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Abstract In this study, the yaw dynamics of a towed
caster wheel system is analysed via an in-plane, one
degree-of-freedom mechanical model. The force and
aligning torque generated by the elastic tyre are cal-
culated by means of a semi-stationary tyre model,
in which the piecewise-smooth characteristic of the
tyre forces is also considered, resulting in a dynami-
cal systemwith higher-order discontinuities. The focus
of our analysis is the Hopf bifurcation affected by
the non-smoothness of the system. The structure of
the analysis is organised in a similar way as in case
of smooth bifurcations. Firstly, the centre-manifold
reduction is performed, then we compose the normal
form of the bifurcation. Based on the Galerkin tech-
nique an approximate, semi-analytical method to cal-
culate the limit cycles is introduced and compared with
the method of collocation. The analysis provides a
deeper insight into the development of the vibrations
associated with wheel shimmy and demonstrate how
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Department of Hydrodynamic Systems, Budapest
University of Technology and Economics, Budapest,
Hungary
e-mail: cshos@hds.bme.hu

the non-smoothness due to contact-friction influences
the dynamic behaviour.
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1 Introduction

The vibration of the towed wheel is one of the most
common stability problem in vehicle dynamics. The
vibrations excited by the dynamically varying forces
in the tyre–road contact can arise at various speeds on
several types of vehicles, such as motorcycles [17] and
trailers [5,18], but it is also common with aircraft land-
ing gears [2,24]. Many studies investigate the dynam-
ics of the wheel-shimmy phenomenon using different
tyre models with various complexity. The rigid wheel
model with single contact point [23], which is the sim-
plest from the physical point of view, provides ana-
lytical solutions that can give a good insight into the
mechanism behind the phenomenon. However, due to
the necessary simplifications they leave certain details
undiscovered. More accurate results can be achieved
by simple continuum models [21] or more complex
finite element models [9,10], which try to capture the
instantaneous shape of the deformed tyre to calculate
the deformation forces. However, these methods usu-
ally involve complex calculations making necessary
the use of numerical methods and, in the meantime,
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preventing qualitative analysis. On the other hand, the
accuracy of the results can be increased by addingmore
parameters assigned to specific features of the tyre [7].
Although this approach can be very efficient in indus-
trial applications, the high number of parameters may
also result in losing parametric insight into the core of
the dynamics.

In our study, we investigate the tyre dynamics
through a model which assumes quasi steady-state tyre
deformation; however, some features of the contact
dynamics are still taken into account via an ordinary
differential equation (ODE) formulated at the so-called
leading point of the contact patch. Despite the fact
that the linear stability analysis of this system is thor-
oughly performed in former studies [13,14], the non-
linear analysis—as we will show—still can reveal new
results.

The nonlinear dynamics of the tyre is highly influ-
enced by the contact friction, which limits the defor-
mation and the generated tyre forces. By steady-state
tyre models, this phenomenon is typically considered
through nonlinear force and self-aligning-torque char-
acteristics [14]. These can be derived by integrating
the (assumed) deformation shape throughout the con-
tact patch which typically results a piecewise-smooth
function. Due to the complicated handling of these, one
often uses so-called semi-empirical tyre models, such
as Pacejka’s Magic Formula [15] or other continuously
differentiable alternatives [25], that capture the satu-
ration of the tyre force at large deformations. These
characteristics, however, are less accurate for smaller
deformations, whichmay result a significant difference
in the way the limit cycles above the linearly unstable
domains develop [12]. In our study, this effect will be
presented using the force and aligning-torque charac-
teristics from the brush tyre model [14]. These lead to
a system, which is only one time continuously differ-
entiable as the second-order terms are only piecewise-
smooth.

Piecewise-smooth ODE systems can be classified
by their level of discontinuousness [19]. The so-called
hybrid and Filippov systems, which feature the most
severe discontinuity, can produce a various set of
bifurcations only characteristic to these systems [3,4].
Weaker discontinuity can be observed in piecewise-
smooth continuous systems. As the name suggests,
these systems are continuous but their Jacobian is only
piecewise continuous. In these kinds of systems, one
may find so-called discontinuous bifurcations, which

can be either analogous to bifurcations in smooth sys-
tems or unique to piecewise-smooth ones [12,19,20].
The fourth category refers to systems with higher-
order discontinuity, which is rarely addressed in stud-
ies investigating piecewise-smooth dynamics due to the
fact that as a general rule, these feature the same types
of bifurcations as smooth systems [19]. Nevertheless,
one may still be interested in the analytical study of
such systems, as it can provide formulae, which help
to understand the qualitative behaviour of the actual
system. However, because of the non-smoothness of
the nonlinear terms, the bifurcations may be degener-
ate and the usual analytical tools, like normal forms,
cannot be used directly.

In our study, we present a semi-analytical solution
for the case of piecewise-smooth force characteristics
to determine the dynamics for relatively small vibration
amplitudes, which by topological extrapolation also
provides results in connection with the global bifur-
cation of the system [8,11].

The rest of the paper is organised as follows. In
Sect. 2, we present the governing equations and tyre
dynamics. Section 3 presents the results of linear stabil-
ity analysis, while in Sect. 4 the centre-manifold reduc-
tion is performed. In Sect. 5, we compose the normal
form for oscillatory loss of stability, whereas in Sect. 6
the related periodic orbits are calculated. Afterwards,
Sect. 7 investigates the linear stability of the periodic
orbits. The results and the conclusions of the paper are
summarised in Sect. 8.

2 The governing equations of a shimmying wheel

In this study, we analyse the dynamics of a towedwheel
using an in-plane model as shown in Fig. 1. The model
consists of a tyre and a rigid caster which is attached to
the king pin at J, and it is also supported by a torsional
spring and damper with a stiffness kt and damping dt .
The length of the caster is denoted by l, while the posi-
tion of the common centre of gravity C is characterised
by lC. The overall mass of the caster wheel system is
m, whereas the mass moment of inertia with respect
to the centre of gravity is JC. The king pin is towed
along the X -direction with a constant speed V , which
can be formulated as a time-dependent geometric con-
straint XJ (t) = V t . Thus, the system has one degree
of freedom, and the deflection angle ψ can be chosen
as generalised coordinate.
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Fig. 1 Top view of the caster and the elastic tyre towed at the
king pin J
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Fig. 2 Typical tyre force and aligning-torque characteristics
based on the Magic Formula [15]

One can use the Lagrange’s equation of the second
kind to derive the equation of motion, which leads to

(JC + ml2C)ψ̈ + dt ψ̇ + ktψ = M − Fl, (1)

where F andM are the lateral force and aligning torque
generated by tyre deformation, respectively. Note that
this standard model is used also in [2,13] and [21]

2.1 Tyre characteristics

In practice, the tyre force and aligning torque are usu-
ally calculated by steady-state characteristics F(α) and
M(α), where α is the so-called side slip angle. In
the most common cases, the tyre characteristics are
described by Pacejka’s Magic Formula [14] that can be
parameterised by steady-state laboratory experiments.
Figure 2 shows typical characteristics of the tyre force
and aligning torque in steady-state conditions. Since
Pacejka’sMagic Formula uses trignometrical functions
with constant parameters, the tyre characteristics have
continuous derivatives of all orders.

α

αα

F M

α

α

v

x

x

x

y

y

y

x y

z
Y

X
Z

LR

LR

LR

(a)

(b)

(c)

(a)
(b) (c)

(c)

(b)

(a)

T

T

T

T

T

sliding

sticking

sticking

sliding

full sliding

vT

vT

vT

Fig. 3 Phenomenon of tyre force and aligning-torque generation
by means of the brush tyre model

2.1.1 The source of higher-order discontinuities

The simplest physical interpretation of the tyre force
characteristics in Fig. 2 is based on the brush tyremodel
(see Fig. 3). A detailed discussion of this tyre model
can be found in [14], and here we summarise the basic
assumptions of the model only.

In the brush tyre model, the tyre particles along the
tyre centre-line are considered as separated thread ele-
ments. In steady-state condition, the lateral deforma-
tion is described by a linear function in the sticking
zone of the contact patch. The tangent is determined
by the side slip angle α which is defined for the brush
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model as the angle between the velocity of the wheel
centre point and the plane of the wheel. The lateral
deformation of the tyre elements increases linearly as
they travel backwards along the contact patch, as far as
the friction force acting on them is below the thresh-
old where the tyre elements start sliding. This is usu-
ally determined by considering parabolic normal force
distribution in the contact patch which together with
the coefficient of friction determines an upper limit for
the lateral force distribution. Since tyre elements are
considered as massless springs with linear character-
istics, after they start sliding, their deformations are
also characterised by a parabolic function in the slid-
ing zone. In case of steady-state, sticking and sliding
zones are related to the front and rear parts of the con-
tact patch, respectively. The lateral tyre force and the
aligning moment can be calculated by integrating the
linear and the parabolic deformations along the con-
tact patch. See Fig. 3 for the graphical representation
of the deformations in the contact patch and the gen-
erated tyre forces. This figure with similar meaning is
originally presented in [14].

Based on the brush tyre model, the formulae of the
tyre force and the aligning moment read
F(α)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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+ 2ka2 tan α, −αcrit ≤ α < 0,

8

27

a6k3

F2
z μ2 tan3 α − 4

3

a4k2

Fzμ
tan2 α

+ 2ka2 tan α, 0 ≤ α < αcrit,

μFz, αcrit ≤ α

(2)
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M(α)

=
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Fig. 4 Stretched-string tyre model, with linearly approximated
deformation in the sticking region

respectively. Here, a is the half-length of the contact
patch, k denotes the distributed stiffness of the tyre
thread elements, Fz is the vertical force compressing
the tyre to the ground and μ is the coefficient of fric-
tion. The critical side slip angle αcrit is addressed to the
deformation level, where the whole contact patch starts
sliding and the generated tyre force saturates.

The formulae (2) and (3) provide characteristics
with higher-order discontinuities, namely while their
first derivatives with respect to α is continuous, the sec-
ond derivatives are only piecewise-smooth. However,
this property of the tyre force characteristics is usually
not considered in empirical formulae, like Pacejka’s
Magic Formula.

2.1.2 Tyre model to be used

The aim of this paper is the analysis of the effect of
higher-order discontinuities in the tyre characteristics.
Moreover, instead of using the steady-state tyremodels,
we use a semi-stationary tyre model [14] to take into
account the dynamics of the tyre–ground contact, too.
This is carried out by means of the so-called stretched-
string model, which considers tyre deformations out-
side the contact patch as well, see Fig. 4.

In non-steady-state cases, the so-called memory
effect of the tyre–ground contact can have a significant
part in tyre dynamics. This effect can be originated
in the kinematic constraint of rolling, which can be
described by a partial differential equation (PDE) with
respect to the deformation function of the contact patch
centre-line. The kinematic constraint of rolling can also
be formulated for the leading point only, yielding the
ODE [21]:

q̇L = V sinψ − (a− l)ψ̇ + qL
σ

(
qLψ̇ − V cosψ

)
, (4)

whereσ is the so-called relaxation lengthof the tyre that
characterises the exponential decaying deformation
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shape for the non-contacting parts of the tyre centre-
line, see Fig. 4. ODE (4) is more commonly given by
means of the side slip angle α = arctan(qL/σ), using
the boundary condition that the deformation and its
first spatial derivative is continuous (i.e. no ‘kink’ can
develop) at the leading edge, but we rather keep the
leading edge deformation qL as state variable to shorten
the formulae of the paper.

Thus, we assume that besides constant tyre param-
eters, the generated tyre force and aligning torque are
functions of the leading edge deformation qL of the
tyre–ground contact patch. This approach enables us
to capture some dynamical effects of the contact; how-
ever, we still not calculate the instantaneous deformed
shape for the whole contact patch. Hence, solutions
involving travelling waves with a wavelength compa-
rable to the length of the contact patch [1,21] remain
undiscovered.

Unfortunately, the tyre force characteristics for
the stretched-string model cannot be calculated in
closed form even for steady-state conditions since
the transition point between the sliding and sticking
zones cannot be located analytically. Hence, we con-
sider similar higher-order discontinuities in the tyre
force characteristics as determined for the brush tyre
model in (2) and (3). We use the following formu-
lae to calculate the lateral force and the aligning
moment:

F(qL) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−μFz, qL < −qcrit,

f3q3L + f2q2L + f1qL, −qcrit ≤ qL < 0,

f3q3L − f2q2L + f1qL, 0 ≤ qL < qcrit,

μFz, qcrit ≤ qL

(5)

and

M(qL) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, qL < −qcrit,

−m4q4L − m3q3L

−m2q2L − m1qL, −qcrit ≤ qL < 0,

m4q4L − m3q3L

+m2q2L − m1qL, 0 ≤ qL < qcrit,

0, qcrit ≤ qL.

(6)

Here, qcrit denotes the critical leading edge lateral
deformation, where the whole contact patch starts slid-
ing.

3 Linear stability

Since in our analysis, we investigate the bifurcations
of the rectilinear motion (ψ(t) ≡ 0, qL(t) ≡ 0),
only the linear and second-order terms are relevant in
qL ∈ (−qcrit, qcrit). Introducing Ω = ψ̇ for the angu-
lar velocity, the system of governing equations can be
summed up as

(JC + ml2C)Ω̇ + dtΩ + ktψ = − ( f1l + m1) qL

+
{

− ( f2l + m2) q2L + h.o.t. qL < 0

( f2l + m2) q2L + h.o.t. qL > 0
,

ψ̇ = Ω,

q̇L = Vψ − (a − l)Ω + qL
σ
V + h.o.t., (7)

where h.o.t. refers to the higher-order terms that are
neglected at this point of the calculation.

It can be seen that the linear part of the system is
smooth in thewhole phase space; hence, linear stability
analysis can be carried out straightforwardly, e.g. using
the Routh–Hurwitz criterion and the Jacobianmatrix of
the right-hand side, which reads

J =
⎛

⎜
⎝

− dt
JC+ml2C

− kt
JC+ml2C

− f1l+m1

JC+ml2C
1 0 0

l − a V qL
σ

⎞

⎟
⎠ . (8)

The stability chart in the plane of the towing speed
and caster length (V, l) for the case when the centre
of gravity C is coincident with the geometric centre of
the tyre (l = lC ) is shown in Fig. 5. The other system
parameters are given according to Table 1. The bound-
aries V = 0 and l = −σ corresponding to static loss
of stability can be obtained analytically by studying
the characteristic polynomial, whereas the boundary
corresponding to dynamic/oscillatory loss of stability
(i.e. when a complex-conjugate root-pair of the char-
acteristic polynomial crosses the imaginary axis) was
calculated numerically.

From now on we take a fixed value for the caster
length (l =0.069 m) and restrict ourselves to study the
dynamics varying the longitudinal velocity V only.
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Fig. 5 Stability chart of the rectilinear motion in the (V, l)
parameter plane. The unstable domains are shaded. The dashed
stability boundaries refer to static loss of stability, whereas the
solid line corresponds to oscillatory loss of stability

Table 1 List of the used vehicle and tyre parameter values

Parameter Value Unit

m 5.236 [kg]

JC 0.164 [kgm2]

kt 0 [Nm]

dt 0.61 [Nms]

a 0.04 [m]

σ 0.12 [m]

f1 1502.64 [N/m]

f2 4181.35 [N/m2]

f3 3878.44 [N/m3]

m1 19.78 [N]

m2 165.16 [N/m]

m3 459.60 [N/m2]

m4 426.30 [N/m3]

4 Reduction of the dynamics

In order to study the bifurcation of the rectilinear
motion, we first have to reduce the dynamics to a lower-
order (centre) manifold around the critical equilibrium
at the linear stability boundary. Then for the reduced
system the dynamics is calculated in an explicit way.
It is worth to note that although the process of the cal-
culation is different in certain details, it is essentially

equivalent to the centre-manifold reduction for smooth
systems [8,11].

To carry out this, we transform the Jacobian matrix
of the governing equations into the Jordan normal form.
For parameters corresponding to dynamic loss of sta-
bility (the equivalent of Hopf bifurcation in smooth
systems), the Jacobian matrix J has two complex-
conjugate eigenvectors s1 = u + iv, s2 = u − iv and a
pure real eigenvector s3. With the help of these, we can
compose an invertible matrix T = (�s1 �s1 s3

) =(
u v s3

)
which can be used to transform the Jacobian

into the Jordan normal form:

T−1JT =
⎛

⎝
μ ω 0

−ω μ 0
0 0 λ3

⎞

⎠ , (9)

where λ1 = μ + iω, λ2 = μ − iω and λ3 (μ,ω, λ3 ∈
R, λ3 < 0) are the eigenvalues corresponding to the
eigenvectors s1, s2 and s3, respectively.

Let us introduce the variables ξ1, ξ2 and ξ3 as
(
Ω ψ qL

)T = T
(
ξ1 ξ2 ξ3

)T
. Substituting this into

Eq. (7), we obtain the following from:

⎛

⎝
ξ̇1
ξ̇2
ξ̇3

⎞

⎠ =
⎛

⎝
μ ω 0

−ω μ 0
0 0 λ3

⎞

⎠

⎛

⎝
ξ1
ξ2
ξ3

⎞

⎠ + h2(ξ1, ξ2, ξ3),

(10)

where h2(.) contains the second-order terms with
respect to ξ1, ξ2 and ξ3.

Since we do not consider higher than second-order
terms, we need a linear approximation of the cen-
tre manifold around the equilibrium, which will be
the linear eigensubspace corresponding to the critical
complex-conjugate eigenvalue-pair. In our case, this is
the (ξ1, ξ2) plane.

To reduce the dynamics into the centre manifold, we
have to out-transform the variable ξ3 from this equation
which leads to

(
ξ̇1
ξ̇2

)

=
(

μ ω

−ω μ

) (
ξ1
ξ2

)

+ h̃2(ξ1, ξ2). (11)

Since the variables ξ1, ξ2 and ξ3 are linearly indepen-
dent, it is easy to see that the reduced vector of the
second-order terms h̃2 can be obtained by omitting its

123



Nonlinear analysis of a shimmying wheel 883

third component and all the terms containing ξ3 from
h2. Thus, it can be expressed as

h̃2 =
(
c11ξ21 + c12ξ1ξ2 + c22ξ22

d11ξ21 + d12ξ1ξ2 + d22ξ22

)

sgn (H(ξ1, ξ2)) .

(12)

where H(ξ1, ξ2) = 0 gives the switching manifold
reduced to the centre manifold. In our case, this defines
a line in the (ξ1, ξ2) plane. It is important to point out
that H(0, 0) = 0, i.e. the equilibrium of the system is
on the switching boundary.

5 Composition of the normal form

Let us introduce the polar coordinates r and ϕ as ξ1 =
r cosϕ and ξ2 = r sin ϕ. Substituting these into Eq.
(11), we obtain

ṙ cosϕ − r sin ϕϕ̇ = μr cosϕ + rω sin ϕ

+
{
h̃21(r, ϕ), ϕ0 < ϕ < ϕ0 + π ,

−h̃21(r, ϕ), ϕ0 − π < ϕ < ϕ0 ,

ṙ sin ϕ + r cosϕϕ̇ = μr sin ϕ − rω cosϕ

+
{
h̃22(r, ϕ), ϕ0 < ϕ < ϕ0 + π ,

−h̃22(r, ϕ), ϕ0 − π < ϕ < ϕ0 ,

(13)

where h̃21 and h̃22 can be expressed as

h̃21(r, ϕ) = c11r
2 cos2 ϕ + c12r

2 cosϕ sin ϕ

+ c22r
2 sin2 ϕ, (14)

h̃22(r, ϕ) = d11r
2 cos2 ϕ + d12r

2 cosϕ sin ϕ

+ d22r
2 sin2 ϕ, (15)

whereas ϕ0 refers to the orientation angle of the switch-
ing line in the (ξ1, ξ2) plane.

Multiplying the first equation in (13) by cosϕ, the
second equation by sin ϕ, we can derive an ODE for
r , which can be addressed as the normal form of the
bifurcation:

ṙ = μr +
{
r2 f (ϕ), ϕ0 < ϕ < ϕ0 + π

−r2 f (ϕ), ϕ0 − π < ϕ < ϕ0
, (16)

where

f (ϕ) :=
(
c11 cos

3 ϕ + (c12 + d11) cos
2 ϕ sin ϕ

+ (c12 + d12) cosϕ sin2 ϕ + d22 sin
3 ϕ

)
.

(17)

Similarly, by multiplying the first equation by − sin ϕ,
the second equation by cosϕ for ϕ̇, one can derive an
equation structured as

ϕ̇ = −ω + r2(.). (18)

Since the radius r of a periodic orbit (that may also vary
with the phase angle ϕ) is small close to the stability
boundary, we can use the approximation of ϕ̇ ≈ −ω

and consequently transform the derivatives as d
dt =

−ω d
dϕ .
For the non-hyperbolic parameter set (i.e. for μ =

0), the stability of the trivial solution can be determined
analytically by constructing a mapping for the inter-
sections of the trajectories and the switching line. It
can be shown that the right-hand side of Eq. (16) is an
odd function with respect to the origin of the reduced
phase plane (ξ1, ξ2). Thus, it is sufficient to perform
our calculation only to one half of the phase plane as
the mapping will be identical for the other half. After
transforming the derivatives, we obtain the following
ODE

−ω
dr

r2
= f (ϕ). (19)

Integrating both sides of the equation for the half-
trajectory, the following equation can be derived:

ω

(
1

r1
− 1

r0

)

=
∫ ϕ1

ϕ0

f (ϕ)dϕ (20)

where ϕ1 = ϕ0 − π . This enables us to construct a
mapping for the radii of two consecutive intersection
of the trajectory with the switching boundary as

r1 = R(r0) . (21)
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Assuming r0, r1 > 0, the equilibrium r∗ = 0 is
stable if r1 < r0, which is equivalent to

1

r1
− 1

r0
> 0 . (22)

Using Eq. (20), we can obtain the following condition
for the stability:

δ :=
∫ ϕ1

ϕ0

f (ϕ)dϕ > 0 . (23)

The stability of the non-hyperbolic equilibrium can
be topologically extrapolated to investigate the stability
of the branch of limit cycles arising from there [8,11].
Namely, if the equilibrium is stable, the limit cycles are
supercritical/stable, and similarly, if the equilibrium is
unstable, the limit cycles are subcritical/unstable.

6 Estimation of the periodic solution with
Galerkin technique

Still, to calculate the limit cycles one has to solve the
ODE in (16) for r(ϕ), which requires numerical meth-
ods if the real part of the critical eigenvalue is nonzero
(μ 	= 0).

One possible way is the Galerkin technique [6], by
means of which we expand the solution r(ϕ) as linear
combination of orthogonal base functions. Harmonic
functions are a convenient choice for such a basis; how-
ever, due to the central symmetry in the phase plane,
the orthogonality of the base functions should hold not
only for the whole phase plane (that is ϕ ∈ [0, 2π)

) but for the half phase plane (ϕ ∈ [ϕ1, ϕ0)) as well.
Therefore, in its Fourier series only the even harmonics
will be nonzero and the solution can be expanded as

r(ϕ) = A0 +
∞∑

k=1

(Ak cos(2kϕ) + Bk sin(2kϕ)) , (24)

where the coefficients A0, Ak, Bk k ∈ [1, ...,∞) can
be determined based on the following method. Let us
define a function G as

G(r, ϕ) := dr

dϕ
+ 1

ω

(
μr + r2 f (ϕ)

)
. (25)

The scalar product of this function should be zero with
respect to every base functions:

<G(r, ϕ), φk> = 0 , (26)

where the scalar product < ., . > is defined as

< η(ϕ), ζ(ϕ) >=
∫ ϕ1

ϕ0

η(ϕ)ζ(ϕ)dϕ . (27)

6.1 Constant radius approximation

In practice one finite part of the formula in Eq. (24)
can be used as an approximation for the exact periodic
solution. The simplest case is when only the constant
part is calculated, which corresponds to a circle in the
phase plane:

r(ϕ) ≈ A0. (28)

To calculate A0, we have to evaluate and solve

<G(r, ϕ), 1> = 0 . (29)

Expanding the scalar product, we obtain:
∫ ϕ1

ϕ0

μA0 + A20

(
c11 cos

3 ϕ + (c12 + d11) cos
2 ϕ sin ϕ

+ (c12 + d12) cosϕ sin2 ϕ + d22 sin
3 ϕ ) dϕ = 0 . (30)

It can be seen that the termwith the coefficient of A2
0 is

identical to the right-hand side of Eq. (20). Therefore,
after some manipulation, one can determine

A0 = μπ

δ
(31)

for the radius of the circle, which is a linear function
with respect to the real part of the critical eigenvalue.
This fact matches the results available in the specific
literature (see [12,19]) for non-smooth/discontinuous
Hopf bifurcation. In these papers, it was showed for
non-smooth bifurcation that the branch of limit cycles
does not set off normally to the equilibrium; instead, it
has a conical structure.

As the radius r should be larger than zero, the solu-
tions should satisfy μδ > 0, which means that indeed,
a stable non-hyperbolic equilibrium produces super-
critical bifurcation, whereas an unstable equilibrium
produces subcritical bifurcation.
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6.2 First harmonic approximation

A more accurate approximation can be provided if we
take into account the dependence of the radius to the
phase angle ϕ with the first nonzero harmonic compo-
nents:

r(ϕ) ≈ A0 + A1 cos(2ϕ) + B1 sin(2ϕ). (32)

This gives us three equations, which determine the
value of the constants A0, A1, B1:

< G(r, ϕ), 1 >= 0 ,

< G(r, ϕ), cos(2ϕ) >= 0 ,

< G(r, ϕ), sin(2ϕ) >= 0 .

(33)

Although it involves lengthy calculations, these scalar
products can be evaluated analytically and they lead to
the following system of algebraic equations:

0 = α00A
2
0 + α11A

2
1 + α22B

2
1 + α01A0A1

+ α02A0B1 + α12A1B1 + α0A0 + α1A1 + α2B1.

0 = β00A
2
0 + β11A

2
1 + β22B

2
1 + β01A0A1

+ β02A0B1 + β12A1B1 + β0A0 + β1A1 + β2B1.

0 = γ00A
2
0 + γ11A

2
1 + γ22B

2
1 + γ01A0A1

+ γ02A0B1 + γ12A1B1 + γ0A0 + γ1A1 + γ2B1.

(34)

The solution of this system of nonlinear equations
can be found only numerically. Still, if we linearise
the equations around the constant radius approxima-
tion r(ϕ) = r0, introducing new variables as A0 =
r0 + Ã0, A1 = Ã1, B1 = B̃1, we can derive a
linear matrix equation. This equation can be solved

for
(
Ã0 Ã1 B̃1

)T
straightforwardly if the coefficient

matrix is non-singular:

⎛

⎝
2α00r0 + α0 α01r0 + α1α02r0 + α2

2β00r0 + β0 β01r0 + β1β02r0 + β2

2γ00r0 + γ0 γ01r0 + γ1γ02r0 + γ2

⎞

⎠

⎛

⎝
Ã0

Ã1

B̃1

⎞

⎠

=
⎛

⎝
−α00r20 − α0r0
−β00r20 − β0r0
−γ00r20 − γ0r0

⎞

⎠ . (35)

7 Stability of the periodic solutions

The stability of the periodic solutions can be also inves-
tigated based on the reduced system of (16). Using the
symmetry of the system, it is sufficient to investigate
only one half-plane (ϕ0 < ϕ < ϕ0+π). Let us assume
that rp (ϕ (t)) is a periodic solution of (16). Then we
introduce the radius difference from the periodic orbit
as r̃ := r − rp. Substituting this back into (16), it can
be expanded as

˙̃r + ṙ0 = μ(r̃ + rp) + (r̃ + rp)
2 f (ϕ). (36)

Since the periodic solution obviously should satisfy the
differential equation of (16) for the time derivative ṙ p
we get

ṙ p = μr0 + r20 f (ϕ). (37)

Using this the differential equation of (36) can be sim-
plified to

˙̃r = μr̃ + (r̃2 + 2rpr̃) f (ϕ). (38)

Todetermine the linear stability,we only consider small
variations around the periodic orbit rp; therefore, this
equation can be linearised around r̃ ≡ 0 as

˙̃r = (μ + 2rp f (ϕ))r̃ . (39)

Transforming the time derivatives to the phase angle ϕ,
this equation can be rearranged as

−ω
dr̃

r̃
= (μ + 2rp f (ϕ))dϕ. (40)

If the equation above is integrated for the half-phase
plane, we obtain

ln

(
r̃1
r̃0

)

= − 1

ω

∫ ϕ1

ϕ0

(μ + 2rp f (ϕ))dϕ (41)

where r̃0 and r̃1 are the initial and the resulting differ-
ences in the radial direction from the periodic orbit at
the switching boundary. This gives us a condition for
the linear stability of the periodic solutions, since if
the term at the right-hand side is larger than zero, then
|r̃1| < |r̃0|, which means the periodic orbit is stable
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Fig. 6 Bifurcation diagrams of the normal form with different
methods

as the variation decays to zero. Similarly if the right-
hand side is smaller than zero, then |r̃1| > |r̃0| and the
periodic orbit is linearly unstable.

7.1 Stability for the constant radius approximation

The formulation of the stability condition assumes
that the periodic solution is already known while usu-
ally only approximative solutions are available, which
makes it difficult to formulate a general stability con-
dition. Nevertheless, one can still evaluate the integral
condition for an approximate solution analytically. Per-
forming this for the constant radius approximation of
the periodic orbit (see Eq. (31)), it yields to the follow-
ing equation

ln

(
r̃1
r̃0

)

= −μπ

ω
. (42)

This indicates that forμ > 0, i.e. when the equilibrium
of the original system is unstable and the bifurcation is
supercritical, the periodic orbit is stable, while for μ <

0 when the equilibrium is stable and the bifurcation is
subcritical, the periodic orbit will be unstable.

8 Results and conclusions

The approximate solutions provided by the Galerkin
technique were compared with numerical simulations

ξ1 0.3

ξ 2

switching
line

switching
line

-0.3
-0.3

0.3
V = 8.0 [m/s](b)

(a) V = 6.5 [m/s]

ξ1 0.8

ξ 2

-0.8
-0.8

0.8

Fig. 7 Comparisonof the simulation and constant radius approx-
imation of limit cycles for different longitudinal velocities a
V = 6.5 [m/s] and b V = 8.0 [m/s]. The black curves show the
trajectories as the solution after the initial perturbation converged
to the stable limit cycle, whereas the thick curves correspond to
the approximate solutions

as well as a boundary value problem solver based on
the method of collocation [26].

Firstly, we investigated the normal form in Eq. (16)
only, assuming that the linear part of the equation can be
varied independently from the nonlinear terms. Thus,
keeping the parameter δ constant, the circular (constant
radius) approximation gives a linear function in terms
of the real part μ of the critical eigenvalue. The bifur-
cation diagrams showing the maximum of radius r of
the periodic orbits are presented in Fig. 6. It can be
observed that for μ −→ 0 both the constant radius
and the first harmonic approximation converge to the
one obtained from collocation method, which, due to
its higher accuracy, we refer to as the ‘exact’ solution.
It can be also seen that (at least for small amplitudes)
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Fig. 8 Bifurcation diagrams in terms of the longitudinal veloc-
ity and maximal orientation angle with different methods. The
thick continuous line corresponds to the amplitude of the limit
cycles obtained by collocation method (including the higher-
order terms). The thin continuous line shows the circular approxi-
mation in the reduced phase plane,whereas the dashed lines show
the linearised (thin) and unapproximated (thick) results with the
first-order Galerkin technique

there is only a tiny difference between the linearised
and the numerical solution for the first harmonic case.

The approximate solutions were also comparedwith
numerical simulations (see Fig. 7). Moreover, the limit
cycles were calculated by the method of collocation for
the original system, too (see Fig.8). It was found that
close to the stability boundary (V = 8.0 m/s) even the
constant radius approach gives a good approximation
for the periodic orbit. However, for larger amplitudes
where the limit cycles become more non-circular the
correlation deteriorates (see V = 6.5 m/s).

In Fig. 8, it can be seen that if we take into account
the first harmonics in the Galerkin technique the results
are very accurate for amplitudes less than ψmax ≈ 0.3
rad, even if we use the linearised equation in Eq. (35).
For larger amplitudes, the neglected higher-order terms
become more and more relevant; therefore, even the
first-order Galerkin approximation loses its accuracy.
It is also visible that for small velocities the amplitudes
rapidly reach such a level, where the approximation
becomes inaccurate. Thus, in this parameter range spe-
cial care must be devoted to the accuracy of the pre-
sented technique.

In general, we can say that the constant radius
approximation works well for small amplitudes and
is capable to give a good topological description of

the dynamics close to the stability boundary. Consid-
ering the first (or higher) harmonics in the Galerkin
technique provides more accurate results for a certain
parameter range, which could be improved even further
by including higher-order terms (although this would
escalate the symbolic computations needed). However,
this requires increasingly higher computational effort;
hence, it is not necessarily worth to use this method
to calculate the limit cycles accurately. Instead, it is
much more convenient to employ spectral collocation
methods which are capable to determine the solution
with good accuracy and relatively low computational
demand.

Subject of further studies can be the application
of the presented tyre model and investigation method
to more complicated vehicle systems, e.g. the bicycle
model [14,22] of a car, or a car-trailer combination.
Also more complex manoeuvres like cornering [16]
can be studied as the governing equations form a simi-
lar system of ODEs like for the towed wheel. Another
goal can be to generalise the presented method to the
casewhen thememory effect in the tyre–ground contact
is considered, too. Although this can be a demanding
problem due to the complexmechanism of sticking and
slippingwhen the instantaneous shape of the tyre is cal-
culated, one may obtain novel and interesting results.
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