1 ≤ −(1
2

− ε)eT P−2e + bN (s)β(y)y2 + rβ(y)y2

+ 1

2
b2z21 + φ1(ζ )+ 4h2(t). (36)

Remark 4 Thanks to the local conditions in (4) (6)
and (7), the smooth positive function β(·) can be found
to meet (34). For example, with the help of γ (s) =
O(s2), there exists a nonnegative function γ̂ (·), such
that γ (s) ≤ γ̂ (s)s2. Consequently, it only suffices to
satisfy β(s) ≥ γ̂ (s) in (34). Additionally, a requisite
assumption on the bounding functions ofφi2(|y|) is that
φi2’s are vanishing, i.e., φi2(0) = 0(i = 1, . . . , n).

Step 2: Considering the appearance of some
unknown constant gains in the following control
design, we define a new unknown constant � in the
form of

� = max
{ |b|
2
,
b2

4
, δ∗ + ε̄}, (37)

and adopt �̂(·) to supply a online estimate of � with
the estimate error �̃(·) = �− �̂(·).

Then, we choose the Lyapunov function

V2 = V1 + 1

2
z21 + 1

2ϒ
�̃2, ϒ > 0. (38)

Together with (25) (36) and ż1 = ˙̂ξ2 − ϑ̇1, it can be
checked that

V̇2 ≤ −
(
1

2
− ε

)
eT P−2e

+ z1
(
ϑ2 + λ2(t )̂ξ2 − CT

2 PC ξ̂1 − ∂ϑ1

∂y
λ1(t)x1 − ∂ϑ1

∂s
ṡ
)

+ bN (s)β(y)y2 + rβ(y)y2

+ z1z2 − 1

ϒ
�̃ ˙̂�+ φ1(ζ )+ 4h2(t)

− z1
∂ϑ1

∂y

(
b(z1 + ϑ1)+ bδ∗e2 + g1(ζ, y)

)
. (39)

By completing the squares, the following calculations
hold

− b
∂ϑ1

∂y
z21 ≤ z21 + b2

4

( ∂ϑ1
∂y

)2
z21, − b

∂ϑ1

∂y
z1ϑ1 ≤ β(y)y2

+ b2

4
z21β(y)

( ∂ϑ1
∂y

N (s)
)2
, (40)

− ∂ϑ1

∂y
z1bδ

∗e2 ≤ εeT P−2e + 1

4ε
b2δ∗2 p2max(

∂ϑ1

∂y
z1)

2, (41)

− ∂ϑ1

∂y
z1g1(ζ, y) ≤ δ∗

( ∂ϑ1
∂y

)2
z21 + g21(ζ, y)

4δ∗
,
g21(ζ, y)

4δ∗

≤ 1

2
φ211(|ζ |)+

1

2
φ212(|y|). (42)

Take the notations ϕ1(t, s) = 2
(
∂ϑ1
∂y

)2 + β(y)
(
∂ϑ1
∂y

N (s)
)2
, and in view of 1

2φ
2
12(|y|) ≤ 1

2β(y)y
2, we have

− b
∂ϑ1

∂y
z1(z1 + ϑ1)− ∂ϑ1

∂y
z1
(
bδ∗e2 + g1(ζ, y)

)

≤ εeT P−2e +�ϕ1(y, s)z21
+ 1

2
φ211(|ζ |)+

3

2
β(y)y2. (43)

Combining (39) and (43), we have

V̇2 ≤ bN (s)β(y)y2

+ z1
(
ϑ2 + ρ1z1 + λ2(t )̂ξ2 − CT

2 PC ξ̂1

− ∂ϑ1

∂s
ṡ − ∂ϑ1

∂y
λ1(t)x1 + �̂ϕ1(·)z1

)

−
(
1

2
− 2ε

)
eT P−2e − (ρ1 − 1) z21

+
(
r + 3

2

)
β(y)y2 + 1

ϒ
�̃
(
ϒϕ1(y, s)z

2
1 − ˙̂�

)

+ z1z2 + φ1(ζ )+ 1

2
φ211(|ζ |)+ 4h2(t). (44)

Denote τ1 = ϒϕ1(y, s)z21, φ2(ζ ) = φ1(ζ )+ 1
2φ

2
11(|ζ |),

�N ,2(t, e, z1) = ( 12−2ε)eT P−2e+(ρ1−1)z21,�P2(t,

y, ξ̂[2], s, �̂) = λ2(t )̂ξ2 −CT
2 PC ξ̂1 − ∂ϑ1

∂s ṡ− ∂ϑ1
∂y λ1(t)

x1 + �̂ϕ1(y, s)z1, and we choose the virtual control

ϑ2 = −ρ1z1 −�P2(t, y, ξ̂[2], s, �̂), ρ1 > 0, (45)

then, a direct substitution into (44) yields

V̇2 ≤ −�N ,2(t, e, z1)+ bN (s)β(y)y2

+ (
r + 3

2

)
β(y)y2 + z1z2 + φ2(ζ )

+ 1

ϒ
�̃
(
τ1 − ˙̂�) + 4h2(t). (46)

Step i (3 ≤ i ≤ n): Assume that, in Step i − 1,
we have designed the virtual control ϑ j (·) and tuning
function τ j−1, such that, with z j = ξ̂ j+1−ϑ j (3 ≤ j ≤
i − 1), the time derivative of the function

Vi−1 = Ve + 1

2
y2 +

i−2∑
j=1

1

2
z2j + 1

2ϒ
�̃2 (47)

satisfies

V̇i−1 ≤ −�N ,i−1(t, e, z[i−2])+ bN (s)β(y)y2

+ri−1β(y)y
2
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+ 1

ϒ

(
�̃+ϒ

i−2∑
j=2

∂ϑ j

∂�̂
z j
)(
τi−2 − ˙̂�)

+ zi−2zi−1 + φi−1(ζ )+ 4h2(t) (48)

with ri = r + 3
2 (i − 1)(i = 1, . . . , n) and

�Ni (t, e, z[i−1]) =
(
1

2
− iε

)
eT P−2e

+ (
ρ1 − (i − 1)

)
z21

+
i−1∑
j=2

ρ j z
2
j , ρ j > 0, i = 3, . . . , n.

(49)

In the sequel, one shows that a similar property of
inequality (48) holds in Step i. To this end, we con-
sider the function

Vi = Vi−1 + 1

2
z2i−1. (50)

Note that the variable Vi satisfies

V̇i ≤ zi−1

(
zi + ϑi + λi (t )̂ξi − CT

i PCCT ξ̂

−∂ϑi−1

∂y

(
gξ̂2 + gδ∗e2 + λ1(t)x1 + g1(ζ, y)

)

−∂ϑi−1

∂t
− ∂ϑi−1

∂s
ṡ − ∂ϑi−1

∂�̂

˙̂�−
i−1∑
j=1

∂ϑi−1

∂ξ̂ j

˙̂ξ j
)

+ bN (s)β(y)y2 + ri−1β(y)y
2 + φi−1(ζ )

−�N ,i−1(t, e, z[i−2])+ zi−2zi−1

+ 1

ϒ

(
�̃+ ϒ

i−2∑
j=2

∂ϑ j

∂�̂
z j
)(
τi−2 − ˙̂�) + 4h2(t).

(51)

As in Step 2, using the completion of the squares, we
have

− b
∂ϑi−1

∂y
zi−1(z1 + ϑ1)

≤ z21 + β(y)y2 +�
((∂ϑi−1

∂y

)2

+β(y)
(∂ϑi−1

∂y
N (s)

)2)
z2i−1, (52)

−∂ϑi−1

∂y
zi−1

(
bδ∗e2 + g1(ζ, y)

)

≤ εeT P−2e

+ 1

4ε
b2δ∗2 p2max

(∂ϑi−1

∂y

)2
z2i−1 + δ∗

(∂ϑi−1

∂y

)2
z2i−1

+ g21(ζ, y)

4δ∗
, (53)

this together with (42) and 1
2φ

2
12(|y|) ≤ 1

2β(y)y
2, then,

the following holds

−∂ϑi−1

∂y
zi−1

(
bδ∗e2 + g1(ζ, y)

)
≤ εeT P−2e

+�
(∂ϑi−1

∂y

)2
z2i−1 + 1

2
φ211(|ζ |)+

1

2
β(y)y2.

(54)

Let

ϕi
(
t, y, ξ̂[i], s, �̂

) = 2

(
∂ϑi

∂y

)2

+ β(y)
(∂ϑi
∂y

N (s)
)2
,

i = 2, . . . , n − 1, (55)

and in accordance with (52–54), we further obtain

− b
∂ϑi−1

∂y
zi−1(z1 + ϑ1)− ∂ϑi−1

∂y
zi−1

(
bδ∗e2 + g1(ζ, y)

)

≤ εeT P−2e + z21 + 3

2
β(y)y2

+�ϕi−1
(
t, y, ξ̂[i−1], s, �̂

)
z2i−1 + 1

2
φ211(|ζ |). (56)

Let

τi−1 = ϒϕi−1(t, y, ξ̂[i−1], s, �̂)z2i−1, (57)

φi (ζ ) = φi−1(ζ )+ 1

2
φ211(|ζ |), (58)

�Pi
(
t, y, ξ̂[i], s, �̂

)

= zi−2 − CT
i PCCT ξ̂ + λi (t )̂ξi − ∂ϑi−1

∂s
ṡ

−
i−1∑
j=1

∂ϑi−1

∂ξ̂ j

˙̂ξ j − ∂ϑi−1

∂y
λ1(t)x1 − ∂ϑi−1

∂t

+ 2�̂ϕi−1(t, y, ξ̂[i−1], s, �̂)zi−1

− ∂ϑi−1

∂�̂
τi−2 − 2ϒ

i−1∑
j=2

∂ϑ j

∂�̂
z jϕi−1(y, s)zi−1,

(59)

substituting (57–59) into (51), and we obtain

V̇i ≤ −�N ,i (e, z[i−1])
+ bN (s)β(y)y2 + riβ(y)y

2

+ zi−1

(
ϑi + ρi−1zi−1 +�Pi (t, y, ξ̂[i], s, �̂)

)
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+ zi−1zi + φi (ζ )+ 1

ϒ

(
�̃+ ϒ

i−1∑
j=2

∂ϑ j

∂�̂
z j
)

×(
τi−1 − ˙̂�) + 4h2(t). (60)

Take the virtual control input

ϑi = −ρi−1zi−1 −�Pi (t, y, ξ̂[i], s, �̂), (61)

which makes (60) further satisfy

V̇i ≤ −�N ,i (e, z[i−1])+ bN (s)β(y)y2 + riβ(y)y
2

+ 1

ϒ

(
�̃+ϒ

i−1∑
j=2

∂ϑ j

∂�̂
z j
)(
τi−1 − ˙̂�)

+ zi−1zi + φi (ζ )+ 4h2(t). (62)

Step n: Because of the estimate ξ̂n+1 for the exter-
nal disturbance d(t), this step is crucial and slightly
different from the Step n in traditional Backstepping
design procedure. For notational consistence, zn , ϑn
and the control u can be written in the form of zn =
0, u + ξ̂n+1 = ϑn , and z = (z1, . . . , zn). To obtain the
real control input u, we consider the function

Vn = Vn−1 + 1

2
z2n−1. (63)

After some similar calculations such as (52–54) and
(42) with i = n in Step i, the time derivative of (63)
has the following form

V̇n ≤ −�Nn(e, z)

+ zn−1

(
u + ρn−1zn−1 + ξ̂n+1 +�Pn(t, y, ξ̂ , s, �̂)

)

+ bN (s)β(y)y2

+ rnβ(y)y
2 + 1

ϒ

(
�̃+ϒ

n−1∑
j=2

∂ϑ j

∂�̂
z j
)(
τn−1 − ˙̂�)

+φn(ζ )+ 4h2(t). (64)

Take the real control input

u = −ξ̂n+1 + ϑn
= −ξ̂n+1 − ρn−1zn−1 −�Pn(t, y, ξ̂ , s, �̂), (65)

and the adaptive law

˙̂� = τn−1 =
n−1∑
i=1

ϕi (t, y, ξ̂[i], s, �̂)z2i , (66)

then, a direct substitution yields that

V̇n ≤ −�Nn(e, z)+ bN (s)β(y)y2 + rnβ(y)y
2

+φn(ζ )+ 4h2(t). (67)

Choose the positive constant χ = max
{
n−1
2 +δ211, 1

}
,

and one can get

φn(ζ ) = n − 1

2
φ211(|ζ |)+

n∑
i=1

φ2i1(|ζ |)

+ δ211φ211(|ζ |) ≤ χ
n∑

i=1

φ2i1(|ζ |). (68)

As a result, it holds

V̇n ≤ −�Nn(e, z)+ bN (s)β(y)y2 + rnβ(y)y
2

+χ
n∑

i=1

φ2i1(|ζ |)+ 4h2(t). (69)

At this stage, the design procedure of the output
feedback adaptive control has been completed.

2.3 Main results

Now we present the main theorem of this paper.

Theorem 1 Suppose that Assumptions1–4hold for the
controlled system (1). Then, using the observer (17)and
(18), we can find a smooth adaptive control scheme,
such that the global robust regulation control problem
is solvable for the cascade nonlinear system (1) sub-
ject to the external disturbance. Moreover, we have the
following statements:

(a) the solutions of the closed-loop system are globally
uniformly bounded;

(b) the asymptotic convergence of system state is
achieved, that is,

lim
t→∞

(|ζ(t)| + |x(t)|) = 0; (70)

(c) the control input is bounded, and moreover,

lim
t→∞ u(t) = 0 if lim

t→∞ d(t) = 0. (71)

Proof It is easy to see that the right-hand sides of
closed-loop system are locally Lipschitz in a domain
of initial conditions and hence the system has a unique
solution

(
y(t), z(t), ξ̂ (t), s(t), �̂(t)

)
on a small inter-

val [0, t f ). Assume, without loss of generality, [0, t f )
be itsmaximal interval of the existence and uniqueness.
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We will show that t f = ∞. To begin with, for the term
of �Nn(e, z) defined in (49) with i = n, choose the
suitable constants satisfying

ε <
1

2n
, ρ1 > n − 1, ρi > 0, i = 2, . . . , n − 1,

(72)

which guarantees

�Nn(e, z) =
(
1

2
− nε

)
eT P−2e +

(
ρ1 − (n − 1)

)
z21

+
n−1∑
j=2

ρ j z
2
j > 0. (73)

Furthermore, it holds

V̇n ≤ bN (s)β(y)y2 + rnβ(y)y
2 + χ

n∑
i=1

φ2i1(|ζ |)

+ 4h2(t). (74)

Considering ṡ = κβ(y)y2 in (33), (74) turns into

V̇n ≤ 1

κ

(
bN (s)+rn

)
ṡ +χ

n∑
i=1

φ2i1(|ζ |)+ 4h2(t). (75)

From (10) and (34), the following calculations hold true
∫ t

0
φ2i1(|ζ(s)|)ds

≤ ψ̄i0(|ζ(0)|)+
∫ t

0
ψi1(|y(s)|)ds

≤ ψ̄i0(|ζ(0)|)+ n · 1
κ

∫ t

0
ṡ(τ )dτ. (76)

Then, integrate both sides of (75), and one can get

Vn(t) ≤ C0 + 1

κ

∫ t

0

(
bN (s)

+rn + nχ
)
ṡ(τ )dτ + 4

∫ t

0
h2(τ )dτ, ∀ t > 0 (77)

with constants C0 = Vn(0) + χ
n∑

i=1
ψ̄i0(|ζ(0)|).

According to Assumption 4, one can get

h(t) = 1

b
ḋ(t) ∈ L2, (78)

and then, the term 4
∫ t
0 h

2(τ )dτ in the right-hand side
satisfies

4
∫ t

0
h2(τ )dτ < +∞, ∀ t > 0. (79)

Using the argument of contradiction, it can be con-
cluded that s(t), Vn(y, ε, z, �̃) and then

(
y(t), e(t),

z(t), �̃(t)
)
must be bounded over [0, t f ). Also, �̂(t)

is bounded on [0, t f ). The boundedness of y(t) means
that z1(t) is bounded. This together with the bound-
edness of e(hence e1) ensures that ξ̂1(t) is bounded.
Noting the boundedness of s(t) and y(t) on [0, t f ),
we know that ϑ1(·) is bounded on [0, t f ). Due to
z1 = ξ̂2 − ϑ1(·), it follows that ξ̂2(t) is bounded. Sim-
ilarly, ϑi−1(·), ξ̂i (t)(3 ≤ i ≤ n) are also bounded on
[0, t f ). In particular, considering en+1 is bounded with
en+1 = 1

δ∗ εn+1 = 1
δ∗ (zn+1 − ξ̂n+1), and zn+1 = 1

b d(t)
is bounded according to Assumption 4, we can con-
clude that ξ̂n+1 ∈ L∞. Considering s(t) is bounded
and

∫ t
0 γ

(
y(s)

)
ds <

∫ t
0 ṡ(s)ds = (

s(t)− s(0)
)
for all

t > 0, we then obtain
∫ t
0 γ

(
y(s)

)
ds < ∞,∀ t > 0. It

thus follows, using Prop.6 in [3], that ζ(t) is bounded
on [0, t f ). So far all the closed-loop system signals
are bounded on [0, t f ). This shows that the finite time
escape will not happen. Therefore, it is natural that t f
can be maximized to+∞. This completes the property
(a).

Since all signals in closed-loop are bounded over
[0,+∞), from (69) and (77), one can obtain

ei ∈ L2(i = 1, . . . , n + 1),

zi ∈ L2(i = 1, . . . , n − 1). (80)

The property of ėi ∈ L∞ and żi ∈ L∞ implies that both
ei (t) and zi (t) are uniformly continuous. By Barbalat’s
Lemma, we have

lim
t→∞ ei (t) = 0(i = 1, . . . , n + 1),

lim
t→∞ zi (t) = 0(i = 1, . . . , n − 1). (81)

The fact of y(t), ẏ(t) ∈ L∞ implies that κβ(y)y2 is
uniformly continuous. Furthermore, s(t) is monotoni-
cally nondecreasing over [0,+∞) because of ṡ(t) ≥ 0,
which together with s(t) ∈ L∞ results κβ(y)y2 is
integrable over [0,+∞). Considering the choice of
β(·) ≥ 1 and κ > 0, one can derive that lim

t→∞ y(t) = 0.

Hence, z1(t) and ϑ1(·) go to zero as t → ∞. In
view of e1 = 1

δ∗ (ξ1 − ξ̂1), we have lim
t→∞ ξ̂1(t) = 0.

In a recursive manner, ϑi (·) and ξ̂i (t)(i = 1, . . . , n)
asymptotically converge to zero. Particularly, with ei =
1
δ∗ (ξi − ξ̂i ), it follows that ξi (t) → 0 as t → ∞,
which leads to lim

t→∞ xi (t) = 0(i = 1, . . . , n). Since
∫ t
0 γ

(
y(s)

)
ds < ∞, again using Prop.6 in [3], we

derive that lim
t→∞ ζ(t) = 0. This shows the property (b).
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Next, we are ready to prove the last part (c) in The-
orem 1. According to the aforementioned calculations,
we have established ξ̂n+1 ∈ L∞ and limt→∞ ϑn(t) =
0. Considering the control law defined by

u = −ξ̂n+1 + ϑn, (82)

it is clear that u ∈ L∞. Additionally, considering

en+1 = ξn+1 − ξ̂n+1,

lim
t→∞ en+1(t) = 0, zn+1 = 1

b
d(t) ∈ L∞, (83)

one can conclude

lim
t→∞ ξ̂n+1(t) = 0 if

lim
t→∞ d(t) = 0, (84)

which in turn shows that

lim
t→∞ u(t) = 0 if lim

t→∞ d(t) = 0. (85)

This ends the proof. 
�

3 Numerical results and discussion

In this section, the fan speed control system subject
to external disturbance is used a practical example to
illustrate our output feedback designmethodology. It is
shown that even disturbed by some external nonvanish-
ing disturbances in the armature voltage, to realize the
asymptotic regulation control of any desired constant
reference signal for the fan speed, the proposed speed
controller does the job.

3.1 Model analysis

From [29], the dynamics of a fan driven by a DCmotor
is described by

J1υ̇ = k1 I − τL − τD(υ)
J2 İ = u0 − k2υ − RI + d(t)

ȳ = υ , (86)

where υ is the fan speed, I is the armature current, τL is
an uncertain constant load torque, τD(υ) is an uncertain
drag torque, u0 is the armature voltage which is con-
sidered as the input, J1, k1, k2, R are known positive
constants, and the inductance J2 may be an unknown
constant. The function d(t) represents the uncertain
external disturbance. The control task is the set-point

regulation control of the fan speed υ to the constant
value υr (= ȳr ), irrespective of the unknown τL , τD(υ)
and the disturbance d(t).

Assumption 5 For the drag torque τD(υ) and each
υr ∈ R, there exist an unknown constant σ > 0 and a
known smooth function ω(·) such that
|τD(υ)− τD(υr )| ≤ σ · ω(|υ − υr |),∀ υ ∈ R. (87)

In order to realize the control objective, to be first, we
introduce the change of coordinates [10]

χ1 = υ, χ2 = k1
J1

I,

ū = k1
J1
(u0 − k2υ − RI )+ k1

J1
d(t) , (88)

and let η(υ) = − 1
J1
(τL + τD(υ)), b = 1

J2
, then we

have

χ̇1 = χ2 + η(ȳ)
χ̇2 = bū

ȳ = χ1. (89)

For any L > 0, define the auxiliary variables

�̇ = −L�− L ,  ̇ = −L  + ū. (90)

Let η∗ = η(ȳr ), where ȳr = υr is some desired setting-
point constant speed, and introduce the new coordinate
variables (ζ, x1, x2)

x1 = χ1 − ȳr = υ − υr ,
ζ = χ2 − Lx1 − b −�η∗,
x2 = b + (�+ 1)η∗. (91)

Then, in view of x1 = ȳ − ȳr , we can newly define
system output y = x1 and u = k1

J1
(u0 − k2υ − RI ). It

can be verified that

ζ̇ = −Lζ − L2x1 − L(η(y + υr )− η(υr ))
ẋ1 = x2 + Lx1 + ζ + η(y + υr )− η(υr )
ẋ2 = bu − Lx2 + b

k1
J1
d(t)

y = x1. (92)

Clearly, regarded ζ -subsystem as the cascaded dynam-
ics, the system (92) falls into the form of (1) with
λ1(t) = L , λ2(t) = −L , g1(ζ, y) = ζ + η(y +
υr ) − η(υr ), g2(ζ, y) = 0, and the inductance coef-
ficient J2 (actually 1/J2) serving as the unknown high-
frequency gain. Moreover, like the calculations in [12],
the ζ dynamics is ISS (consequently iISS) with ζ as the
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Fig. 1 The system states of
the closed-loop system
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state and x1 as the input, togetherwith an ISS-Lyapunov
function U0(ζ ) = ζ 2/2L satisfying

U̇0(ζ ) ≤ −1

2
ζ 2 + L2x21 + σ 2

J 21
ω2(|x1|). (93)

This fulfills Assumption 1. From Assumption 5, the
following calculations hold true

|g1(ζ, y)| ≤ |ζ | + |η(y + υr )− η(υr )|
≤ |ζ | + σ

J1
ω(|y|). (94)

Hence, it is evident that Assumption 2 holds with δ11 =
1, δ12 = σ/J1, φ11(|ζ |) = |ζ | and φ12(|y|) = ω(|y|).
In simulation, we choose

d(t) = θ · arctan t, ḋ(t) = θ

1 + t2
, θ ∈ R. (95)

This shows d(t) and ḋ(t) meets Assumption 4. The
Assumption 3 is clear since λ1(t) = L , λ2(t) = −L
with the constant L > 0.

3.2 The fan speed regulator design

Similar to the proposed control method in Sect. 3,
define

ξ1 = 1

b
x1 = J2x1,

ξ2 = 1

b
x2 = J2x2,

ξ3 = k1
J1
d(t), h(t) = k1

J1
Pd(t), (96)

and we have the following new state equations

ξ̇1 = ξ2 + Lξ1 + J2ζ + J2
(
η(y + υr )− η(υr )

)

ξ̇2 = u − Lξ2 + ξ3
ξ̇3 = h(t)

y = x1(= υ − υr ). (97)

For simulation purposes, we set the bounding function
ω(s) = " s with " > 0 in Assumption 5, and hence,
according to (93) and (94), the gain function β(·) can
be picked as some constant β > 0. Then, using the
proposed control algorithm in Sect. 3, we design the
control law

u = −ρ1z1 + L ξ̂2 + p12(t )̂ξ1 − ξ̂3
+∂ϑ1
∂y

Lx1 + ∂ϑ1

∂s
ṡ − �̂ϕ1(y, s)z1, (98)

and the adaption law

˙̂� = ϒϕ1(y, s)z
2
1 (99)
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Fig. 2 The state estimates,
errors and control input of
the closed-loop system
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with ϕ1(y, s) = 2β2N 2(s)+β3N 4(s), ϑ1 = βN (s)y,
ṡ = κβy2.

3.3 Simulation results

The parameter values in (86) are set to J1 = J2 =
R = k1 = k2 = 1, σ = 1, L = 1, ρ1 = 1, ϒ = 1,
κ = 1, θ = 1, and the initial conditions: ζ(0) = 1,
x(0) = (0, 0), s(0) = 0, ξ̂ (0) = (0, 0, 0.5), �̂(0) = 0.
The external disturbance d(t) is chosen as in (95). From
the simulation results shown in Figs. 1, 2 and 3, it can
be seen that the good set-point regulation performance
can be achieved by use of the proposedmethodology in
the paper. In this way, the regulation of the fan speed υ
to a desired value υr by output feedback is solved, even
under the external disturbance in the armature voltage.

3.4 Discussion

It is noted that when the armature current I is not mea-
sured, the control signal

u0 = J1
k1

u + k2υ + RI (100)

is not implemented. Here we construct a current
observer for the unmeasured armature current I in the
form of

J2
˙̂I = u0 − k2υ − R Î . (101)

Let the observer error Ĩ = I − Î , then the error dynam-
ics is

J2
˙̃I = −R Ĩ + d(t). (102)

Form the above analysis, it can be proved that d(t) tends
to zero so does Ĩ .

Remark 5 In consideration of the armature voltage
u0 and the armature current I in (86), we can calcu-
late the power of P = u0 I with the help of our pro-
posed controller (98). It can be shown that the power
consumption is dependent on the target speed sig-
nal to be tracked. The larger the fan speed, the more
power it consumes. For example, the power consump-
tion increases alongwith the set-point speed value from
υr = 1 to υr = 3. Observe that the numerical results
shown in Fig.3 are consistent with the analytical dis-
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Fig. 3 The power
consumption of the
closed-loop system
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cussion. More details on this topic can be found in
[32].

4 Conclusion

In this paper, the global robust regulation problem is
solved for a class of disturbed nonlinear uncertain sys-
tems in cascade. Using the ideas of the Nussbaum-
type gain and the disturbance as a generalized state,
we design a dynamic ESO based on a Riccati differ-
ential equation to handle the unknown control coef-
ficients and external disturbances. Moreover, in this
setting, it is shown that the additive disturbance does
not require to be square integrable, which broadens
the family of admissible noise signals. As a contin-
uing research of our previous results, the proposed
control scheme is verified by the fan speed control
system with some external disturbance in the arma-
ture voltage. It is of interest to investigate the global
robust regulation control in the presence of nonvan-
ishing nonlinear uncertainties in the future research
works.

Acknowledgements This work was supported by the National
Natural Science Foundation of China under Grants 61673243,
61304008 and 61520106009.

Appendix: Proof of Proposition 1

From
˙︷ ︸︸ ︷

P−1(t) = −P−1(t)Ṗ(t)P−1(t), by virtue of
(18) and (22), we can show that

V̇e = −eT P−2(t)e − e21 + 2e1x1
δ∗b

+2eT P−1(t)Cn+1h(t)

δ∗
+ 2eT P−1(t)B·G(ζ, y)

δ∗b
.

(103)

Given the choice of δ∗, by completing the squares, we
have
2e1x1
δ∗b

≤ e21 + y2, (104)

2eT P−1(t)B·G(ζ, y)
δ∗b

≤ 1

4
eT P−2(t)e

+ 8
n∑

i=1

(
φ2i1(|ζ |)+ φ2i2(|y|)

)
, (105)

2eT P−1(t)Cn+1h(t)

δ∗
≤ 1

4
eT P−2(t)e + 4h2(t).

(106)

A direct substitution leads to (24).
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