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Abstract In this paper, a direct adaptive fuzzy con-
troller with compensation signal is presented to control
and stabilize a class of fractional order systems with
unknown nonlinearities. Based on a Lyapunov function
candidate the global Mittag–Leffler stability is proved
and a new fractional order adaptation law is derived.
The adaptation law adjusts free parameters of the fuzzy
controller and bounds them by utilizing a novel frac-
tional order projection algorithm. Furthermore, due to
the use of compensation term, the proposed approach
does not demand suitable membership functions in the
fuzzy system. In addition, the stability of the closed-
loop system is guaranteed by utilizing a supervisory
controller. Numerical simulations show the validity and
effectiveness of the introduced scheme for various frac-
tional order nonlinear models that perturbed by distur-
bance and uncertainty.
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1 Introduction

The fractional calculus that was started by the ideas of
Leibniz in 1695 represents the generalization of stan-
dard differential calculus up to non-integer orders [1,2].
This field remained ignored by applied sciences dur-
ing several centuries, due to the lack of application
backgrounds, insufficient geometrical interpretation,
and many conflicting definitions of fractional means.
However, in the last years, because of their increased
flexibility (with respect to integer order equations)
which allows a more precise modeling of complex sys-
tems, the fractional order equations have progressively
attracted attention and play a considerable role in var-
ious areas, such as: mathematics, physics, electronics,
chemistry, mechanics, and control theory [3–7].

Furthermore, fractional order controllers (FOCs)
have so far been implemented to modify the robust-
ness and the performance of the control applications.
In 1996, Oustaloup proposed the idea of fractional
calculus in control of dynamic systems [8] where he
demonstrated the superior performance of the CRONE
(French abbreviation for Commande Robuste d’Ordre
NonEntier) method over the classical PID controller.
Later, Podlubny introduced a fractional order PID con-
troller and demonstrated the better efficiency of this
type of controllers, in comparison with the integer PID
controllers, when used to control of fractional order
systems (FOSs) [9]. The control of FOSs by FOCs
has begun to receive a lot of consideration recently
[10–14] and different fractional order stability theo-
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rems have been presented to provide better using of
the FOCs [15–20]. Newly, due to the broad applica-
tions, many different control methods have been uti-
lized to synchronize the fractional order nonlinear sys-
tems such as chaotic systems [21–27]. In [28] a frac-
tional order adaptive controller (FOAC) has been pro-
posed to synchronize two chaotic systems. FOAC uses
a gradient-based adaptation mechanism to adjust its
coefficients and parameters. Aghababa has presented a
newhierarchical terminal slidingmode control (HTSC)
scheme for finite time stabilization of non-autonomous
dynamic FOSs [29].

Inadequacy and insufficiency of information and the
uncertainty of environment demand the use of intel-
ligent decision systems for control of ill-defined and
complex plants. Fuzzy logic is one of the powerful
tools for data processing and is generally applicable
to systems that are mathematically poorly understood
[14,30,31]. Fuzzy control has also found extensive
application in a broad variety of industrial systems due
to a model-free approach and being capable of approx-
imating any continuous unknown nonlinear functions
to arbitrary accuracy [30,32]. In addition, the adap-
tive fuzzy controller (an important class of fuzzy con-
trol) has been developed to estimate the plant structure
online and their stability is guaranteed by the Lyapunov
theorems [33,37].However, it is proved that if themem-
bership functions are not correctly determined, either
the function approximation ability may not be good
enough or the learning inefficient owing to the correla-
tions among rules [34,38].

In recent years, adaptive fuzzy methods have been
presented to control fractional (or integer) order sys-
tems. Efe has firstly proposed a fractional adaptive
fuzzy sliding mode controller that utilizes fractional
order integration in the parameter tuning stage to con-
trol a robot arm with integer order equations [39]. An
indirect adaptive fuzzy sliding mode system has been
introduced to synchronize uncertain fractional order
chaotic systems [40] and time delayed ones [41]. In
[42], an adaptive fuzzy controller with an H ∞ track-
ing design technique has been presented to control a
class of fractional order nonlinear systems. However,
in [40–42], the fractional order calculations have care-
lessly treated as ordinary ones. Hence the main results
of these works have some fallacies [27,43]. In [44] a
hybrid adaptive fuzzy sliding mode control has been
used to achieve tracking performance for uncertain
fractional order nonlinear systems. Though in that, the

fractional order calculus is used inappropriately and the
corollary of integer order Barbalat’s lemma is applied
erroneously in fractional order computations. Ullah et
al. have introduced a fractional order adaptive fuzzy
sliding mode scheme to control uncertain integer order
dynamic systems [45,46]. Although their results are
noticeable, there is no guarantee that the error will be
successfully converged to zero.

Motivated by the above discussion and inspired by
the work of Tang et al. [34], we propose a novel direct
adaptive fuzzy system with compensation control for a
certain class of fractional order nonlinear systems with
unknown nonlinearities. A fractional order adaptation
law is employed to update the free parameters in the
consequence part of the fuzzy system. By using the
compensation control signal, the fractional order non-
linear plant, which is little known, can be controlled
effectively no matter whether the membership func-
tions of the adaptive fuzzy controller are suitable or not.
In this work, using fractional order Lyapunov’s direct
method andBrabalat’s lemma, the boundness of all sig-
nals in a closed-loop system and some convergence
properties of the tracking error are analytically proven
for an uncertain fractional order nonlinear system. In
addition, the free parameters are uniformly bounded by
applying a projection algorithm in an adaptation law. In
a new application, a supervisory controller accompa-
nies the compensation control signal and the adaptive
fuzzy controller to guarantee the generalized Mittag–
Leffler stability of the closed-loop system. It should be
noted that Mittag–Leffler stability implies Lyapunov
asymptotic stability. If the nonlinear system tends to
be unstable, especially in the transient time, the super-
visory controller will be activated to cooperate with
the controller for stabilizing the closed-loop system.
Moreover, if the adaptive fuzzy and the compensatory
controller operate well, the supervisory controller will
be deactivated. Finally, some illustrative Examples and
simulations are presented to demonstrate the validity
of proposed control scheme.

This paper is organized as follows. After this intro-
duction section, basic definitions of fractional order cal-
culus are described in Sect. 2. A brief explanation of
the fuzzy systems is presented in Sect. 3. Section 4
involves system description and problem formulation.
The new direct adaptive fuzzy controller with compen-
sation and supervisory control is designed in Sect. 5.
Section 6 comprises simulation Examples to demon-
strate the performance of the proposedmethod. Finally,
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the conclusions of the advocated design procedure are
listed in Sect. 7.

2 Brief introduction to fractional calculus

In fractional calculus, the traditional definitions of the
integral and derivative of a function are generalized
from integer orders to real or complex orders. In this
section, some basic notations and properties of frac-
tional calculus are summarized. Afterward, a numer-
ical algorithm for solving fractional order differential
equations is presented.

Definition 1 [27]: The fractional order integral 0 I
q
t

with the order q ∈ R+ of function x (t) is computed
by:

t0 I
q
t x(t) = 1

�(q)

∫ t

t0

x(τ )

(t − τ)1−q
dτ (1)

where t0 is an initial time, t > t0 and � (·) is Gamma
function.

Definition 2 [2]: TheRiemann–Liouville (RL) deriva-
tivewith the order q ∈ R

+ of function x(t)with respect
to t is calculated as below:

RL
t0 Dq

t x (t) = 1

� (m − q)

dm

dtm

∫ t

t0

x (τ )

(t − τ)q+1−m dτ

(2)

where m − 1 < q ≤ m, t > t0 and m ∈ N.

Definition 3 [2]: The Caputo (C) derivative with the
order q ∈ R

+ of function x (t) with respect to t is
defined as (3). Where m − 1 < q ≤ m, t > t0 and
m ∈ N.

C
t0D

q
t x (t) = 1

� (m − q)

∫ t

t0

x (m) (τ )

(t − τ)q+1−m dτ (3)

Definition 4 [2]: The original definition of the
Grunwald–Letnikov (GL) fractional derivative is given
by:

GL
t0 Dq

t x (t)= lim
h→0

Nh=t−t0

1

hq

N∑
j=0

(−1) j
(
q
j

)
x (t− jh) (4)

where h is the sample time.

Lemma 1 [13]: If x (t) is continuous and ẋ (t) is inte-
grable in the interval [t0, t], then for every q(0 < q <

1) both RL and GL derivatives exist and can be written
as below

GL
t0 Dq

t x (t) = RL
t0 Dq

t x (t) (5)

Lemma 2 [13]: For 0 < q < 1, the relationship
between Caputo and RL derivative is as

C
t0D

q
t x (t) = RL

t0 Dq
t x (t) − x (t0)

� (1 − q)
(t − t0)

−q (6)

In this study, Caputo definition is considered to
describe FOSs due to its well-understood physical
interpretation, wide engineering applications, and
many stability theorems. The relationship between
Caputo derivative and fractional order integral in 0 <

q < 1 is expressed as follow [2]:

0 I
q
t
C
0 D

q
t V = V (t) − V (0) (7)

Lemma 3 [13]: If x (t) ∈ C1 [0, T ] (the first deriva-
tive of x (t) is continuous for T > 0) and q1 + q2 ≤ 1
then

C
0 D

q1
t

C
0 D

q2
t x (t) = C

0 D
q2
t

C
0 D

q1
t x (t) = C

0 D
q1+q2
t x (t)

(8)

where q1, q2 ∈ R
+.

In order to simplicity, the notations I q x (t) and Dqx (t)
(or x (q) (t)) denote fractional order integral (0 Itq x (t))
and Caputo derivative (C0 D

q
t x (t)), respectively. Fur-

thermore, throughout this paper, the lower limit of the
fractional integral and derivative is assumed zero.

Theorem 1 [2]: Let a linear time invariant fractional
order system be given by

Dqx = Ax, x (0) = x0 (9)

where 0 < q ≤ 1, x ∈ R
n and A ∈ R

n×n . The system
has asymptotical stability if and only if |arg (λi )| >

qπ/2 is satisfied for all eigenvalues. λi denotes the i th
eigenvalue of A.

Theorem 2 [18]: (Fractional order Lyapunov theo-
rem) Let x = 0 be an equilibrium point for the
non-autonomous fractional order system Dqx (t) =
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f (t, x), where f (t, x) is piecewise continuous in t and
locally Lipschitz in x and q ∈ (0, 1). Assume � ⊂ R

n

is a domain containing the origin and V (t, x (t)) :
[0,∞) × � → R

+ is a continuously differentiable
function and locally Lipschitz with respect to x such
that

k1 ‖x‖a ≤ V (t, x (t)) ≤ k2 ‖x‖ab (10)

DβV (t, x (t)) ≤ −k3 ‖x‖ab (11)

then x = 0 is Mittag–Leffler stable. Here, t ≥ 0, x ∈
�, β ∈ (0, 1), k1, k2, k3, a and b are arbitrary positive
constants and ‖·‖ is an arbitrary norm. If the assump-
tions hold globally on R

n, x = 0 is globally Mittag–
Leffler stable and (12) is obtained.

‖x (t)‖ ≤
[
V (0)

k1
Eβ

(
−k3
k2

tβ
)] 1

a

(12)

Eβ (z) is the one parameterMittag–Leffler function fre-
quently used in the solutions of FOSs and is defined as
below

Eβ (z) =
∞∑
k=0

zk

� (βk + 1)
(13)

Theorem 2 extends the Lyapunov direct method and it
is called the generalizedMittag–Leffler stability theory.
It should be considered that Mittag–Leffler asymptotic
stability connotes the Lyapunov asymptotic stability.

Lemma 4 [47]: Let x (t) ∈ R
n be a real-valued con-

tinuous and differentiable vector function. Then, for
any time instant t ≥ t0 and q ∈ (0, 1), the following
inequality holds that:

1

2
Dq

(
xT (t) Px (t)

)
≤ xT (t) PDqx (t) (14)

where P ∈ R
n×n is a constant, square, symmetric and

positive definite matrix.

Lemma 5 [48]: Let P ∈ R
n×n be a symmetric and

positive semidefinitematrix, then for any vector x ∈ R
n

λminP ‖x‖2 ≤ xT Px ≤ λmaxP ‖x‖2 (15)

λminP and λmaxP are the minimum and maximum
eigenvalue of P, respectively.

Theorem 3 [16] (Fractional order Barbalat lemma):
Let V (t) ∈ C1

(
R

+) be a bounded uniformly contin-
uous function and lim

t→∞ I qV (t) → L, where L is an

arbitrary constant. If V (t) is a positive function then
V (t) converges to zero as t goes to infinity.

The numerical simulation of a fractional order differen-
tial equation is not as simple as an ordinary one. Here,
an algorithm derived from the GL definition which is
the core idea for numerical computation of a FOS is
used. Consider the following differential equation:

RL
0 Dq

t x (t) = f (x (t) , t) (16)

According to Lemma 1, discretization of the fractional
order differential equation (16) can be expressed as

x (tk) = hq f (x (tk−1) , tk) −
k∑
j=1

cxj
(
tk− j

)
(17)

where m − 1 < q ≤ m, tk = kh, h is the sample time
and c j ( j = 0, 1, · · ·) are binomial coefficients which
are calculated by the following expression [1].

c0 = 1, c j =
(
1 − 1 + q

j

)
c j−1 (18)

If Caputo derivative is used in (16), on the basis of
Lemma 2 and (17), we can use (19) in the numerical
simulation.

x (tk) = hq f (x (tk−1) , tk) −
k∑
j=1

cxj
(
tk− j

)

+ hq
x (t0)

� (1 − q)
(t − t0)

−q (19)

3 Basic description of Fuzzy system

In this article, the proposed adaptive fuzzy controller
uses a fuzzy logic system as a model of the plant
dynamics to achieve desired tracking performance.
The parameters of the fuzzy controller are tuned to
reduce the error between the output plant and a given
desired signal. Two auxiliary control signals, compen-
sation and supervisory control, are incorporated with
the adaptive fuzzy system to make an appropriate oper-
ation in the closed-loop system.
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The fuzzy inference engine employs fuzzy IF-
THEN rules to perform a mapping from x = [x1, x2,
· · · , xn]T (input vector) to y (x) ∈ R (output variable).
Assume that there are M rules in the fuzzy system and
the � th rule is written in the following form:

Rule �: IF x1 is A�
1 and · · · and xn is A�

n THEN y� (x)

is B� y� (x) is the crisp output and A�
i (i =, · · · , n)

and B� are the fuzzy sets in the �th rule. The output
of the fuzzy system with the singleton fuzzification,
product inference, and central-average defuzzification
is expressed as follows

y (x) =

M∑
�=1

ȳ�
n∏

i=1
μA�

i
(xi )

M∑
�=1

(
n∏

i=1
μA�

i
(xi )

) = θ
T ξ (x) (20)

where μA�
i
(xi ) is the degree of the membership func-

tion of xi to A�
i , ȳ

� is the point at which the mem-
bership function of the output fuzzy set B� achieves

its maximum value. θ = [
ȳ1, · · · , ȳn

]T
and ξ (x) =[

ξ1 (x) , · · · , ξM (x)
]T

are an adaptive parameters
(free parameters) vector and a vector of normalized
firing strength, respectively. ξ� (x) is equivalent to

ξ� (x) =

n∏
i=1

μA�
i
(xi )

M∑
�=1

(
n∏

i=1
μA�

i
(xi )

) = v�

M∑
�=1

v�

(21)

wherev� is firing strength of the � th rule [34,39,41,49].
According to the universal approximation theorem

[50], the fuzzy system in the formof (20) is proven to be
capable of uniformly approximating any well-defined
nonlinear function over a compact set to any degree
of accuracy if its parameters are suitable. In fact, there
are not practically enough experiences about the plant
especially in the fractional order one. Thus, the neces-
sary conditions of general approximation theorem are
not established. Under this circumstance, the design-
ing proper membership functions are not possible and
the fuzzy system is operated inappropriately. Accord-
ingly, the standard fuzzy systems cannot control the
plant efficiently. The compensation control is a reason-
able strategy to overcome the adverse effects of the
undesirable membership functions [34].

If the fuzzy system is equipped with a stable training
algorithm to maintain a consistent performance under
plant uncertainties, this system is an adaptive fuzzy sys-
tem. The adaptive fuzzy controller can adjust itself to
the changing environment and needs less information
about the plant because the adaptation law can help to
learn the dynamics of the plant during real-time oper-
ation. The most significant advantage of the adaptive
fuzzy controller over the conventional adaptive con-
troller is that adaptive fuzzy controllers can incorpo-
rate linguistic information from human, whereas con-
ventional adaptive controllers are not. This property is
important for the systems with a high degree of uncer-
tainty [14,37,41,49,51].

4 System description and problem formulation

We consider a class of commensurate FOCs as

⎧⎪⎨
⎪⎩
x (q)
i = xi+1, i = 1, · · · , n − 1, q ∈ (0, 1)

x (q)
n = f (x) + bu (t)
y = x1

(22)

where q is the system order with Caputo defini-
tion and n is the number of state variables. x =
[x1, x2, · · · , xn]T , u ∈ R and y ∈ R are the mea-
surable state vector, control input and system output,
respectively. f (·) is an unknown but bounded contin-
ues nonlinear function and b is the nonzero known con-
trol gain. In addition, it is assumed that this system has
bounded output or at least all the states locate in the
bounded area in the presenceof the control signal. Since
the disturbance and uncertainty are not considered in
separate functions, f (·) involves both of them.Nonlin-
ear systems represented in this form can be called the
commensurate fractional order Brunovsky form [52]
or normal form. According to Lemma 3 and assum-
ing y = x = x1, provided that nq ≤ 1, the system’s
equation can be rewritten as

{
x (q)
i = x (iq) = xi+1

x (q)
n = x (nq) = f (x) + bu (t)

(23)

where x = [
x, x (q), x (2q), · · · , x ((n−1)q)

]T
. The con-

trol problem is the designing of the control input u (t)
such that the output of (23) follows a given contin-
ues bounded reference signal (yd (t) = xd (t)). Fur-
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thermore, the tracking error (e (t) = xd (t) − x (t))
should be as small as possible, under the condition that
all involved signals in the close-loop remain bounded;
i.e., ‖x (t)‖ ≤ Mx < ∞ and |u (t)| ≤ Mu < ∞ for
all t > 0. Where Mx and Mu stand for the maximum
amount of ‖x (t)‖ and |u (t)|, respectively. Tomeet this
goal, a feedback control u = u (x|θ) based on adaptive
fuzzy system (20) is designed. θ is an adjustable param-
eter vector and ‖θ (t)‖ ≤ Mθ < ∞. Mx , Mu and Mθ

are specified by the designer. By defining e (t), the vec-
tor of tracking errors is obtained as below:

e = xd − x =
[
e, e(q), e(2q), · · · , e((n−1)q)

]T
(24)

where xd =
[
xd , x

(q)
d , · · · , x ((n−1)q)

d

]T
is the desired

state vector. If the function f (x) is known, by the feed-
back linearization technique, the control law can be
written as follow [53].

u∗ = 1

b

[
− f (x) + x (nq)

d + kT e
]

(25)

Let k = [k1, k2, · · · , kn]T ∈ Rn be chosen such that
all roots (λi , i = 1, · · · , n) of the polynomial 	(s) =
snq + kns(n−1)q + · · · + k1 satisfy |arg (λi )| > qπ/2.
Where s is the Laplace operator. From (25) and (23),
the error equation is calculated as

e(nq) + kne
((n−1)q) + · · · + k1e = 0 (26)

which implies lim
t→∞ e (t) = 0 and the system can

achieve the asymptotically stable tracking. However,
f (x) is unknown in real applications, obtaining a con-
trol input similar to (25) is impossible. In this situa-
tion, the approximation by the adaptive fuzzy system
is employed to treat this tracking control design prob-
lem. Suppose that the control input u (t) is considered
as

u (t) = u f (x|θ) + us (t) + uc (t) (27)

where uc (t) is a measurable compensatory control sig-
nal related to the previous amount of system variables
and has the basic duty to the control. u f (x|θ) is the out-
put of an adaptive fuzzy controller in the form of (20)
which is added to eliminate the error between the ideal

and compensatory control signal. us (t) is a supervi-
sory control signal and determined to ensure the stabil-
ity of the closed-loop system. In the proposed strategy,
the boundedness of the states is ensured by using the
supervisory control signal and the asymptotical stabil-
ity is guaranteed by the compensatory and the adaptive
fuzzy control signals. Based on (27) and (23), x (nq) is
equivalent to

x (nq) = f (x) + b
(
u f (x|θ) + us (t) + uc (t)

)
(28)

By adding and subtracting bu∗ to (28), considering
(25), and after straightforward calculations, the error
equation of the closed-loop system is computed as
below

e(nq) = −kT e + b
(
u∗ − u f (x|θ) − us (t) − uc (t)

)
nq ≤ 1 (29)

Equivalently, the vector representation is obtained as

e(q) = �ce + bc
(
u∗ − u f (x|θ) − us (t) − uc (t)

)
(30)

where

�c =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0
0 0 0
...

...
. . .

...

0 0 1
−k1 −k2 · · · −kn

⎤
⎥⎥⎥⎥⎥⎦

, bc =

⎡
⎢⎢⎢⎢⎢⎣

0
0
...

0
b

⎤
⎥⎥⎥⎥⎥⎦

(31)

One can define a Lyapunov function of the error in (32).

Ve = eT Pe (32)

where P ∈ Rn×n is a constant and symmetric positive
definite matrix. So referring to lemma 5, Ve is bounded
as λminP ‖e‖2 ≤ Ve ≤ λmaxP ‖e‖2. Also according to
Lemma 4, V (q)

e can be easily calculated.

V
(q)

e ≤
(

eT
)(q)

Pe + eT Pe(q) (33)

Based on Theorem 2, if for any positive definite sym-
metric matrix Q, there exists a positive definite sym-
metric solution P to the Lyapunov equation �T

c P +
P�c = −Q, then the error equation e(q) = �ce is
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intrinsically (without control input)Mittag–Leffler sta-
ble. According to (30), (33), and Lemma 5, we have:

V
(q)

e ≤ −eT Qe ≤ −λminQ ‖e‖2 (34)

Furthermore, by using (12) and (34) ‖e (t)‖ is always
bounded as below:

‖e (t)‖ ≤
[

eT (0) Pe (0)

λminP
Eq

(
−λminQ

λmaxP
tq
)] 1

2

(35)

If the control signal is nonzero then V (q)
e is written as

V (q)
e ≤ −eT Qe + 2eT Pbc

(
u∗ − u f (x|θ) − us − uc

)
≤ −eT Qe + 2

∣∣∣eT Pbc

∣∣∣ (∣∣u∗∣∣+ ∣∣u f (x|θ)
∣∣+ |uc|

)
−2eT Pbcus (36)

The supervisory control signal is designed to guarantee
V (q)
e ≤ 0. To this purpose, the following assumption is

considered.
Assumption:we can determine a function f U (x) such
that | f (x)| ≤ f U (x). By observing (36) and based on
f U (x), the supervisory control us (t) is chosen as

us (t) = I ∗sgn
(

eT Pbc

) (|uc (t)| + ∣∣u f (x|θ)
∣∣

+1

b

(
f U +

∣∣∣x (nq)
d

∣∣∣+
∣∣∣kT e

∣∣∣
))

(37)

Because b (or bc) is known, sgn
(
eT Pbc

)
can be

easily computed. Where I ∗ = 1 if Ve > Vmax (Vmax

is constant and upper bound of Ve that the close-loop
system remains stable and determined by the designer),
I ∗ = 0 if Ve ≤ Vmax, and sgn (r) = 1 (−1) if r ≥
0 (< 0). Considering the case Ve > Vmax, and inserting
(37) and (25) into (36) we have

V (q)
e ≤ −eT Qe < 0 (38)

If the system tends to be unstable, especially in transient
time, then us (t) begins operating to force Ve ≤ Vmax.
If the closed-loop system with the adaptive fuzzy con-
troller and compensatory control well behaves in the
sense that the error is sufficiently small (Ve ≤ Vmax),
subsequently us (t) will be zero. In view of con-
trol energy, this strategy is a very economical design
methodology. Since the supervisory control is usually
very large and it may increase the implementation cost,
this technique causes us (t) to operate only in short
specific time. Therefore we always have Ve ≤ Vmax

by using (37). Also, the boundedness of Ve implies the
limitation of e.

‖e‖ ≤
(

Vmax

λminP

) 1
2

(39)

Considering (24) and (39), the boundedness of x is con-
cluded, as well.

‖x‖ ≤
(

Vmax

λminP

) 1
2 + ‖xd‖ = Mx (40)

Thus by applying the supervisory control, the track-
ing error vector and the state variables vector always
remain bounded.

5 Adaptive Fuzzy controller with compensation

In this section, the direct adaptive fuzzy system with
compensatory control is designed, in which a frac-
tional order adaptation law is applied to update the free
parameters in consequence of the fuzzy controller.

First, let us define an ideal parameters vector (θ∗)
and the minimum approximation error (
) as follows:

θ
∗ ≡ argmin

|θ|≤Mθ

[
sup

|x|≤Mx

∣∣u∗ (t) − u f (x|θ) − uc (t)
∣∣
]

(41)


(t)
	= u∗ (t) − uc (t) − u f

(
x|θ∗) = ω (t) − uc (t)

(42)

where u f (x|θ∗) is the output of the fuzzy system in the
ideal parameters vector andω (t) = u∗ (t)−u f (x|θ∗).
By adding and subtracting bcu f (x|θ∗) to (30), accord-
ing to (20) and (42), and after some simple manipula-
tions, the error dynamics can be expressed as

e(q) = �ce + bcθ̃
T
ξ (x (t)) − bcus + bcω (t) − bcuc

(43)

where θ̃ = θ
∗ − θ is the free parameters error.

Theorem 4 Considering the fractional order nonlin-
ear system (22) with nq ≤ 1 and control input (27),
if the fractional order adaptation law is chosen as
(44) and the compensator control is defined as (46),
the overall adaptive scheme guarantees the stability of
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Fig. 1 Overall scheme of
direct adaptive fuzzy
controller with
compensation

the resulting closed-loop system in the sense that all
involved signals are uniformly bounded and the error
will converge to zero asymptotically.

θ
(q) = 2γ eT pn� (x (t)) − 2Iθ γ eT pn

θθ
T� (x (t))

‖θ‖2
(44)

Iθ =
{
0 ‖θ‖ < Mθor

(‖θ‖=Mθ , eT pnθ
T� (x) ≤ 0

)
1 ‖θ‖=Mθ , eT pnθ

T� (x) > 0

(45)

uc (t) = u (t − 1) − θ
T (t) ξ (x (t − 1))

+ 1

b

(
x (nq)
d (t − 1) − x (nq) (t − 1)

+ kTe (t − 1)
)

(46)

where � (x (t)) = ξ (x (t)) − ξ (x (t − 1)), pn is the
last column of P, and γ is a positive constant. Figure 1
shows the general scheme of the proposed approach.

Proof : The Lyapunov function candidate is chosen as
below to analyze the closed-loop stability.

V = eT Pe + b

2γ
θ̃
T
θ̃ (47)

Using (42), Lemma 4, and differentiating (47) with q
order and respect to time along the trajectory (43), we
obtain

V (q) ≤ −eT Qe + b

γ
θ̃
T
θ̃
(q)

+2eT Pbc

(
θ̃
T
ξ (x (t)) − us + 
(t)

)
(48)

Let pn be the last column of P then eT Pbc = eT pnb
and we have

V (q) ≤ −eT Qe − 2eT Pbcus + b

γ
θ̃
T
θ̃
(q)

+2eT pnb
(
ω (t) − uc (t) + θ̃

T
ξ (x (t))

)
(49)

The compensator control is constructed as below

uc (t) = u∗ (t − 1) − θ
T (t) ξ (x (t − 1)) (50)

From (25), we have

u∗ (t − 1) = 1

b

(
− f (x (t − 1)) + x (nq)

d (t − 1)

+ kTe (t − 1)
)

(51)

where f (x (t − 1)) can be calculated from (23).

f (x (t − 1)) = x (nq) (t − 1) − bu (t − 1) (52)

Substituting (52) into (51), u∗ (t − 1) is computable
because all terms are available for measurement. Then
the compensator control is measurable as below

uc (t) = u (t − 1) − θ
T (t) ξ (x (t − 1))

+1

b

(
x (nq)
d (t − 1) − x (nq) (t − 1)

+ kTe (t − 1)
)

(53)

Combining (49) and (50) and after adding and sub-
tracting 2eT pnbθT ξ (x (t − 1)) , V (q) is equivalent to

V (q) ≤ − eTQe + 2eT pnb (ω (t) − ω (t − 1))

− 2eT Pbcus+ b

γ
θ̃
T
[
θ̃
(q)+2γ eT pn (ξ (x (t))

− ξ (x (t − 1)))
]

(54)
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By the fact θ∗(q) = 0 and θ̃
(q) = −θ(q), we can choose

the adaptation law as

θ
(q) = 2γ eT pn (ξ (x (t)) − ξ (x (t − 1))) (55)

Observing from (37), eT Pbcus (t) ≥ 0 is straightfor-
ward and V (q) can be written as below

V (q) ≤ −eTQe + 2eT pnb (ω (t) − ω (t − 1)) (56)

This inequality is the best we can hope to obtain since
2eT pnb (ω (t) − ω (t − 1)) is of the order of the mini-
mum approximation error. The variations of u∗ (t) and
u f (x|θ∗)with time are smooth. In otherwords, the gra-
dient of u∗ (t) or u f (x|θ∗) with respect to t does not
change much. So the values of u∗ (t) − u∗ (t − 1) and
u f (x (t) |θ∗) − u f (x (t − 1) |θ∗) in ω (t) − ω (t − 1)
are very small even if the value of u∗ (t)−u f (x (t) |θ∗)
is significant. To guarantee ‖θ‖ ≤ Mθ, the adapta-
tion law (55) must be modified by the projection algo-
rithm as shown in (57) where the projection factor Iθ
is defined as (58).

θ
(q) = 2γ eT pn� (x (t)) − 2Iθ γ eT pn

θθ
T� (x (t))

‖θ‖2
(57)

Iθ =
{
0 ‖θ‖ < Mθor

(‖θ‖ = Mθ , eT pnθ
T� (x (t)) ≤ 0

)
1 ‖θ‖ = Mθ , eT pnθ

T� (x (t)) > 0

(58)

whereψ (x) = ξ (x (t))−ξ (x (t − 1)). To prove ‖θ‖ ≤
Mθ, let Vθ = 1

2θ
T
θ. If the first line of (58) is right, we

have either ‖θ‖ < Mθ or (59) for ‖θ‖ = Mθ, then
‖θ‖ ≤ Mθ is always true.

V (q)

θ ≤ θ
T
θ
(q) ≤ 2γ eT pnθ

T ξ (x) ≤ 0 (59)

If the second line of (58) is correct, we have ‖θ‖ = Mθ

and

V (q)

θ ≤ θ
T
θ
(q) = 2γ eT pn

(
θ
T − θ

T
θ θT

‖θ‖2
)

� (x) = 0

(60)

Then V (q)

θ ≤ 0 and ‖θ‖ is remain in the enclosed area
like Mθ. Therefore, ‖θ‖ ≤ Mθ is always true for t ≥ 0.
According to (21), it is obvious that ‖ξ (x)‖ ≤ 1 and
base on (20), the output of the fuzzy controller is as

∣∣u f (x|θ)
∣∣ ≤ ‖θ‖ ≤ Mθ (61)

Because based on (20),
∣∣u f (x|θ)

∣∣ is aweighted average
of the elements θ. Then, invoking (25), (39), and (50)
the compensation signal will be bounded.

|uc (t)| ≤ ∣∣u∗ (t − 1)
∣∣+

∣∣∣θT (t) ξ (x (t − 1))
∣∣∣

≤
∣∣∣∣1b

[
− f (x (t − 1)) + x (nq)

d (t − 1) + kT e (t − 1)
]∣∣∣∣

+
∣∣∣θT (t) ξ (x (t − 1))

∣∣∣

≤
f U (x)+

∣∣∣x (nq)
d (t − 1)

∣∣∣+∥∥kT
∥∥ ( Vmax

λminP

) 1
2

b
+ Mθ

(62)

Using (39), (61) and (62), the inequality of the control
signal is computed as follows:

|u (t)| ≤ ∣∣u f (x|θ)
∣∣+ |uc (t)| + |us (t)|

≤ 4Mθ + 3

b

(
f U (x) +

∥∥∥kT
∥∥∥

×
(

Vmax

λminP

) 1
2 + Mxd

)
= Mu (63)

where Mxd is the known upper bound for
∣∣∣x (nq)

d

∣∣∣.
In order to show that the closed-loop system is

Mittag–Leffler stable, and the system error converges
to zero asymptotically, according to Theorem 3, it is
necessary to demonstrate that I q ‖e‖ is bounded. In
order to show this property by Substituting (57) into
(54) and considering eT Pbcus (t) ≥ 0, we obtain

V (q) ≤ −eTQe + 2eT pnb (ω (t) − ω (t − 1))

+ 2beT pn Iθ
θ̃
T
θθ

T� (x (t))

‖θ‖2 (64)

Let us assume that Iθ = 1 and eT pnθ
T� (x (t)) > 0,

because θ
∗T

θ = θ
T
θ
∗, the following simplification is

reasonable:

θ̃
T
θ = 1

2

(∥∥θ∗∥∥2 − ‖θ‖2 − ∥∥θ − θ
∗∥∥2) (65)

Since Mθ is selected in such a way that always involves

θ
∗ and ‖θ∗‖ ≤ ‖θ‖ = Mθ , this yields that θ̃

T
θ ≤ 0.

Therefore, due to the eT pnθ
T� (x (t)) > 0 last term of

(64) is nonpositive and it is straightforward that

V (q) ≤ −eT Qe + 2eT Pbc (ω (t) − ω (t − 1)) (66)
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On the other hand, if Iθ = 0, (66) is directly achieved
from (64). According to λminQ ‖e‖2 ≤ eT Qe, (66) can
be further simplified to

V (q) ≤ − (
λmin Q − 2

) ‖e‖2 − 2

(
e + 1

2
Pbυ

c (t)

)2

+ 1

2

∥∥Pbυ
c (t)

∥∥2

≤ − (
λmin Q − 2

) ‖e‖2 + 1

2

∥∥Pbυ
c (t)

∥∥2 (67)

where υ (t) = ω (t − 1) − ω (t). Let us assume
λmin Q > 2(Q is determined by the designer). On the
basis of (4), by fractional order integrating both sides
of (67), we can obtain

I q ‖e‖2 ≤ 1

λmin Q − 2
(V (0) − V (t))

+ 1

2
(
λmin Q − 2

) I q ∥∥Pbυ
c (t)

∥∥2 (68)

Because e and θ are bounded, we can claim that V is
finite and (68) is changed to:

I q ‖e‖2 ≤ 1

λmin Q − 2

(
V (0) + sup

t≥0
|V (t)|

)

+ 1

2
(
λmin Q − 2

) ‖Pbc‖2 I q ‖υ (t)‖2 (69)

If I q ‖υ (t)‖2 is limited, then I q ‖e‖2 is bounded and
according to (33), I qVe is also bounded. If ė is contin-
uous, inspire by the fractional order Barbalat’s lemma
(Theorem 3), we achieve that Ve and the tracking error
(e) can converge to zero when t goes to infinity. This
equation completes the proof. ��

6 Simulation

In this section, two illustrative examples are provided to
clarify the effectiveness and robustness of the proposed
scheme to confirm the theoretical results of this inves-
tigation. For the purpose of comparison, two different
controllers including the adaptive fractional order PID
[28] and the hierarchical terminal sliding mode control
(HTSC) [29] are implemented. In all numerical simu-
lations, the sample time is assumed h = 10−3 second
and the Lyapunov matrix Q is equaled to 3In×n . Where
I ∈ Rn×n is identity matrix and n shows the number of
system states. Also, the free parameters vector θ is cho-
sen randomly at the start time of control.

Example 1 : Synchronization of two fractional order
non-identical chaotic systems

The following example confirms the suitability of
the proposed method to synchronize two fractional
order non-identical chaotic systems. Consider the fol-
lowing uncertain fractional order system as a slave sys-
tem:⎧⎪⎨
⎪⎩
x (q)
1 (t) = x2 (t)

x (q)
2 (t) = ãx1 (t) + b̃x2 (t) + c̃x21 (t) + d̃ cos (t)

+ d1 (t) + u (t) + 	 f (x)

(70)

where d1 (t) = sin(3t) is an internal disturbance,
	 f (x) = 1.5 sin (x1) sin (x2) is a system uncertainty,
and ã = a + 	a, b̃ = b + 	b, c̃ = c + 	c, and d̃ =
d + 	d are uncertain coefficients of the slave system.
In this example, we set a = 1.2, b = −1, c = −1, d =
2, 	a = 0.2a sin (2t), 	b = 0.3b cos (3t) ,	c =
0.25c sin (3t), and d = 0.15d cos (2t). The controller
must force the output variable y = x1 to track the out-
put variable yd = xd1 of a master system which is con-
sidered a fractional order version of Duffing–Holmes
system in (71) [54].⎧⎪⎨
⎪⎩
x (q)
d1 (t) = xd2 (t)

x (q)
d2 (t) = xd1(t) − 0.25xd2 (t) − x3d1 (t)

+ 0.3 cos (t) + 	g (xd) + d2 (t)

(71)

Let us assume that the master system is perturbed
by 	g (xd) = 1.5 sin (xd2) cos (xd1) as an uncertainty
term and d2 (t) = cos(3t) as the internal disturbance.
State trajectories of the slave and master system are
plotted in Fig. 2 when the input control is zero and
x (0) = [−0.1, 0.2], xd (0) = [0.3,−0.2] are chosen
as initial conditions.

For demonstrating the ability of the proposed con-
troller in synchronization of chaotic systems, the design
parameters are chosen as f U = 5, Vmax = 2 and
according to (29), q = 0.5. Referring to theorem 1
and (26), the coefficient vector of the error equation is

considered as k = [
2 3

]T
to guarantee the stability

of the error equation. Let us assume that the Gaussian
membership functions are arbitrarily defined with ran-
dom centers and variances in the antecedent part of
the fuzzy controller as Fig. 3. The performance of the
fractional order direct adaptive fuzzy with compensa-
tion (FDAFC), the fractional order adaptive controller
(FoAC) [28] and the hierarchical terminal slidingmode
control (HTSC) [29] are compared in Fig. 4 when the
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Fig. 2 State trajectories of the master and slave system a first states, b second states

Fig. 3 Arbitrary
membership functions
defined over the state space
in Example 2 for x1 and x2
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control signal is activated at t = 2s . Figure 4c, d which
focuses on the range between 40s and 50s indicates that
FDAFC has better accuracy in signal tracking than two
other strategies. Furthermore, to illustrate the accept-
able efficiency of FDAFC, Fig. 5 shows the time history
of the control signal and state variables error. These
results confirm that the system can be controlled to
track the reference trajectory and the error is asymp-
totically regulated to zero. To ascertain the importance
of the adaptive fuzzy controller in the described strat-
egy, time history of the fuzzy control signal is indicated
in Fig. 6a. In addition, the states variable error is also
shown in Fig. 6b when the fuzzy controller is consid-
ered inactive. As can be seen that the error signal has
the nonzero bias and does not converge to zero, hence
the compensation signal cannot appropriately control
the plant alone.

Example 2 Stabilization the non-autonomous fractio-
nal order gyro

This example verified the usefulness and effi-
ciency of FDAFC by using stabilization of the non-
autonomous fractional order gyro. The gyro is one of
the most interesting and everlasting dynamic systems
which has various useful applications in optics, navi-
gation, aeronautics and space engineering fields [55].

Therefore, the chaos stabilization procedure of chaotic
gyroscope systems in this brief may have practical
applications in the future. Since in real-world appli-
cations, model uncertainties, and external disturbances
affect the dynamics of the system, in this article the
following uncertain fractional order gyro with a con-
trol input is taken into account [29].

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x (q)
1 = x2 (t)

x (q)
2 = − 100(1−cos(x1(t)))2

sin3(x1(t))
− ã (t) x2 (t)

− x32 (t)
20 + sin (x1 (t)) + 	 f (x, t) + d (t)

+b̃ (t) sin (25t) sin (x1 (t)) + u (t)

(72)

where x1 denotes the rotation angle, x2 represents
the rotation angle velocity, u (t) is the control input,
	 f (x, t) = 2 sin (x1 (t)) sin (x2 (t)) is the time-
varying model uncertainty and d (t) = cos (4t) shows
the disturbance. ã (t) = 0.5 + 0.5	a (t) and b̃ (t) =
35.5+35.5	b (t) are uncertain coefficients of the slave
system where 	a (t) = 0.4 sin (2t) and 	b (t) =
0.2 cos (t). The order of fractional derivative (q) is set
to 0.5 and the initial condition of the gyro system is
selected as x (0) = [1,−1]. Time trajectories of state
variables are shown in Fig. 7 inwhich the control signal
is chosen to be zero.
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Fig. 4 Simulation results of Example 1 a state trajectories of x1, b state trajectories of x2, c zoomed view of state trajectory of x1,
d zoomed view of state trajectory of x2
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Fig. 5 a Time history of the control signal in FDAFC, b error convergence in FDAFC in Example 1

Another design parameters are determined as f U =
5, Vmax = 5 and referring to theorem 1 and (26), the
coefficient vector of the error equation is considered

as k = [
2 3

]T
. In this example, the Gaussian mem-

bership functions in the antecedent part of the fuzzy
controller are depicted in Fig. 8. Figure 9 compares the
performance of FDAFC, FoAC [28] and HTSC [29]
while the control input is activated at t = 4s . In addi-
tion, the control signal of FDAFC and the fuzzy control

signal are shown in Fig. 10. These results express that
the output can be stabilized significantly and the error
is asymptotically converged to zero. It is noteworthy
that if the fuzzy controller is set to be inactive, the state
variables error cannot converge to zero and has unde-
sirable variations as shown in Fig. 11.

Table 1 represents Sum of Integral Absolute Error
(SIAE) and Integral Absolute Control Signal (IACS)
as two well-known criteria in order to compare the per-
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Fig. 8 Arbitrary
membership functions
defined over the state space
in Example 2 for x1 and x2
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formance of the proposed method, FDAFC, with the
previously proposed methods: FoAC and HTSC. SIAE
and IACS are computed by:

SIAE=
n∑

i=1

∫
|ei (t)| dt, IACS=

∫
|u (t)| dt (73)

The values of the resulted criteria show the sig-
nificant improvement of the control performance of

FDAFC in comparison to FoAC and HTSC. In Exam-
ple 1, the SIAE of the proposed scheme is lower and
therefore more acceptable than the other approaches
above. This improvement is also observed in Exam-
ple 2. Furthermore, the control signal energy of FDAFC
is approximately less than or equal to FoAC and HTSC
in two simulations. It is remarkable that in the intro-
duced method, the model function ( f (x)), the uncer-
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Fig. 11 Error convergence in the proposed method

tainty, and the disturbance are all unknown. However,
in the HTSC, f (x) is pre-specified and only the uncer-
tainty and disturbance are unknown. Based on this
property, the FDAFC is more practical and useful and
outperforms the previously introduced adaptive con-
trollers.

Table 1 Performance of various control methods

Method FDAFC FoAC HTSC

Example1

SIAE 1.34 1.54 2.60

IACS 66.38 65.51 67.34

Example 2

SIAE 0.46 1.96 4.46

IACS 31.30 41.07 45.63

7 Conclusion

In this paper, a novel direct adaptive fuzzy controller
with compensation signal is proposed for controlling
and stabilizing the specific fractional order nonlin-
ear systems. The new fractional order adaptation law
is obtained from fractional order Lyapunov theorem
which is applied to adjust free parameters in the con-
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sequence part of the adaptive fuzzy controller. More-
over, in advanced application of the supervisory con-
trol, we proved that the supervisory control is suffi-
cient to constrain the output error in fractional order
systems. On the top of that, due to the less experi-
ence about the fractional order plant, it is not prac-
tically possible to design proper membership func-
tions and the common adaptive fuzzy systems can-
not control the plant effectively while the proposed
approach does not demand suitable membership func-
tions in the antecedent part of the fuzzy system. Fur-
thermore, the fractional order nonlinear system can
be involved in disturbance and uncertainty since the
introduced method does not require a plant model
function. In addition, the proposed approach guaran-
tees the global Mittag–Leffler stability of the result-
ing closed-loop system in which all signals are uni-
formly bounded. Also, it ensures that the output error
has asymptotic convergence to zero by using the frac-
tional order Barbalat lemma. Another advantage of this
proposed approach compared to the literature is the uti-
lization of valid fractional order equations in the direct
adaptive fuzzy controller; moreover, the application of
the projection algorithm in the fractional order adapta-
tion law is investigated in order to prevent free param-
eters from being excessively large. Simulation stud-
ies are finally presented to show the advantages of the
proposed approach. Different fractional order nonlin-
ear systems are adequately controlled by the proposed
method. In the end, simulation results on two applica-
tions express the satisfying achievements on the con-
trolling performance of the recommended approach,
while yielding asymptotic convergence to zero for the
error vector.
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