
Nonlinear Dyn (2017) 90:889–897
DOI 10.1007/s11071-017-3700-1

ORIGINAL PAPER

Rossby solitary waves excited by the unstable topography
in weak shear flow

Bao-Jun Zhao · Ru-Yun Wang · Qing Fang ·
Wen-Jin Sun · Tian-Ming Zhan

Received: 19 October 2016 / Accepted: 25 July 2017 / Published online: 2 August 2017
© Springer Science+Business Media B.V. 2017

Abstract A new forced KdV equation including
topography is derived and the numerical solutions are
given. The topographic variable should be related with
the temporal and spatial function,which is called unsta-
ble topography. The physical features of the solitary
waves about the mass and energy are discussed by the-
oretical analysis. In further studies, the pseudo-spectral
numerical methods are used to discuss the evolution of
solitarywave generated by the topographywhenmerid-
ional wave number m = 1; in a similar way, we ana-
lyze the solitary wave when meridional wave number
m = 2. At last, wemake the comparison for the charac-
teristics of waves betweenm = 1 andm = 2, the wave
of meridional number m = 1 plays a leading role.
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1 Introduction

In geophysical fluid, nonlinear waves for large scale
are important for the dynamics of the ocean and atmo-
sphere [1–4]. In particular, much attention has been
paid to the Rossby solitary wave, the waves amplitude
evolution satisfied the KdV equation under plane beta
approximation and the effect of horizontal shearing
flow [5,6]. Subsequently, peoplemake further research
on the characteristics of Rossby solitary wave and
reach many important conclusions [7–16]. The non-
linear waves have been discussed by many researches
in the atmosphere, especially the solitary waves. For
example, the solitary waves have been investigated in
the mid-atmosphere where the African easterly waves
were propagated [17]. The importance of nonlinear
wave was also researched in oceanography, some non-
linear internal waves in the deep basin of the South
China Sea have been evaluated the mechanisms for
their generation and evolution [18]. Moreover, some
forcing factors such as topography are very important in
large-scale motion, so the influences of topography on
Rossby solitary wave also attract more attention. The
interaction between zonal flow and slowly moving free
wave could cause atmosphere blocking under the topo-
graphic forcing effect [19].What is more, the blocking
phenomenon is a kind of covibration characteristic of
stabilizing balance state under the effect of external
source [20–22], the large-scale topographic effect even
would affect global atmosphere circulation [23,24].
The topography function is in relation to longitude and
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latitude inmany researches [25,26]. Actually, all things
on earth are in movement and variation; therefore, the
topography and external source also vary with time
in the fluid [27–29]. Yang [30,31] derived some new
equations governing the behavior of Rossby solitary
waves with the effect of topography, and discussed the
changes of nonlinear long wave amplitude and wave-
form with numerical method. So the topographic vari-
able including the temporal and spatial function which
is called unstable topography is so important.

We note that because of the multi-scale feature of
atmosphere and ocean, most of the above-mentioned
researches were carried out by employing multi-scale
analysis and perturbationmethod. Thesewaves are also
called weak nonlinear waves. While, besides of the
multi-scale method, the variational-asymptotic method
is also an effective method to deal with the problem of
amplitude modulation of waves, many work has been
done to describe the amplitude modulation of trains
of solitons [32–35]. On the other hand, the study of
the exact solutions and feature of solitary wave equa-
tions is another important issue, many references were
given [36–40].

In the present paper, a new forcedKdVequationwith
the topographic effect is derived, then we discuss the
effect excited by the topography. Concretely, starting
from the quasi-geostrophic potential vorticity equation,
in terms of the unstable topography, using scale anal-
ysis method, Rossby solitary wave model is derived in
Sect. 2. In terms of different topographic conditions, by
comparing the waterfall plots, we give the characteris-
tics of the wave amplitude according to the numerical
simulation in Sect. 3. Finally, some conclusions are
obtained in Sect. 4.

2 Derivation of governing equation

2.1 Governing equation and boundary conditions

Based on the quasi-geostrophic barotropicmodel in the
paper of Pedlosky [41], it is given the vorticity equation
including the unstable topography is
(

∂

∂t
+ ∂�

∂x

∂

∂y
− ∂�

∂y

∂

∂x

)

×
[
f + ∇2� + f0

H
hb(x, y, t)

]
= 0 (1)

where� is the stream function, f is the coriolis param-
eter, ∇2 = ∂2

∂x2
+ ∂2

∂y2
is Laplace operator, hb(x, y, t)

is the unstable topography. We make nondimensional-
ization on Eq. (1)

(x, y) = L(x∗, y∗), t =
(
L

U

)
t∗,

(u, v) = U (u∗, v∗), � = UL�∗

f = f0 + β0y = f0 + U

L2 β∗Ly∗,

hb = H

f0

U

L
h∗
b (2)

substituting Eq. (2) into Eq. (1) yields(
U

L

∂

∂t∗
+ UL

L

∂�∗

∂x∗
1

L

∂

∂y∗ − UL

L

∂�∗

∂y∗
1

L

∂

∂x∗

)

×
[
f0 + U

L2 β∗Ly∗ + UL

L2 ∇2�∗ + U

L
h∗
b)

]
= 0

(3)

omitting the asterisk, then the nondimensional equation
is(

∂

∂t
+ ∂�

∂x

∂

∂y
− ∂�

∂y

∂

∂x

)

×
[
βy + ∇2� + hb(x, y, t)

]
= 0 (4)

the side boundary condition of nondimensional form is

∂�

∂x
= 0, y = 0, 1 (5)

2.2 Derivation of forced KdV equation with
topographic forcing

We assume that the stream function form is

�(x, y, t) = −
∫ y

0
[u(y) − c0 + εα]dy

+ εψ(x, y, t) (6)

where u(y) is the shearing zonal flow, α is a measure of
the proximity of the system to a resonate, and may be
referred to as a detuning parameter, c0 is equal to the
phase speed of linear long wave in the shearing flow,
ψ(x, y, t) is disturbed stream function, ε is a small
magnitude parameter. We take the function form of
topography as

hb(x, y, t) = h0(y) + εh1(x, t) (7)

here h0(y) is the topographic basic function with zonal
changes, h1(x, t) is the disturbed function with merid-
ional direction and time changes, substituting Eqs. (6),
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(7) into Eq. (4), combinedwith the boundary condition,
we derive the equation regarding the disturbed stream
function.{

∂

∂t
+ ε

∂ψ

∂x

∂

∂y
−

[
−(u(y) − c0 + εα) + ε

∂ψ

∂y

]
∂

∂x

}

×
[
ε∇2ψ − u′(y) + βy + h0(y) + εh1(x, t)

]
= 0

(8)

We look for theweakly nonlinear problem by themulti-
ple scale method, in order to achieve a balance between
nonlinearity and dispersion, so we make Gardner–
Morikawa conversion on variables x, t ,

X = ε
1
2 x, T = ε

3
2 t (9)

here ε(0 < ε � 1) is a small parameter to measure the
degree of nonlinearity, and we set

h1(x, t) = εH(X, T ) (10)

In order to obtain the asymptotic solution ofweak linear
problems, substituting Eqs. (9), (10) into Eq. (8), then
we have

∂ψ

∂X
[h′

0(y) + β − u′′(y)] + (u(y) − c0)
∂

∂X

∂2ψ

∂y2

+ ε

[
α

∂

∂X

∂2ψ

∂y2
+ (u(y) − c0)

∂

∂X

∂2ψ

∂X2

+ ∂

∂T

(
∂2ψ

∂y2

)
+ J

(
ψ,

∂2ψ

∂y2

)

+ (u(y) − c0)
∂H(X, T )

∂X

]

+ O(ε2) = 0 (11)

where

J [a, b] = ∂a

∂x

∂b

∂y
− ∂a

∂y

∂b

∂x
(12)

the disturbed stream function has small parameter
expansion formula as follows

ψ = ψ0(X, y, T ) + εψ1(X, y, T )

+ ε2ψ2(X, y, T ) + · · · (13)

substituting Eq. (13) into Eq. (11),
ε0 order

[u(y) − c0] ∂2

∂y2

(
∂ψ0

∂X

)

+ [
h′
0(y) + β − u′′(y)

] ∂ψ0

∂X
= 0 (14)

∂ψ0

∂X
= 0, y = 0, 1 (15)

we assume ψ0 = A(X, T )φ0(y), according to the
boundary condition,[
d2

dy2
+ h′

0(y) + β − u′′(y)
u(y) − c0

]
φ0(y) = 0 (16)

φ0(0) = φ0(1) = 0 (17)

in order to ascertain amplitude A(X, T ), we need to
solve high-order problem.
ε1 order

L1[ψ1] = −
{
L0[ψ0] + J

[
ψ0,

∂2ψ0

∂y2

]

+[u(y) − c0]∂H(X, T )

∂X

]}
(18)

∂ψ1

∂X
= 0, y = 0, 1 (19)

here

L0 = [u(y) − c0] ∂3

∂y2∂X

+[h′
0(y) + β − u′′(y)] ∂

∂X
(20)

L1 = [u(y) − c0] ∂3

∂X3 + ∂3

∂T ∂y2
+ α

∂

∂X

∂2

∂y2
(21)

according to Eq. (18), we make integration along y
interval [0, 1], and get∫ 1

0

φ0(y)L1[ψ1]
u(y) − c0

dy =
∫ 1

0
φ0(y)

∂3ψ1

∂y2∂X
dy

+
∫ 1

0

1

u(y) − c0
φ0(y)[h′

0(y) + β − u′′(y)]∂ψ1

∂X
dy

(22)

assuming

ψ1 = B(X, T )φ1(y) (23)

we get∫ 1

0

φ0(y)L1[ψ1]
u(y) − c0

dy = ∂B(X, T )

∂X

×
[∫ 1

0
φ0(y)

∂2φ1(y)

∂y2
dy

+
∫ 1

0

φ0(y)φ1(y)

u(y) − c0
(h′

0(y) + β − u′′(y))dy
]

(24)

because of

φ0
∂2φ1

∂y2
= ∂

∂y

(
φ0

∂φ1

∂y

)
− ∂

∂y

(
φ1

∂φ0

∂y

)

+φ1
∂2φ0

∂y2
(25)
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making integration on both ends along y interval [0, 1],
then
∫ 1

0
φ0(y)

∂2φ1(y)

∂y2
dy (26)

=
∫ 1

0

[
∂

∂y

(
φ0

∂φ1

∂y

)
− ∂

∂y

(
φ1

∂φ0

∂y

)
+ φ1

∂2φ0

∂y2

]
dy

based on the boundary condition Eq. (19), there is
φ1(0) = φ1(1) = 0, then the above equation can be
written as∫ 1

0
φ0(y)

∂2φ1(y)

∂y2
dy =

∫ 1

0
φ1

∂2φ0

∂y2
dy (27)

substituting Eq. (27) into Eq. (24) leads to
∫ 1

0

φ0(y)L1[ψ1]
u(y) − c0

dy = ∂B(X, T )

∂X

×
[∫ 1

0
φ1

(
∂2φ0

∂y2
+ φ0(y)

u(y) − c0
(h′

0(y) + β − u′′(y))
)
dy

]

(28)

based on Eq. (16), we get∫ 1

0

φ0(y)L1[ψ1]
u(y) − c0

dy = 0 (29)

so∫ 1

0
φ0(y)

∂H(X, T )

∂X
dy

+α

∫ 1

0

φ1(y)

u(y) − c0

∂

∂X

∂2ψ1

∂y2
dy

+
∫ 1

0

φ0(y)

u(y) − c0
L0[ψ0]dy

+
∫ 1

0

φ0(y)

u(y) − c0
J

[
ψ0,

∂2ψ0

∂y2

]}
dy = 0 (30)

based on Eq. (24),
∫ 1

0

h′
0(y) + β − u′′(y)

(u(y) − c0)2
φ2
0(y)dy

∂A

∂T

+
∫ 1

0

φ3
0(y)

u(y) − c0

d

dy

(
h′
0(y) + β − u′′(y)

u(y) − c0

)]
dyA

∂A

∂X

+α
∂A

∂X

∫ 1

0

φ1(y)

u(y) − c0

∂2φ1(y)

∂y2
dy

−
∫ 1

0
φ2
0(y)dy

∂3A

∂X3 = ∂H(X, T )

∂X

∫ 1

0
φ0(y)dy (31)

Finally we get

∂A

∂T
+ α

∂A

∂X
+ α1A

∂A

∂X
+ α2

∂3A

∂X3 = α3
∂H(X, T )

∂X
(32)

where

I =
∫ 1

0

h′
0(y) + β − u′′(y)

(u(y) − c0)2
φ2
0(y)dy (33)

α1 = 1

I

∫ 1

0

φ3
0(y)

u(y) − c0

d

dy

(
h′
0(y) + β − u′′(y)

u(y) − c0

)]
dy

(34)

α2 = −1

I

∫ 1

0
φ2
0(y)dy (35)

α3 = 1

I

∫ 1

0
φ0(y)dy (36)

Regarding Eq. (32), in terms of X , we make integration
from −∞ to +∞. Setting |X | → ∞, A(X, T ) → 0,
and we get the mass equation about the solitary wave.

∂

∂T

∫ ∞

−∞
A(X, T )dX =

∫ ∞

−∞
∂H(X, T )

∂X
dX (37)

Eq. (37) indicates that because of the forced effect, the
solitarywavemass is not conserved, with time changes,
when the forced member value becomes zero, the mass
will be conserved. Then, A(X, T )multiply by Eq. (32),
and making integration on X from −∞ to +∞, we set
|X | → ∞, A(X, T ) → 0, and get the energy equation
about the solitary wave.

∂

∂T

∫ ∞

−∞
1

2
A2(X, T )dX

= α3

∫ ∞

−∞
A(X, T )

∂H(X, T )

∂X
dX (38)

obviously, the energy of solitary wave will change with
the topographic forcing.

In the absence of topographic forcing and parame-
ter α, Eq. (32) degenerates to the standard KdV equa-
tion. The solution of KdV equation has been studied
all the time, and single solitary and double solitary
wave solutions were obtained by the inverse scatter-
ing [42], the position solutions were found later which
exhibit the positive eigenvalues embedded into the con-
tinuous spectrum [43,44], the periodic wave solutions
were obtained with Jacobian elliptic functions and the
Exp-function methods [45–47]. Meanwhile, the exact
n-soliton solution is given by Ablowitz and Clark-
son [48]. Le andNguyen developed the theory of ampli-
tude modulation of waves governed by KdV equation
with the variational-asymptotic method [33], and two
asymptotic solutions describing the amplitude modu-
lation of trains of solitons and of positon show quite
agreement with the exact solutions [34]. In all of the
above studies, the clock shape solitary wave solution is
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A(X, T ) = M sec h2
(√

α1M
12α2

(X − α1M
3 T )

]
, where M

is themaximumamplitude at the initialmoment, α1M
3 is

themoving speed of the solitarywaves, and
√

12α2
α1M

is the
width of the solitary waves, α1 and α2 are determined
by the solution of Eqs. (16), (17). When the right end
is inhomogeneous, Eq. (32) has no analytical solution
and needs to be solved with the numerical method.

3 Numerical method and conclusion

3.1 Calculation method and process

Considering the weak shear zonal flow: u = u0 + δy,
(h′

0(y) = H0 + δy), 0 < δ � 1, H0 is a constant and
the topographic slope changes slowly, let δ = 0.0024,
u0 = 0.5, H0 = 1, and the shearing characteristic of
base flow u(y), in terms of Eq. (16) with eigenvalue
problem. We make asymptotic solution, and set

φ0 = φ
(0)
0 + δφ

(1)
0 + · · ·

c0 = c00 + δc01 + · · · (39)

the approximate equations of each order about δ can be
written as
δ0 order:⎧⎨
⎩

d2φ(0)
0

dy2 + β+H0
u0−c00

φ
(0)
0 = 0

φ
(0)
0 (y) = 0, y = 0, 1

(40)

obviously the solution of Eq. (40) is

φ
(0)
0 = sinmπy, c00 = u0 − β + H0

m2π2

δ1 order:⎧⎨
⎩

d2φ(1)
0

dy2 + β+H0
u0−c00

φ
(1)
0 = − (y−c01)

u0−c00

d2φ(0)
0

dy2 − yφ(0)
0

u0−c00

φ
(1)
0 (y) = 0, y = 0, 1

(41)

we get⎧⎪⎪⎨
⎪⎪⎩

d2φ(1)
0

dy2 + β+H0
u0−c00

φ
(1)
0 = y−c01

u0−c00
m2π2 sinmπy

− y
u0−c00

sinmπy

φ
(1)
0 (y) = 0, y = 0, 1

(42)

c01 = m2π2-1
2m2π2 , the solution of Eq. (42) is

φ
(1)
0 = 1

4mπ

(
m2π2 − 1

u0 − c00

)

×
[
(y − y2) cosmπy + y

mπ
sinmπy

]
(43)

Finally, φ0 approximate solution is

φ0 = sinmπy + δ

4mπ

(
m2π2 − 1

u0 − c00

)

×
[
(y − y2) cosmπy + y

mπ
sinmπy

]
(44)

Considering the particularity of Eq. (32), by means of
thepseudo-spectralmethod [49],wefindout the numer-
ical solution of Eq. (32). The concrete method is using
discrete Fourier transform from the aspect of space, and
fourth-order Runge–Kutta method from the aspect of
time, then we make numerical solution on such a prob-
lem by means of Eq. (32), and discuss the problem in
one cycle [−π, π ] from the aspect of space. First of
all, making average segmentation on the interval into
N grid points, x j = −π + 2π j

N , here j = 0, . . . , N −1,
we take the discrete Fourier transform û(k, t), let

û(k, t) = F(u) = 1

N

N∑
j=0

u(x j , t)e
−ikx j ,

k = −N

2
+ 1, . . . ,

N

2
(45)

then the discrete Fourier transform can be approxi-
mately indicated as

u(x j , t) = F−1(û) =
N/2∑

k=−N/2+1

û(k, t)eikx j (46)

and the differential expression formula on the Fourier
transform is

∂nû(k, t)

∂xn
= (ik)nû(k, t) (47)

according to the above formulas, Ax = F−1(ikF(A)),
Axxx = −F−1(ik3F(A)), we use the fourth-order
Runge–Kutta method from the aspect of time

AT = −α1AF
−1(ikF(A))

+α2F
−1(ik3F(A))

+α3F
−1(ikF(H)) (48)

let

f (An, Tn) = −α1AF
−1(ikF(An))

+α2F
−1(ik3F(An)) (49)

a = f (An, Tn) + α3F
−1(ikF(H(Tn))) (50)

b = f

(
An + �T

2
a, Tn+ 1

2

)

+α3F
−1

(
ikF

(
H

(
Tn+ 1

2

)))
(51)
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c = f

(
An + �T

2
b, Tn+ 1

2

)

+α3F
−1

(
ikF

(
H

(
Tn+ 1

2

)))
(52)

d = f (An + c�T, Tn+1)

+α3F
−1 (ikF (H (Tn+1))) (53)

An+1 = An + 1

6
�T (a + 2b + 2c + d) (54)

3.2 The effects of unstable topography and steady
topography

During numerical calculation process, we get the
topography expression formula as

H(X, T ) = −e
−(X+50)2

4 +MT (55)

M is given parameter, regarding the correlation coef-
ficient of given base flow u(y) and Eq. (16). When
meridional wave number m = 1, we can calculate
the coefficients α1, α2, α3 in Eq. (32) and get α1 =
−0.003, α2 = −0.02, α3 = −0.03, it is given for a
detuning parameter α = 0.2, and we provide the initial
condition A(X, T ) = 0, T = 0, Figs. 1, 2, 3, 4, 5 and
6 show the numerical results.

When M = 0, the solitary wave excited by the
topography in the forced area, the amplitude almost
remains invariant. Cnoidal wave trains are produced
in the downstream position, and no wave movement
is produced in the upward position. When M < 0,
for M = −1 × 10−2, it is shown that the solitary
wave amplitude first increases and then decreases with
time. The amplitude of cnoidal wave trains produced
in the downstream position comparatively strengthen
and wavelength shortens. When M = 1 × 10−2, the
results tend to be different circumstances, the solitary
wave amplitude increases rapidly with time T .

When meridional wave number m = 2, we can
calculate the coefficients α1 = 1.3 × 10−4, α2 =
−8 × 10−4, α3 = 1.5 × 10−4, it is given a detuning
parameter α = 0.01, here giving the initial condition
A(X, T ) = 0T = 0, Figs. 7, 8 show the numerical
results.

Because of the changes of value α, α1, α2, the wave
trains shown in Figs. 7 and 8 demonstrate the charac-
teristics of long exciting time, slow propagation speed
and small amplitude. It is seen that the opposite signs
of α3 make the topography forms changes, thereby the
amplitude form of solitary wave is sunken downward.

Fig. 1 The waveform excited by the topography (m = 1), T
from 0 to 200, M = 0

Fig. 2 The waveform excited by the topography (m = 1), T =
200, M = 0

Fig. 3 The waveform excited by the topography (m = 1), T
from 0 to 200, M = −0.01

Comparing m = 2 with m = 1, the amplitude of soli-
tary wave becomes much smaller. When M changes,
comparing Fig. 1 with Fig. 7, it can be observed that the
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Rossby solitary waves excited by the unstable topography 895

Fig. 4 The waveform excited by the topography (m = 1), T =
200, M = −0.01

Fig. 5 The waveform excited by the topography (m = 1), T
from 0 to 200, M = 0.01

Fig. 6 The waveform excited by the topography (m = 1), T =
200, M = 0.01

Fig. 7 The waveform excited by the topography (m = 2), T
from 0 to 5000, M = 0

Fig. 8 The waveform excited by the topography (m = 2), T
from 0 to 5000, M = −0.01

amplitude of wave changes are similar with meridional
wave numberm = 1, butM = −1×10−2, the position
of the solitary wave moves downstream with time.

4 Conclusion

This paper derives the nonlinear forced KdV equation
with unstable topography, and discusses the mass and
energy conservation of solitarywave.Without the topo-
graphic effect, the mass and energy will be conserved.
With the topographic forcing, the mass and energy will
not be conserved. The related results are numerically
simulated with the pseudo-spectral method.

(1) The interaction effect between solitary waves and
stable topographic forms, nomatter themeridional
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896 B.-J. Zhao et al.

wave number m = 1 or m = 2, the amplitude
of solitary wave is almost unchanged. Comparing
with the train of waves m = 1, the amplitude of
the solitary waves and downstream train of waves
are weaker when m = 2 under the effect of the
topography.

(2) The differences between the stable topography and
the solitary wave excited by the unstable topog-
raphy. When M < 0, the wave trains ampli-
tude change obviously, the amplitude of the soli-
tary wave decrease, the downstream cosine wave
amplitude increases with the time, wavelength
becomes shorter. When M > 0, the topographic
effect is obvious, the amplitude of the solitary
wave is the largest at the end of calculation
time.

(3) The change of topography variable of h0(y) has
relationship with the coefficient of forced KdV
equation, and it has an effect on the numerical
solution of whole model. Therefore, the topogra-
phy affects not only the spatial structure of wave,
but also the amplitude of wave.

(4) The model of Rossby solitary waves is derived
by perturbation expansions and stretching trans-
formations of time and space; it is interesting to
derive the equations by using the direct variational-
asymptotic analysis [32,33], so the study of ampli-
tude modulation of n-soliton solutions for the
Rossby waves will be the topics of our following
work.
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