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Abstract In this paper, a novel kernel adaptive fil-
ter, based on the least mean absolute third (LMAT)
loss function, is proposed for time series prediction in
various noise environments. Combining the benefits of
the kernel method and the LMAT loss function, the
proposed KLMAT algorithm performs robustly against
noises with different probability densities. However,
an important limitation of the KLMAT algorithm is
a trade-off between the convergence rate and steady-
state prediction error imposed by the selection of a cer-
tain value for the learning rate. Therefore, a variable
learning rate version (VLR–KLMAT algorithm) is also
proposed based on a Lorentzian function. We analyze
the stability and convergence behavior of the KLMAT
algorithm and derive a sufficient condition to predict
its learning rate behavior. Moreover, a kernel recursive
extension of the KLMAT algorithm is further proposed
for performance improvement. Simulation results in the
context of time series predictionverify the effectiveness
of the proposed algorithms.
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1 Introduction

1.1 Previous work

The least mean square (LMS) algorithm is the most
widely used algorithm for adaptive filters because of
its low-cost. However, it suffers from slow convergence
rate and its performance may degrade when the mea-
surement noise is non-Gaussian noise. To address these
problems, several LMS-type algorithms were pro-
posed, including sign algorithms [22,39], adjustable
step size algorithms [16,21,62], and algorithms that
employ the convex combination method [19,32,36].
Apart from these algorithms, some approaches have
been developed for combating non-Gaussian interfer-
ence, such as entropy criterion [24,25,38] and M-
estimate [66,67].

An important issue in adaptive prediction is the
effect of measurement noise on the results. The mea-
surement noise is often assumed to be a random pro-
cess with finite second-order statistics (SOS), making
the mean square error (MSE) performs well for pre-
diction. However, in real-world situations, the noise
may not possess finite SOS and can be described more
accurately using non-Gaussian noise models [24,57].
When adaptive algorithms are used in time series pre-
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dictionwith non-Gaussian noise, it is reasonable to take
the higher order information of measurement noise and
error signal into account.

The loss functions based on the high-order error
power (HOEP) criterion are a good solution to learn
with non-Gaussian data in general [45]. The HOPE-
based algorithms, which are derived by minimizing
the p-norm, can achieve improved performance in
the presence of non-Gaussian noise. For p = 2, it
reduces to the LMS algorithm. When the signal is
contaminated by impulsive noise, the sign algorithm
with p = 1 is preferred [22,39]. If we select p =
3, the HOEP becomes the least mean absolute third
(LMAT) algorithm [23,45,65], and for the choice of
p = 4, the least mean-fourth (LMF) algorithm is
obtained [18,48]. It is worth to note that both LMAT
andLMFalgorithms outperform the conventional LMS
algorithm for the case where the measurement noise
is a non-Gaussian noise. Furthermore, many variants
based on the mixed-norm and p-power (1 < p < 2)
were proposed for suppressing specific noises, such
as those proposed in [5,8,9,31,33,43] and references
therein.

Kernel method has become rather popular and has
been successfully applied to machine learning [47,51],
kernel principal component analysis [46,63], and infor-
mation/signal processing [2–4,7,20,29,64]. Due to
its universal nonlinear-modeling capability, the ker-
nel adaptive filters (KAFs) have attracted consider-
able attention. The main idea of the KAF is that
recast the input data into a high-dimensional feature
space via a reproducing kernel Hilbert space (RKHS).
Then, the linear adaptive filter is applied in the fea-
ture space [29]. Based on these considerations, several
kernel adaptive algorithms were proposed, e.g., kernel
LMS (KLMS) algorithms [13,27,38,55,58,60], kernel
recursive least squares (KRLS) algorithms [14,17,26],
and kernel affine projection (KAPAs) [10,28,54]. By
applying theminimumerror entropy (MEE) criterion to
KAF, Chen et al. proposed the kernel minimum error
entropy (KMEE) algorithm and its quantized version
[11]. As we noticed, the KMEE algorithm has moder-
ate computational complexity and achieves improved
performance in low impulsive noise environment. To
further improve the performance of KAF in the pres-
ence of α-stable noise, Chen et al. proposed some
KAFs based onmaximumcorrentropy criterion (MCC)
[52,59], which can diminish the significance of the out-
liers on the nonlinear system. Alternatively, to improve

the performance of the KAF, an interesting and effec-
tive way is to use p-norm and mixed-norm criterions.
Several classes of KAFs for nonlinear estimation have
been proposed, including [30,35,37,41,49]. Particu-
larly, Ma et al. [37] developed the kernel least mean
p-power (KLMP) and the kernel recursive least mean
p-power (KRLP) algorithms, which overcome the per-
formance degradation of the algorithm when train-
ing data are corrupted by impulsive noises. However,
the adaptation of KLMP and KRLP is largely depen-
dent on p, and it is necessary for the prior knowledge
or estimation of p in the presence of α-stable noise.
Very recently, the KAFs based on diffusion LMS and
suitable for nonlinear distributed network were pro-
posed [15,42]. These algorithms follow the Adapt-
Then-Combine (ATC) mode of cooperation and can be
extended to the distributed parameter estimation appli-
cations like cooperative spectrum sensing and massive
multiple input multiple output (MIMO) receiver design
[42]. Although the above-mentioned algorithms have
some advantages, they carry one main drawback in
common: the algorithms are not suitable for different
noise environments.

1.2 Motivation

In the last decades, the fields of adaptive signal pro-
cessing have witnessed remarkable advances in cost
function based on the HOEP criterion. Closer to the
LMAT loss is the LMF function (LMF algorithm) [48],
which minimizes the fourth power of the error signal,
but its stability about theWiener solution depends upon
the adaptive filter input power and noise power [48].
Moreover, the LMF algorithm with Gaussian noise is
not mean square stability even for a small step size.
The LMAT loss function, in contrast, has a stable per-
formance in Gaussian scenarios and its convergence
performance only depends on the power of the input
signal [65]. The advantages of using the LMAT loss
function are listed as below. (1) The LMAT loss is a
convex function, so it has no local minima. (2) When
the measurement noise is non-Gaussian processes, the
LMAT may have better optimum solution than the
Wiener solution. Another closer to the LMAT loss is
the work of Chambers et al. [9] which combines the
error norms and can deal with non-stationary signal
statistics through an appropriate combination. In [41],
Miao and Li proposed the kernel least mean mixed-
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Table 1 Aforementioned contributions

Cost function used in kernel
method (criterion)

Proposed algorithm Comments

MSE and least squares (LS)
criterion (2-norm)

KLMS Liu et al [27] Not suitable for non-Gaussian environment

KAPA Liu and Principe [28]

KRLS Engel et al. [17]

HOPE criterion

LMAT loss function This studya Perform robustly against noise with different
probability densities

LMF loss function – Unstable in Gaussian environment

Mixed-norm criterion

Least mean mixed-norm
(LMMN)

KLMMN Miao and Li [41] The selection of the mixing parameter of the
KLMMN algorithm may prohibit its
practical applications

Robust mixed-norm (RMN) KRMN Liu et al. [30] Only applicable to impulsive noise
environment

QKRMN and VPKRMN Lu et
al. [35]

Sign algorithm (1-norm) KAPSA Wang et al. [49] Slow convergence rate and only applicable to
impulsive noise environment

p-Power criterion (1 < p < 2) KLMP and KRLP Ma et al. [37] Only applicable to impulsive noise
environment

a Part of this work appeared in arXiv:1603.03564 ‘L. Lu, H. Zhao, B. Chen, KLMAT: A kernel least mean absolute third algorithm’ [34]

norm (KLMMN) algorithm for nonlinear system iden-
tification.However, the selection of themixing parame-
ter of the KLMMN algorithmmay prohibit its practical
applications. Table 1 summarizes the aforementioned
contributions. According to this table, the KAF based
on LMAT loss has not been developed. From the above
analysis, we can see that the use of LMAT loss in kernel
method is reasonable.

1.3 Contributions of this paper

The contribution of this paper is threefold. (1) To
improve the robustness of KAF against interferences
with various probability densities, we proposed a ker-
nel LMAT (KLMAT) algorithm. Moreover, the stabil-
ity and convergence property analysis of the KLMAT
algorithm are performed. (2) To address the conflicting
requirement of fast convergence rate and low steady-
state prediction error for the fixed learning rate, a novel
variable learning rate (VLR) adjustment process based
on the Lorentzian function is incorporated into the
KLMAT algorithm. (3) The recursive version of the
KLMAT algorithm is developed for time series predic-

tion. The motivation in developing this kernel exten-
sion is based on the KRLS algorithm. The weights in
the kernel at each iteration are solved recursively by an
exponentially weightedmechanism,which emphasizes
on recent data and de-emphasizes data from the remote
past.

This paper is structured as follows. In Sect. 2, we
briefly review the kernel method. In Sect. 3, a KLMAT
and a VLR–KLMAT algorithms are proposed based on
the kernel method. In Sect. 4, we analyze the conver-
gence property of the KLMAT algorithm. In Sect. 5,
an extension of KLMAT is developed. In Sect. 6, we
show the advantages of our proposal through some sim-
ulation results. Finally, in Sect. 7, we give the conclu-
sion.

2 Kernel method

Kernel method is a powerful nonparametric modeling
tool. The key to kernel method is transforming input
data (input space U) into a high-dimensional feature
space F by using a certain nonlinear mapping
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Fig. 1 a Comparison of the cost functions. b The gradients of the cost functions

ϕ : U → F (1)

whereϕ is the feature vector in kernelmethod. To apply
the kernel method in linear adaptive filter, the kernel
function κ is developed. As a result, the inner product
operations in the linear adaptive filters are translated
into the calculation of a kernel function κ in the feature
space without knowing the nonlinear mapping.

Byusing theMercer theorem [29], the inner products
in RKHS can be calculated as

κ(u,u′) = ϕ(u)ϕT (u′) (2)

where u is the input data. It is well known thatMercer
kernel is a continuous, symmetric, and positive-definite
kernel. Thus, the output of KAF can be expressed by
the inner product with test data ϕ(u) and training data
ϕ(u j )

f (u) =
n∑

j=1

a j 〈ϕ(u),ϕ(u j )〉 (3)

where a j is the coefficient n and 〈·〉 is the inner product
operation, respectively.

3 Proposed algorithms

3.1 KLMAT algorithm

To improve the performance of the KLMS algorithm,
the LMAT algorithm is first applied in RKHS. This
strategy yields a novel KAF (KLMAT) for adap-
tive prediction. The M × 1 input data u(n) =
[u(n), u(n − 1), . . . , u(n − 1 + M)] at time n are
transformed into RKHS as ϕ(u(n)). For convenience
of notation, ϕ(u(n)) is replaced by ϕ(n) throughout
this paper. The weight vector w(n) in feature space is
defined as �(n). Define �(1) = 0 and the error signal
e(n) = d(n) − �T (n)ϕ(n), where d(n) denotes the
desired signal. The cost function of KLMAT algorithm
is defined as

J (n)
�= |e(n)|3 . (4)

As shown in Fig. 1a, J (n) is less steep than JLMF (n)

and both are steeper than a quadratic function. Because
the cost function J (n) is much steeper than the square
of the error, the value of the gradient is significantly
larger than that of the gradient of the squared error
with respect to the coefficients (Fig. 1b). Therefore, the
kernel algorithm with LMAT loss function converges
faster than the KLMS algorithm for a given constant
learning rate.
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Minimizing the instantaneous third power of abso-
lute error value, the adaptation of KLMAT algorithm
in RKHS can be expressed as

�(n + 1) = �(n) − μ

3
∇�(n) J (n) (5)

where ∇�(n) J (n) = −3e2(n)sign{e(n)}ϕ(n) is the
gradient vector, μ is the learning rate (step size), and
sign{x} denotes the sign function of the variable x , i.e.,
if x ≥ 0, then sign{x} = 1, otherwise sign{x} = −1.
Thus, we can use (5) to obtain a recursion on the new
example sequence {ϕ(n), d(n)}
�(n + 1) = �(n) + μe2(n)sign{e(n)}ϕ(n). (6)

Repeating the application of (6), we obtain

�(n + 1) = �(n − 1) + μe2(n − 1)

× sign{e(n − 1)}ϕ(n − 1)

+μe2(n)sign{e(n)}ϕ(n). (7)

Rearranging (7), we have

�(n + 1) = μ

n∑

j=1

[
e2( j)sign{e( j)}

]
ϕ( j). (8)

Here, ϕ(n) is only implicitly known and its dimension-
ality is infinite for the Gaussian kernel. For this reason,
the derivation method of the KLMS algorithm [27] is
adopted to the KLMAT algorithm. That is, compute the
filter output y(n+1) directly rather than expressing the
weight vector. By using the Mercer kernel, the filter
output can be calculated through kernel evaluations

y(n + 1) = �T (n)ϕ(n + 1)

= μ

n∑

j=1

[
e2( j)sign{e( j)}

]
κ( j, n + 1) (9)

where κ(u,u′) = exp
(
−h

∥∥u-u′∥∥2
)

stands for the

Gaussian kernel and h denotes the kernel size. The
KLMAT algorithm adds a new space e(n)sign{e(n)}
for u(n + 1) at each iteration, slightly increasing the
computational complexity as comparedwith theKLMS
algorithm. We define fn as a nonlinear mapping at the
nth iteration, and the learning process of the KLMAT
algorithm can be summarized as follows:

fn = μ

n∑

j=1

[
e2( j)sign{e( j)}]κ(u( j), ·),

fn(u(n)) = μ

n∑

j=1

[
e2( j)sign{e( j)}]κ(u( j),u(n + 1)),

e(n + 1) = d(n + 1) − fn(u(n + 1)),

fn+1 = fn + μe2(n + 1)sign{e(n + 1)}
× κ(u(n + 1), ·). (10)

From (10), it can be observed that if the kernel function
is replaced by a radial kernel, the KLMAT algorithm
reduces to the radial basis function (RBF) network by
allocating a new kernel unit for every new example
with input. For simplicity, the coefficient a j (n + 1) is
defined as:

a j (n+1)=μ
[
e2( j)sign{e( j)

]
, j =1, . . . , n + 1

(11)

and

C(n + 1) = [C(n),u(n + 1)] (12)

where C(n) = {c j }nj=1 is the center set or dictionary
which stores the new center at each iteration. For n=1,
C(1) = [u(1)].

3.2 VLR–KLMAT algorithm

An important limitation of theKLMAT algorithm is the
convergence rate vs. misadjustment trade-off imposed
by the selection of a certain value for the learning rate.
Motivated by theVLR scheme and theLorentzian func-
tion in [6], in this section, we proposed a novel VLR
scheme for the KLMAT algorithm. Replacing μ with
μ(n) for each iteration, μ(n) is adapted by using the
following expression

μ(n) = β log

(
1 + 1

2

e2(n)

l2

)
(13)

where β is a scalar factor which controls the value
range of the function and l is the positive parameter.
The large value of β leads to fast convergence rate
at the initial stage and high misadjustment. By using
some nonlinear function, the VLR scheme has been
developed in several previous studies, including Sig-
moid function [53] and Versiera function [56]. It can
be observed from Fig. 2 that the Lorentzian function
is much steeper than the other functions for the same
small error signal. Therefore, such function can achieve
fast convergence rate and improved tracking capability.

To further improve the performance of the VLR
scheme, an estimation of e2(n) is introduced to (13)

δe(n + 1) = θδe(n) + (1 − θ)e2(n) (14)
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where θ is the forgetting factor that governs the aver-
aging time constant and δe(n + 1) is a low-pass fil-
tered estimation of e2(n). In stationary environments,
the previous samples include information that is rele-
vant to determining a measure of update, i.e., the prox-
imity of the adaptive filter coefficients to the optimal
ones. Hence, θ is close to 1. We set to θ = 0.9 for the
VLR–KLMAT algorithm. Moreover, for the stability
of the VLR strategy, μ(n) is further limited by

μ(n + 1) =
⎧
⎨

⎩

μmax, μ(n) > μmax

μmin, μ(n) < μmin

μ(n), otherwise
(15)

where μmax = 2 and μmin = 0.01(0 < μmin < μmax).

Remark 1 μmax = 2 is normally selected near the point
of instability of the algorithm to provide the maximum
possible convergence rate and μmin = 0.01 is chosen
as a trade-off between the steady-state prediction error
and the tracking capabilities of the algorithm [1,12].

4 Performance analysis

The convergence analysis of the algorithm is performed
in this section. For tractable analysis, the following
assumptions are made:

(A1) The measurement noise v(n) is zero mean, inde-
pendent, identically distributed (i.i.d.) and is
independent of input ϕ(n). The variance of mea-
surement noise is σ 2

v .

(A2) The a priori error ea(n) is zero mean and inde-
pendent of the noise v(n).

The above assumptions have been successfully used
in analyzing KAFs [12,44,50]. It can solve the prob-
lem of calculating expected values of some expressions
involving contaminated Gaussian noise which is often
used to model interference environments in the litera-
ture.

Consider the desired response arising from the
model

d(n) = �T
o ϕ(n) + v(n) (16)

where �o denotes the optimal weight vector.
The error weight vector V(n) is defined as

V(n) = �o − �(n). (17)

Thus, the error signal of the algorithm can be expressed
as

e(n) = d(n) − �T (n)ϕ(n)

= VT (n)ϕ(n) + v(n). (18)

Define the a prior error and a posteriori error of the
KLMAT algorithm, respectively, as

ea(n) = VT (n)ϕ(n) (19)

and

ea(n) = VT (n + 1)ϕ(n). (20)

Combining (19) and (20), we have

V(n + 1) − V(n) = [
ep(n) − ea(n)

]
/ϕ(n)

= [
ep(n) − ea(n)

]
ϕ(n)/κ(u(n),u(n)). (21)

Squaring both sides of (21), we have the energy con-
servation relation (ECR) for KLMAT:

‖V(n + 1)‖2
F

+ e2a(n)

κ(u(n),u(n))
= ‖V(n)‖2

F

+ e2p(n)

κ(u(n),u(n))
(22)

where ||V(n)||2
F

�= VT (n)V(n) denotes the weight
error power in F. Taking expectations of both sides
of (22), we have

E
[
‖V(n + 1)‖2

F

]
+ E

[
e2a(n)

κ(u(n),u(n))

]

= E
[
‖V(n)‖2

F

]
+ E

[
e2p(n)

κ(u(n),u(n))

]
(23)

where E [·] stands for taking expectation.
Substituting (19) and (20) into (23), the ECR can be

given as
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E
[
||V(n + 1)||2

F

]
= E

[
||V(n)||2

F

]

− 2μE [ea(n) f (e(n))]

+μ2E
[
κ(u(n),u(n)) f 2(e(n))

]

(24)

where f (e(n)) = e2(n)sign{e(n)} is the error func-
tion. For Gaussian kernel κ(u(n),u(n)) ≡ 1, we obtain

E
[
||V(n + 1)||2

F

]
= E

[
||V(n)||2

F

]

− 2μE [ea(n) f (e(n))] + μ2E
[
f 2(e(n))

]
. (25)

Hence, the weight vector in the KLMAT algorithm can
converge if and only if

E
[
||V(n + 1)||2

F

]
≤ E

[
||V(n)||2

F

]

⇔ −2μE [ea(n) f (e(n))] + μ2E
[
f 2(e(n))

]
≤ 0

⇔ μ ≤ 2E [ea(n) f (e(n))]

E
[
f 2(e(n))

] . (26)

Combing f (e(n)) = e2(n)sign{e(n)} results in

μ ≤ 2E
[
ea(n)e2(n)sign{e(n)}]

E
[
E4(n)

] . (27)

Consider e(n) = ea(n) + v(n) and A2, we have

μ ≤ 2
{
E
[
(e3a(n)sign{e(n)}]+ E

[
ea(n)v2(n)sign{e(n)}]}

E
[
e4a(n)

]+ 2E
[
e2a(n)v2(n)

]+ E
[
v4(n)

] .

(28)

According to the Price theorem [36,40], we obtain

μ ≤
2
√

2
π

1
σe
E
[
e3a(n)e(n)

]+ 2
√

2
π

1
σe
E
[
ea(n)v2(n)e(n)

]

E
[
e4a(n)

]+ 2E
[
e2a(n)

]
σ 2

v + E
[
v4(n)

]

(29)

where σe is the standard deviation of e(n). Thus, a suf-
ficient condition for the mean square convergence of
KLMAT is formulated as

μ ≤
2
√

2
π

1
σe

{
E
[
e4a(n)

]+ E
[
e3a(n)v(n)

]}+ 2
√

2
π

1
σe

{
E
[
E2
a(n)v2(n)

]+ E
[
ea(n)v3(n)

]}

E
[
e4a(n)

]+ 2E
[
e2a(n)

]
σ 2

v + σ 4
v

=
2
√

2
π

1
σe

{
E
[
e4a(n)

]+ E
[
e2a(n)

]
σ 2

v

}

E
[
e4a(n)

]+ 2E
[
e2a(n)

]
σ 2

v + σ 4
v

, i f ∀n (30)

Note that the energy of weight error E
[‖V(n)‖2

F

]

should decrease monotonically if the learning rate sat-
isfies the above inequality.

Remark 2 The above sufficient condition for the mean
square convergence of the KLMAT algorithm is only
of theoretical importance. In practical test, it is diffi-
cult to check exactly. In conventional LMS algorithm,
the mean square convergence behavior can be rigor-
ously analyzed. However, since the central limit theo-
rem is not applicable in the nonlinear model (nonlinear
prediction), E

[
e2a(n)

]
cannot be assumed to be Gaus-

sian.

5 Extension of KLMAT

To further improve the performance of the KLMAT
and VLR–KLMAT algorithms, the recursive strategy
is applied in the LMAT loss function, namely the ker-
nel recursive least mean absolute third (KRLAT) algo-
rithm. To derive the KRLAT algorithm in RKHS, the
novel LMAT function using an exponentially weighted
[29] is firstly defined by

Jr (n) = min
�(n)

⎧
⎨

⎩

n∑

j=1

λn− j
∣∣∣d( j) − �T (n)ϕ( j)

∣∣∣
3

+1

2
λnχ ‖�(n)‖2

}
(31)

where 0  λ < 1 is the forgetting factor and χ is the
small regularization factor which de-emphasizes regu-
larization as time progresses. The algorithm achieves
slow convergence rate and small misadjustment when
λ is close to one. When λ is small, the algorithm con-
verges fast while has high steady-state error. Note that,
1
2λ

nχ ‖�(n)‖2 is a norm penalizing term, which can
guarantee the existence of the inverse of the autocorre-
lationmatrix, especially during the initial update stages
[29]. Then, taking the gradient of Jr (n) with respect to
�(n), we get
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∂ Jr (n)

∂�(n)
= −

n∑

j=1

λn− j

(
d( j) − �T (n)ϕ( j)

)2
∣∣d( j) − �T (n)ϕ( j)

∣∣

×
(
d( j) − ϕT ( j)�(n)

)
ϕ( j) + λnχ�(n)

= −
n∑

j=1

λn− j

(
d( j) − �T (n)ϕ( j)

)2
∣∣d( j) − �T (n)ϕ( j)

∣∣ d( j)ϕT ( j)

+
n∑

j=1

λn− j

(
d( j) − �T (n)ϕ( j)

)2
∣∣d( j) − �T (n)ϕ( j)

∣∣ ϕT ( j)ϕ( j)�(n)

+ λnχ�(n)

= −
n∑

j=1

λn− j

(
d( j) − �T (n)ϕ( j)

)2
∣∣d( j) − �T (n)ϕ( j)

∣∣ d( j)ϕT ( j)

+
⎛

⎝
n∑

j=1

λn− j

(
d( j) − �T (n)ϕ( j)

)2
∣∣d( j) − �T (n)ϕ( j)

∣∣

× ϕT ( j)ϕ( j) + λnχ

)
�(n). (32)

Setting (32) to zero gives

�(n) = �� (33)

where

� =
⎛

⎝
n∑

j=1

λn− j

(
d( j) − �T (n)ϕ( j)

)2
∣∣d( j) − �T (n)ϕ( j)

∣∣ ϕT ( j)ϕ( j) + λnχ

⎞

⎠
−1

and � = ∑n
j=1 λn− j

(
d( j)−�T (n)ϕ( j)

)2
∣∣d( j)−�T (n)ϕ( j)

∣∣ d( j)ϕT ( j).

Define the desired signal vector and global input
vector at time n, respectively, as

d(n) = [d(1), d(2), . . . , d(n)] (34)

�(n) = [
ϕ(1),ϕ(2), . . . ,ϕ(n)

]
,

�(n) = {�(n − 1),ϕ(n)} (35)

and let

�(n) = diag

[
λn−1

(
d(1) − �T (1)ϕ(1)

)2
∣∣d(1) − �T (1)ϕ(1)

∣∣ ,

λn−2

(
d(2) − �T (2)ϕ(2)

)2
∣∣d(2) − �T (2)ϕ(2)

∣∣ , . . . ,

(
d(n) − �T (n)ϕ(n)

)2
∣∣d(n) − �T (n)ϕ(n)

∣∣

]
.

(36)

Then, (33) can be rewritten as below

�(n) =
(
�(n)�(n)�T (n) + λnχI

)−1

×�(n)�(n)d(n). (37)

Applying the matrix inversion lemma [29]

(A + BCD)−1 = A−1 − A−1B(C−1

+DA−1B)−1DA−1 (38)

to (37), with the identifications

A = χλn, B = �(n), C = �(n), D = �T (n)

(39)

we obtain
(
�(n)�(n)�T (n) + λnχI

)−1
�(n)�(n)

= �(n)
(
�(n)�T (n) + λnχ�(n)−1

)−1
. (40)

Substituting the above result into (37), we obtain

�(n) = �(n)
(
�(n)�T (n) + λnχ�(n)−1

)−1
d(n).

(41)

Theweight vector canbe expressed explicitly as a linear
combination of the transformed data, that is

�(n) = �(n)ϒ(n) (42)

where ϒ(n) = (
�(n)�T (n) + λnχ�(n)−1

)
d(n) is

the coefficients vector of theweight, which can be com-
puted by kernel method. For simplicity, we define

	(n) =
(
�(n)�T (n) + λnχ�(n)−1

)−1
. (43)

Then, we have

	(n) =
⎡

⎣
�(n)�T (n − 1) + λnχ�(n)−1 �T (n − 1)ϕ(n)

ϕT (n)ϕ(n − 1) ϕT (n)ϕ(n) + λnχ

[(
d(n)−�T (n)ϕ(n)

)2
∣∣d(n)−�T (n)ϕ(n)

∣∣

]−1

⎤

⎦
−1

=

[
�(n)�T (n − 1) + λnχ�(n)−1 �T (n − 1)ϕ(n)

ϕT (n)�(n − 1) ϕT (n)ϕ(n) + λnχϑ(n)

]−1
(44)
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where ϑ(n) =
[(

d(n)−�T (n)ϕ(n)
)2

∣∣d(n)−�T (n)ϕ(n)
∣∣

]−1

. We can observe

that

	(n)−1 =
[

	(n − 1)−1 θ(n)

θT (n)ϕ(n)�(n − 1) λnχϑ(n) + ϕT (n)ϕ(n)

]−1

(45)

where θ(n) = �T (n − 1)ϕ(n). Then applying the fol-
lowing block matrix inversion identity

[
A B
C D

]
=
[

(A − BD−1C)−1 − A−1B(D − CA−1B)−1

−D−1C(A − BD−1C)−1 (D − CA−1B)−1

]
.

(46)

Using (46), (42) becomes

	(n)−1 = ρ−1(n)

×
[

	(n − 1)ρ(n) + q(n)qT (n) − q(n)

−qT (n) 1

]
(47)

where q(n) = 	(n − 1)θ(n) and ρ(n) = λnχϑ(n) +
ϕT (n)ϕ(n) − qT (n)θ(n).

Combining (37) and (47), we arrive the following
relation

�(n) = 	(n)d(n)

=
[

	(n − 1) + q(n)qT (n)ρ−1(n) − q(n)ρ−1(n)

-q(n)ρ−1(n) ρ−1(n)

]

[
d(n − 1)
d(n)

]

=
[

�(n − 1) − q(n)ρ−1(n)e(n)

ρ−1(n)e(n)

]
. (48)

6 Simulation results

We conduct a series of simulations to evaluate the per-
formance of the proposed algorithms, including simu-
lations on a Mackey–Glass (MG) chaotic time series
prediction and simulations on a sunspot number time
series analysis. We compare the estimation results of
the proposed algorithms with those of the KLMS algo-
rithm and the KRLS algorithm. In the simulation study,
the effectiveness is assessed in terms ofMSE in the test-
ing stage, which is defined as MSE = 10 log10

{
e2(n)

}

[37]. The parameters in algorithms (learning rate, ker-
nel size, etc.) are selected to guarantee the fast and
stable convergence of the algorithms. All the simula-
tion results below are averaged over 100 independent
Monte Carlo runs.

6.1 Example 1: MG chaotic time series prediction

In this example, the simulation studies are carried out
for the MG chaotic time series prediction. The MG
series is generated by adelay ordinary differential equa-
tion [27,29]:

dx(t)

dt
= −qx(t) + mx(t − τ)

1 + x(t − τ)10
(49)

where q = 0.1,m = 0.2, and τ = 30. The sampling
period is 6 s, and time embedding (filter order) is 10.
The white Gaussian noise (WGN) with zero mean and
standard deviation σG = 0.02 is used as a measure-
ment noise. A segment of 2000 samples is used as the
training data and another 2000 as the test data. If the
number of testing iteration 2000 is achieved, then stop
the algorithm.

Firstly, we let h of the KLMAT algorithm vary
within 0.1 ∼ 2 to test the performances of algorithms
under different kernel sizes. When the kernel size is
too small for the data samples, the performance of the
algorithm may degrade since the lack of information
needed in inner product calculation. When the ker-
nel size is relatively small but in a reasonable range
for the data samples, the algorithm converges quickly
with relatively high steady-state error. When the ker-
nel size is getting larger, the crest around the global
optimum becomes wider, so under the fixed learning
rate, the smaller misadjustment and lower convergence
rate are obtained. From Fig. 3, we observed that, for
h ∈ (0.5, 2), the results are quite similar. In follow-
ing simulations, we set h = 1.5, for small steady-state
error. Then, we test the prediction performance of the
proposed algorithms inFigs. 4 and5. Figure 4 shows the
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Fig. 3 Testing MSE curves for kernel sizes (μ = 1)
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Fig. 4 Testing MSE curves of the algorithms
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Fig. 5 Testing MSE curves of the NC-based algorithms

testing MSE under WGN environment. Observe that
the KLMAT and VLR–KLMAT algorithms achieve
improved performance as compared with the KLMS
algorithm. Besides, the VLR–KLMAT algorithm out-
performs the KLMAT algorithm, since it reaches the
similar steady-state error level within fewer iterations.
Owing to using the recursive method, the KRLS and
KRLAT algorithms converge faster than other algo-
rithms. Additionally, the KRLAT algorithm provides
improvement with WGN noise.

Note that the network size of the KAF linearly
increases with the number of training data, which
means that there is a total of 2000 expansion coeffi-
cients at the end of our simulations. This may prohibit
the practical implementation of these algorithms for a
large training set. Therefore, the novelty criterion (NC)
strategy [29] is considered to be a possible solution to
the limitation of the proposed algorithms. TheNCcom-

putes the distance of u(n + 1) to the present dictionary
c j . If the distance is smaller than some preset thresh-
old ζ1(ζ1 > 0), new input data u(n + 1) will not be
added to the dictionary. Only if the magnitude of the
prediction error is larger than another preset threshold
ζ2(ζ2 > 0), new input data will be accepted as a new
center. Guided by this method, the NC–KLMAT and
NC–KRLAT algorithms can be easily derived by intro-
ducing NC in the KLMAT and KRLAT algorithms. To
curb the network size, we have used a NC–KLMAT fil-
ter with ζ1 = 0.1 and ζ2 = 0.001. For the NC–KRLAT
algorithm, we use 20 values of ζ1 and ζ2 uniformly in
the interval of [0.04, 0.2] for the enhanced NC [29].
As can be seen from Fig. 5, the NC method provides
overwhelmingly smaller network size as comparison to
other algorithms with sacrifice of the prediction accu-
racy.

Finally, to quantify the computational burden, we
measured the average run execution time of the algo-
rithm on a 2.1-GHz AMD processor with 2 GB of
RAM, running MATLAB R2013a onWindows 7 envi-
ronment. As one see from Table 2, the KLMS algo-
rithm is the fastest method owing to utilizing gradient
descent. The KRLAT algorithm increases the compu-
tation time, but the faster convergence rate and stable
performance are achieved as compared to other algo-
rithms.

6.2 Example 2: Effect of the measurement noise

In the second example, we focus on the performance
of the proposed algorithms in MG time series pre-
diction for various probability densities. The exper-
imental conditions are considered to be same as in
the example 1, but the measurement noise is con-
sidered as non-Gaussian noise. Since in many phys-
ical environments, the noise is characterized by non-

Table 2 Average computation time per run of the algorithms

Algorithms Computation time (s)

KLMS 75.165688

KLMAT 77.249014

VLR–KLMAT 79.350315

KRLS 121.553110

KRLAT 152.816778

The bold values stand for the proposed algorithms
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Fig. 7 Sunspot number time series

Gaussian distribution. We generate the uniform noise
from the uniform distribution of probability density
function u ∼ 1

b−a , where b = 0.1 and a = −0.1.

We set u(n) =
√

−2σ 2
R log(1 − y(n)) for Rayleigh

noise, where y(n) is a uniform random variable in
(0,1) and σ 2

R = 0.05 is the variance. The square
function is employed to generate the rectangular noise
in MATLAB. The Sinusoidal noise is generated by
u(n) = sin(200πn) + sin(1000πn) + sin(1800πn).
To compare the steady-state performance of the algo-
rithms fairly, we change the parameters so that they

has the similar initial convergence rate. Table 3 shows
a comparison of the KLMS, KLMAT, VLR–KLMAT,
KRLS andKRLAT algorithms. The predicted values of
the KRLAT and Target values are shown in Fig. 6. We
can clearly see that the KLMAT and VLR–KLMAT
algorithms outperform the KLMS and LMAT algo-
rithms for all of the probability densities. The KRLS
andKRLATalgorithms performbetter than theKLMS-
based algorithms, and the KRLAT algorithm achieves
good prediction results in all these cases. The predicted
value of the KRLAT algorithm agrees with the tar-
get well. Specifically, the performance of the proposed
algorithms is much better than that of the existing algo-
rithms with uniform noise and rectangular noise.

6.3 Example 3: Application of the sunspot number
time series analysis

To test the performance of algorithms in realistic appli-
cations, the proposed algorithms are applied to adap-
tive prediction of the annually recorded sunspot time
series for the years 1700–1997 [61]. A segment of the
processed sunspot number series is shown in Fig. 7.
The testing MSE is calculated based on 100 test data.
The time embedding is 2. We choose to termination the
algorithm when the testing iteration 100 is achieved.
For the sake of a fair comparison, we let the algorithms
use the different learning rates to accomplish similar
convergence rate. In Table 4, the prediction results for
WGN with σG = 0.1 are illustrated. It is concluded
that the proposed algorithms are superior to the exist-
ing algorithms in terms of the steady-state prediction
error.

7 Conclusion

We proposed a KAF based on LMAT loss function
namedKLMAT,whichwas derived by utilizing the ker-

Table 4 Steady-state
testing MSEs

Algorithm Parameters Testing MSE

KLMS μ = 0.5, h = 1.5 0.049139

KLMAT μ = 1, h = 1.5 0.039445

VLR–KLMAT h = 1.5, β = 0.05, l = 0.001 0.032900

KRLS λ = 0.99, h = 1 6.3603e−05

KRLAT λ = 0.99, h = 1 5.7681e−05
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nel method and gradient descent method. Besides, its
VLR version was proposed by using Lorentzian func-
tion to accelerate the initial convergence rate. In the
analysis, it has been shown the upper bound of the
KLAMT algorithm for mean square convergence. To
further enhance the performance of the proposed algo-
rithms, we developed a kernel extension of theKLMAT
algorithm in a recursive strategy. The new KRLAT
algorithm incorporates an exponentially weighted into
the LMAT loss function to adapt the tap-weight vector
in feature space which can maintain robustness against
different noise environments and can increase the con-
vergence rate for time series prediction. We carried
out simulations that confirmed the superiority of the
proposed algorithms. Our future works will concern
with using real data in adaptive prediction. Some ini-
tial works have been done.
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