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Abstract This paper proposes a new robust non-
linear H∞ state feedback (NHSF) controller for an
autonomous underwater vehicle (AUV) in steering
plane. A three-degree-of-freedom nonlinear model of
an AUV has considered for developing a steering con-
trol law. In this, the energy dissipative theory is used
which leads to form a Hamilton–Jacobi–Isaacs (HJI)
inequality. The nonlinear H∞ control algorithm has
been developed by solving HJI equation such that the
AUV tracks the desired yaw angle accurately. Further-
more, a path following control has been implemented
using the NHSF control algorithm for various paths in
steering plane. Simulation studies have been carried out
using MATLAB/Simulink environment to verify the
efficacies of the proposed control algorithm for AUV.
From the results obtained, it is concluded that the pro-
posed robust control algorithm exhibits a good tracking
performance ensuring internal stability and significant
disturbance attenuation.
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List of symbols

NED North, east and down direction
{B} Body-fixed frame
{E} NED frame
{R} Serret–Frenet reference frame
m Mass of the AUV
W Total weight of AUV
B Buoyancy force exerted by water on

AUV
Ix , Iy, Iz Moments of inertia about x-, y- and

z-axes in body-fixed frame
(xB, yB, zB) Center of buoyancy
(xG, yG, zG) Center of gravity
Ts Total thrust in horizontal plane
δs Stern angle
δr Rudder angle
dr/e Position of {R} frame relative to {E}

frame
db/e Position of {B} frame relative to {E}

frame
db/r Position of {B} frame relative to {R}

frame
sr Curvilinear abscissa along the path
ψr Yaw angle between {E} and {R} coor-

dinate system

Subscripts

s Parameters of steering plane
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D Desired values for path following
r Parameters of Serret–Frenet frame

1 Introduction

During the last few decades, significant research works
have been directed on control of AUVs owing to
their interesting applications. The applications of AUV
involve underwater surveillance and explosive device
detection, oil and natural gas explorations, and other
oceanographic applications that created an enormous
impact on researchers to explore control strategies on
AUVs. Challenges associated with the development of
control strategies include parameter uncertainty, envi-
ronmental disturbances (such as temperature and den-
sity of surrounding liquid), effect of ocean current, and
wave disturbances which greatly influence the dynam-
ics of AUV. Hence, these exhibit a significant chal-
lenge for control engineers to design appropriate con-
trol algorithms.

The recent research works that focus on control and
guidance problems [1] associated with AUVs are path
following [2], trajectory tracking [3], and way-point
tracking [4,5]. Many control strategies have reported
in [6] employing linear and nonlinear control mecha-
nisms. However, the problems associated with linear
control schemes are the linearization of the nonlinear
plant and bounded assumptions which limit the con-
troller performance. Hence, in the recent years, many
nonlinear control strategies were developed to han-
dle the aforementioned problems so as to achieve the
desired performances. In [7], nonlinear gain schedul-
ing technique has been adopted by considering a set of
linear finite static output feedback (SOF) controllers.
Moreover, this is designed using linear matrix inequal-
ity (LMI) based technique with a constant forward
speed for horizontal plane. In [8], a 3D path plan-
ning fuzzy logic control algorithm is designed using
spline-imperialist competitive algorithm for unmanned
underwater vehicle (UUV) in the presence of obstacle-
rich environment. Some of the successfully imple-
mented nonlinear control strategies are backstepping
control, sliding mode control (SMC), and nonlinear
model-based control. In [9], backstepping and Lya-
punov direct method for path following in the pres-
ence of environmental disturbances (such as wave,
wind, and ocean current) described for underactuated
vehicles in steering plane. A robust nonlinear adap-

tive control algorithm [10] along with backstepping
andLyapunov-based techniqueswere proposed to drive
the AUV in the horizontal plane for a desired path at
a constant longitudinal speed. A nonlinear SMC con-
trol law [11] was proposed for the trajectory track-
ing of marine vessels with good tracking capabil-
ity and global stability. Some of the recent works
reported in research articles [12,13] have developed
robust control algorithms using feedback linearization
and SMC control techniques for an UUV equipped
with water jet propulsion technique. The experimen-
tal study shows a significant performance toward path
tracking problem. However, the works reported in
the existing literature using nonlinear control tech-
niques were focused less attention toward the robust-
ness and internal stability along with disturbance rejec-
tion. Hence, a nonlinear control algorithm has been
developed using nonlinear H∞ control [14] consider-
ing robustness, internal stability as well as disturbance
attenuation.

The development of H∞ control has proved to
become a powerful robust control strategy for highly
nonlinear systems using frequency domain optimiza-
tion methods. The popularity ofH∞ control increased
when Doyle–Glover–Khargonekar–Francis (DGKF)
[15] repo- rted state-space formulations of different
H∞ control problems developed by several authors.
In view of this, the development of nonlinear H∞
control was initiated in early 1990s by Ball-Helton
[16], Isidori–Astolfi [17,18], and Van der Schaft [19].
The improved features such as internal stability and
robustness in the presence of external disturbances have
proved this to become more popular over linear H∞
control. In [19], a time domain translation ofH∞ norm
commonly known asL2-gain was optimized to obtain
the nonlinear control law using the dissipativity the-
ory [20]. The control problem is obtained by solving
theHamilton–Jacobi inequality. The literature also sug-
gests that if a H∞ control problem solved for the lin-
ear system, then locally one can yield a solution to
the nonlinear H∞ control problem. In [17] and [18],
solutions for the problems of disturbance attenuation
with internal stability through measurement feedback
were explored for affine nonlinear systems. In these,
the Hamiltonian systems are associated with the two
Hamilton–Jacobi–Isaacs (HJI) equations arising in the
state feedback and output feedback design problems.
Some important applications of nonlinear H∞ con-
trol on rigid body motion, flexible link manipulators,
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Design of a steering control law for an autonomous underwater vehicle 839

and other benchmark problems presented in [21–24].
Apart from theHamiltonian approach, nonlinearmatrix
inequality (NLMI) approach [25] in the presence of
model uncertainty was used to solve nonlinear H∞
control problem.A sum-of-square (SOS) approachwas
illustrated in [26] to obtain solutions for nonlinearH∞
control problems.

In view of achieving robust yaw control perfor-
mance of an AUV, we focus on exploiting theH∞ con-
trol technique in the nonlinear framework. The control
technique also guarantees satisfactory performances in
tracking, disturbance rejection, internal stability, and
robustness. Here, a 2-dimensional path following con-
trol is also reported using the robust nonlinear control
technique in steering plane. The non linearity of the
system increase by the effect of hydrodynamic param-
eters of AUV which is caused due to the attachment
of additional sensors and actuators. Thus, an NHSF
control algorithm is used to control the AUV. It is
very well known that nature inspired metaheuristic
algorithms are more efficient to optimize the objec-
tive function which was described in articles [27] and
[28]. However, this research work utilizes a energy dis-
sipative theory which is discussed in the subsequent
section in order to obtain a static control law for the
AUV to steer in the horizontal plane. Here, the non-
linear dynamics are transformed into an infinite sum
of Taylor series (up to second order) so as to obtain
a simplified form for designing the controller. If the
order of the system is increased, subsequently robust-
ness and internal stability will also improve. However,
the system becomes computationally expensive. The
reasons for using the NHSF control scheme are due
to the features of attaining a strong internal stability
and robustness, which has not been typically addressed
by many control strategies. Furthermore, the closed-
loop system is subjected to both Gaussian and non-
Gaussian noises in order to verify the effectiveness of
the nonlinear control algorithm. Research articles [29–
32] have explored to identify different time-seriesmod-
els for a system in the presence of non-Gaussian noises
which generally encountered in real time. The problem
associated with H∞ control design is the selection of
weighting functions for the penalty variable that may
include control variables, states, and errors. In general,
static and dynamic weighting functions used for the
penalty variables. The static weighing functions [33]
involve constant values. However, the dynamic weight-
ing functions exploited in [34] contain static weights,

Fig. 1 General AUV Structure with reference frames

Fig. 2 Steering Motion

frequency weighting functions such as filters and non-
linear weighting functions.

In general, the dynamics of AUV involves 6-DOF
nonlinear equations of motions with coupled and non-
linear terms including hydrodynamic damping, added
mass along with environmental disturbances. Figure 1
displays the schematic diagram of an AUV in NED
frame. The states involved in steeringmotion are shown
in Fig. 2which are used to formulate a nonlinearmodel.
The modeling techniques for different AUVs such as
flat-fish AUV and torpedo-shaped AUV proposed in
[35,36]. The detailed mathematical modeling of AUV
explored in [1]. The model of the AUV is being simpli-
fied into a nonlinear state- space model for the design-
ing of control law.

Hence, the contributions of this paper are the devel-
opment of anNHSF control law for theAUV.As per the
knowledge of the author, this control algorithm is used
newly in the field of AUVwhich can be widely used on
a disturbance affected environment. In view of this, the
performance of the control algorithm is verified using
Gaussian and non-Gaussian noises. A novel technique
is used to design the control law using Taylor series
expansion approach. Nevertheless, the AUV dynam-
ics has been transformed into a Taylor series form to
get a second-order NHSF controller. Consequently, the
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Table 1 Notations used for AUV in steering plane

Degree of freedom Direction/orientation Forces/moments Linear/angular velocities Positions/Euler angles

1 In x-direction (surge motion) Xs us xs

2 In y-direction (sway motion) Ys vs ys

3 About z-axis (yaw motion) Ns rs ψs

frequency response analysis of the closed-loop sys-
tem is studied to meet the desired performance speci-
fications. Simultaneously, a path following control has
been implemented using NHSF control for tracking of
different paths in steering plane. The developed path
following control algorithms using NHSF controller is
compared with an adaptive fuzzy PID (AFPID) con-
troller [37] to ensure the efficaciousness of the devel-
oped algorithm throughmean square error (MSE) anal-
ysis. Apart from that, a 3-dimensional (3D) path track-
ing using both NHSF and AFPID control algorithm
is studied. The performance of attenuation level of
the disturbances has been addressed during the sud-
den changes in the desired yaw angles which empha-
size more on internal stability and robustness of the
system.

The organization of this paper is as follows: Sect. 2
describes the modeling of AUV in steering plane. The
formulation of the kinematic model in terms of Serret–
Frenet (S–F) frame is also highlighted. The devel-
opment of control strategy is presented in Sect. 3.
In Sect. 4, the control algorithm is analyzed numeri-
cally. Also, a path following control strategy has been
designed to track a circular path in the horizontal plane.
The efficacies of the control strategies have been illus-
trated in Sect. 5. At last, Sect. 6 presents concluding
remarks withdrawn from the work addressed in the
paper.

2 Problem formulation

This section illustrates the dynamics and kinematics of
an AUV in steering plane. The notations for steering
dynamics are reported in Table 1. Apart from that, a
kinematic model of an AUV is formulated in terms
of S–F frame for path following task. The kinematic
models in the S–F frame are described in detail in [38,
39]. The modeling of the AUV is considered under the
following assumptions

Assumption 1 The surge velocity is kept constant dur-
ing the synthesis of the control algorithm.

Limitation 1 During trajectory tracking, assumption1
is not desirable because of the time dependency while
tracking the desired path within a certain time bound.
This forces the AUV to regulate the forward speed to
reach the desired profile.

Remark 1 In this work, a path following problem is
considered which is not time restrictive, hence Limita-
tion 1 will not effect during the tracking of the desired
path. However, a separate control algorithm can be
implemented to regulate the forward speed of the AUV.

Assumption 2 The rollmotionof theAUVis neglected.

Limitation 2 Some 3Dmotions require an interaction
between roll dynamics with both diving and heading
motion where assumption 2 is not desirable.

Remark 2 Here, a flat-fish type of AUV is consid-
ered for path following control where the effect of roll
motion is not significant. However, a separate control
algorithm for roll stabilization can be considered.

2.1 AUV modeling: steering plane

The AUV dynamics in the horizontal plane is consid-
ered by neglecting the roll motion which involves the
surge, sway, and yaw motion. It is defined as follows
[36]: Surge motion:

mu̇s = CXuu u
2
s + CXvv v

2
s + CXrr r

2
s + u2sCXδrδr

δ2r

+CXu̇ u̇s + Ts, (1)

ẋs = us cos(ψs) − vs sin(ψs), (2)

Sway motion:

m(v̇s + usrs) = CYδru
2
s δr + CYr |r |rs |rs| + CYv|v|vs |vs|

+CYrusrs + CYvusvs + CYv̇
v̇s, (3)

ẏs = −us sin(ψs) + vs cos(ψs), (4)
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Yaw motion:

Izṙs = CNvusvs + CNrusrs + CNr |r |rs |rs|
+CNv|v|vs |vs| + CNṙ ṙs + CNδru

2
s δr, (5)

ψ̇s = rs, (6)

where C(�) are the simplified model coefficients as
reported in [36]. To develop a control law, the nominal
forward speed is assumed to be constant, i.e., us = u0.
Hence, we can neglect the surge motion in body frame.
If the controller is designed to track yaw angle, then
the linear velocities in x- and y-direction in earth-fixed
frame can also be neglected to obtain a simplifiedmodel
for controller design.

Define a state vector xs,i (t) and disturbance vector
ws,i (t) as

xs,i (t) = [vs, rs, ψs]T = [xs,1, xs,2, xs,3]T
ws,i (t) = [

ws,1(t), ws,2(t)
]T

,

where ws,1(t) is the disturbance associated with the
AUV dynamics and ws,2(t) is the measurement noise.

Hence, the nonlinear state-space model of AUV in
the horizontal plane is given by

ẋs,i (t) = fs(xs,i ) + gs1(xs,i )ws,i (t) + gs2(xs,i )us,i (t)

(7)

where

fs,i (xs,i ) = [
fs1(xs,i ), fs2(xs,i ), fs3(xs,i )

]T
,

fs1(xs,i ) = Cv[CYrusxs,2 + CYvusxs,1

+CYr |r |xs,2
∣∣xs,2

∣∣ + CYv|v|xs,1
∣∣xs,1

∣∣],
fs2(xs,i ) = Cr[CNvusxs,1 + CNrusxs,2

+CNr |r |xs,2
∣
∣xs,2

∣
∣ + CNv|v|xs,1

∣
∣xs,1

∣
∣],

fs3(xs,i ) = xs,2,

gs1(xs,i ) =
⎡

⎣
CvCs1 0
CrCs2 0
0 0

⎤

⎦ , gs2(xs,i ) =
⎡

⎣
Cvu2sCYδr

Cru2sCNδr

0

⎤

⎦ ,

us,i (t) = δr,Cv=(m − CYv̇
)−1,Cr=(Iz − CNṙ )

−1,

where Cs1 and Cs2 are the coefficients of internal dis-
turbances involved in sway and yaw dynamics, respec-
tively.

The correspondingpenalty vector canbe represented
as

ps,i (t) = Hs,1xs,i (t) + Ls,12us,i (t) (8)

where

Hs,1 =

⎡

⎢⎢
⎣

Ws1 0 0
0 Ws2 0
0 0 Ws3

0 0 0

⎤

⎥⎥
⎦ , Ls,12 =

⎡

⎢⎢
⎣

0
0
0

Ws,u

⎤

⎥⎥
⎦

and the corresponding measurement vector is given by

ys,i (t) = Hs,2xs,i (t) + Ls,21ws,i (t) (9)

where

Hs,2 = [
0 0 1

]
, Ls,21 = [

0 Cs3
]

and Cs3 is the coefficient of sensor noise in yaw angle
measurement. The penalty variable ps,i (t) is weighted
by the static weighting functions Ws1,Ws2,Ws3, and
Ws,u which is associated with state variables xs,1, xs,2,
xs,3 and control input us,i (t), respectively.

2.2 Path kinematics: Serret–Frenet frame

The objective of the path following control of an AUV
is to converge it to a specified path without any time
constraint. This leads to the notion of designing a kine-
matic model for the AUV in terms of S–F frame which
travels along a circular path in the horizontal plane as
shown in Fig. 3. As the kinematic model of AUV in
steering plane is 3-DOF structure, thus the differential
kinematic model [39] in terms of S–F frame can be
obtained as follows:

Fig. 3 Description of S–F frame in steering plane
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AUV Dynamics
in Steering Plane

Nonlinear
H∞ Controller

Desired
Yaw

ws,2

ws,1 Cs

Cs3

Ws,u

Ws,1

Ws,2

Ws,3

ws,i

ps,i

us,i

xs,1
xs,2
xs,3

Fig. 4 Nonlinear H∞ state feedback controller configuration
for steering plane

[
ẋb/r
ẏb/r

]
=

[
cos(ψrb) − sin(ψrb)

sin(ψrb) cos(ψrb)

] [
us
vs

]
−

[
ṡr
0

]

−ṡr

[
0 −pc(sr)

pc(sr) 0

] [
xb/r
yb/r

]
(10)

whereψrb = ψs −ψr, is the steering angle of the body
relative to the steering angle of S–F frame, pc(sr) is the
path curvature along the circular path, and [xb/r , yb/r ]T
is the error space vector between the body and S–F
frame along x- and y-axes.

2.3 Problem statement

Let the AUV model in steering plane be transformed
into the standard generalized structure of nonlinear sys-
tems (7).With a constant longitudinal speed, the objec-
tive is to derive the AUV using NHSF control law for
different desired yaw angles. As a consequence, the
control law needs to be developed such that a strong
internal stability is achieved while attenuating the dis-
turbances. The kinematic model in terms of S–F frame
is formulated to achieve the nonlinear path following
control in steering plane.

3 Development of control algorithm

We first present the preliminaries used for the devel-
opment of the nonlinear control algorithm. An HJI
inequality is formulated to find out a solution for the
H∞ control problem. Subsequently, the inequality is
transformed into an infinite sum of Taylor series expan-
sion to find out a higher-order nonlinear control law.
The nonlinear H∞ state feedback controller structure
for steering plane is shown in Fig. 4.

3.1 HJI inequality formulation

The generalized structure of the nonlinear state-space
system is described as follows:

ẋ = f (x) + g1(x)w + g2(x)u (11)

p = h1(x) + l11(x)w + l12(x)u (12)

y = h2(x) + l21(x)w (13)

where x ∈ �n×1 is the state vector, u ∈ �m×1 is
the control input, w ∈ �r×1 is the exogenous input
which involves perturbations (which are to be rejected)
and/or desired references (which are to be tracked),
p ∈ �s×1 is the penalty variable and y ∈ �p×1 is the
measured variables. The mappings f (x), g1(x), g2(x),
h1(x), h2(x), l11(x), l12(x), and l21(x) are smoothmap-
pings of class Ci , i should be as large as possible
defined in a neighborhood of the origin in �n . The
assumptions that are to be considered are followed as
f (0) = 0, h1(0) = 0, and h2(0) = 0.
The objective here is to find out a state feedback

controller that satisfies the L2-gain inequality. In L2-
gain analysis, the energy of the penalty vector p is kept
bounded and smaller than the energy of the disturbance
input w and is represented as

T∫

0

‖p(t)‖2dt ≤ γ 2

T∫

0

‖w(t)‖2dt, 0 < γ ≤ 1 (14)

The energy of the penalty vector p is bounded that
adopts the concept of dissipativity and storage function.
With a real number 0 < γ ≤ 1, the system is said to
be γ -dissipative if there exists a nonnegative energy
storage function ζ(x) with ζ(x(0)) = 0, such that for
all w and T , it satisfies the HJI inequality as follows

ζx (x)
T ẋ + pT p − γ 2wTw ≤ 0 (15)

where ζx (x)T = ∂ζ(x(t))/∂x(t).
Hence, we can solve the L2-performance criterion

design problem by constructing a positive semidefinite
storage function ζ(x) that satisfies (15). The left side
of (15) is called Hamiltonian function and is expressed
with Γ�[x, ζx (x), w, u]. The controller is intended to
achieve closed-loop stability and to attenuate the influ-
ence of the exogenous input w on the penalty variable
p with internal stability.
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3.2 Nonlinear state feedback H∞ controller

The nonlinear H∞ controller is designed by solving
the HJI inequality (15). The purpose of this analytical
derivation is to find out a saddle point (w↑, u↓) in the
Hamiltonian function such that

Γ�[x, ζx (x), w, u↓] ≤ Γ�[x, ζx (x), w↑, u↓]
≤ Γ�[x, ζx (x), w↑, u] (16)

where w↑ is the worst-case disturbance that will max-
imize Γ�[∼] and u↓ is the control law which will min-
imize Γ�[∼]. The symbol ↑ indicates maximization of
Γ�[∼] and ↓ indicates minimization of Γ�[∼].

With the standard assumptions described in DGKF
[15] such that

l11(x) = 0, lT12(x)l12(x) = χ (a constant)

hT1 (x)l12(x) = 0,

the solutions for control variable and worst-case distur-
bance could be obtained by taking partial derivative of
Hamiltonian function Γ�[x, ζx (x), w↑, u↓], which are
given as follows [18],

u↓ = u↓[x, ζx (x)] = −1

2
χ−1g2(x)

T ζx (x) (17)

w↑ = w↑[x, ζx (x)] = 1

2
γ −2g1(x)

T ζx (x) (18)

The unknown storage function ζ(x) that satisfies the
above saddle point condition can be found by substi-
tuting (w↑, u↓) into the equation (15) results

Γ�[x, ζx (x)] = ζx (x)
T f (x) − uT↓χu↓ + hT1 (x)h1(x)

+ γ 2wT↑ w↑ ≤ 0 (19)

In view of obtaining the analytical solution of (19),
we can transform this inequality into an infinite sum
of Taylor series (formerly explained in [40]) with qth

power term.

ζx (x)
[2]T f (x)[q] + · · · + ζx (x)

[q+1]T Fx [1]

−
[
u[1]T

↓ χu[q]
↓ + · · · + u[q]T

↓ χu[1]
↓

]
+ hT1 (x)h1(x)

+ γ 2
[
w

[1]T
↑ w

[q]
↑ + · · · + w

[q]T
↑ w

[1]
↑

]
≤ 0 (20)

where

u[q]
↓ = −1

2
χ−1[g2(x)[1]T ζx (x)

[q+1] + · · ·
+ g2(x)

[q]T ζx (x)
[2]] (21a)

w
[q]
↑ = 1

2
γ −2[g1(x)[1]T ζx (x)

[q+1] + · · ·
+ g1(x)

[q]T ζx (x)
[2]] (21b)

ζ(x) = ζ (x)[2] + ζ (x)[3] + · · · + ζ (x)[q+1] (21c)

where {Fx [1], g1(x)[1], g2(x)[1], ζ(x)[2], w
[1]
↑ , u[1]

↓ },

{ f (x)[2], g1(x)[2], g2(x)[2], ζ(x)[3], w
[2]
↑ , u[2]

↓ }, . . .

{ f (x)[q], g1(x)[q], g2(x)[q], ζ(x)[q+1], w[q]
↑ , u[q]

↓ } are

the first, second , . . . q th terms of Taylor series expan-
sion of { f (x), g1(x), g2(x), ζ(x), w↑, u↓}, respec-
tively. The universal possessions of these power series
offer amechanism to construct higher-order controllers
cumulatively which will lead to design a nonlinear
controller. The algorithms for designing the first and
second-order nonlinear H∞ controller are as follows

Algorithm 1 Second-order nonlinear H∞ controller

Step 1: Apply the Taylor series expansion of each
term in the system (9) and consider up to sec-
ond order.

Step 2: For designing a first-order controller, take
q = 1, then the control input becomes u↓ =
u[1]

↓ and worst-case disturbance becomes

w↑ = w
[1]
↑ . The HJI inequality can be written

as:

ζx (x)
[2]T Fx [1] − 2u[1]T

↓ χu[1]
↓ + 2γ 2w

[1]T
↑ w

[1]
↑

+ h1(x)
T h1(x) ≤ 0 (22)

where

u[1]
↓ = −1

2
χ−1g2(x)

[1]T ζx (x)
[2] (23a)

w
[1]
↑ = 1

2
γ −2g1(x)

[1]T ζx (x)
[2] (23b)

and ζ (x)[2] is the quadratic polynomial type
storage function.

Step 3: Similarly a second-order controller is designed
by taking q = 2; then, control input becomes
u↓ = u[1]

↓ + u[2]
↓ and worst-case disturbance

becomes w↑ = w
[1]
↑ +w

[2]
↑ . The HJI inequal-

ity will become

ζx (x)
[2]T f (x)[2] + ζx (x)

[3]T Fx [1] − u[1]T
↓ χu[2]

↓
−u[2]T

↓ χu[1]
↓ +γ 2

(
w

[1]T
↑ w

[2]
↑ +w

[2]T
↑ w

[1]
↑

)
≤ 0

(24)

where

u[2]
↓ = −1

2
χ−1

[
g2(x)

[1]T ζx (x)
[3]

+g2(x)
[2]T ζx (x)

[2]] (25a)
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Fig. 5 Path following
control structure using
NHSF control
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w
[2]
↑ = 1

2
γ −2

[
g1(x)

[1]T ζx (x)
[3]

+g1(x)
[2]T ζx (x)

[2]] (25b)

and ζ (x)[3] is the cubic polynomial type stor-
age function.

The first- and second-order nonlinear H∞ con-
trollers are obtained for steering control.

3.3 Guidance law for path following

The control strategy associated with path following is
shown in Fig. 5. It is intended to find out the appropriate
desired yaw angle for AUV to track S–F frame on the
circular path. The error coordinates between body and
S–F frames which are intended to minimize for the
convergence of AUV into the path can be described as:

lim
t→∞ xb/r = 0, lim

t→∞ yb/r = 0.

To realize the path following problem, a guidance
and an update law [39] are given as

ψD = ψr − tan−1
(

vs

us

)
− tan−1

⎛

⎝ yb/r√

2 + (

xb/r
)2

⎞

⎠

(26)

ṡr =
√
u2s + v2s

⎛

⎝

√

2 + (

xb/r
)2 + xb/r

√

2 + (

xb/r
)2 + (

yb/r
)2

⎞

⎠ (27)

where
 is a positive design parameter called as looka-
head distance. It may be considered as a constant, func-
tion of time, error coordinates, or any other parameters.
Here it is assumed as a constant. The nonlinear H∞

control algorithm is employed to track the desired cir-
cular path.

4 Implementation aspects of H∞ control
algorithm

This section evaluates the nonlinear control law numer-
ically as per the control strategy developed in Sect. 3.
Thus, the obtained control law is implemented as shown
in Fig. 4. On the contrary, an NHSF controller for
AUV is analyzed using Algorithm 1. With a nomi-
nal forward velocity us = 2 ms−1, the Taylor series
expansion (up to second order) for each term in (7) is
derived for a nominal operating point [vs0 , rs0 , ψs0 ]T =
[0.01, 0.01, 0]T and δr = 0 as:

fs(xs,i ) = Fsx
[1]
s,i + fs(xs,i )

[2],
gs1(xs,i ) = G[1]

s1 + G[2]
s1 ,

gs2(xs,i ) = G[1]
s2 + G[2]

s2 .

Here, the higher-order terms have been neglected so
as to avoid the complexities to solve the control prob-
lem.Hence, by considering themodel coefficients from
[36], the above terms Fs, fs(xs,i )[2], G[1]

s1 , G
[2]
s1 , G

[1]
s2 ,

G[2]
s2 can be calculated as follows:

Fs =
⎡

⎣
−0.1790 −0.9091 0
−0.4070 −0.8526 0

0 1.0000 0

⎤

⎦ ,

fs(xs,i )
[2] =

⎡

⎣
0.177x2s,2 − 0.169x2s,1
0.13x2s,1 − 0.0479x2s,2

0

⎤

⎦ ,

G[1]
s1 =

⎡

⎣
0.2532 × 10−3 0
0.2985 × 10−3 0

0 0

⎤

⎦ ,G[2]
s1 =

⎡

⎣
0 0
0 0
0 0

⎤

⎦ ,
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Table 2 Simulation Parameters for numerical implications

Simulation Parameters

Cs1 = Cs2 = 1 Cs3 = 0.1

γ = 1 Wsi = I3

G[1]
s2 =

⎡

⎣
0.1187

−0.3178
0

⎤

⎦ ,G[2]
s2 =

⎡

⎣
0
0
0

⎤

⎦ ,

χs,1 = LT
s,12Ls,12 = W 2

s,u .

A quadratic storage function has been chosen which
is having the characteristics as like Lyapunov function
with a local minimum at the equilibrium point. Assign
ζ(xs,i )[2] = xs,i T�sxs,i , where �s > 0, then the HJI
inequality holds good if �s satisfies the Riccati equa-
tion (22) which is rewritten as

F [1]T
s �s + �sF

[1]
s

+�s(γ
−2G[1]

s1 G
[1]T
s1 − G[1]

s2 χ−1
s,1G

[1]T
s2 )�s

+ HT
s,1Hs,1 = 0 (28)

The above Riccati equation is solved using MAT-
LAB toolbox by considering the simulation parameters
from Table 2. The obtained solution is

Θs =
⎡

⎣
3.9818 −2.7643 0.2115

−2.7643 5.0947 3.2261
0.2115 3.2261 4.8898

⎤

⎦ .

The corresponding first-order nonlinear H∞ control
law and worst-case disturbance are derived from (23a)
and (23b), respectively, as follows

u[1]
s↓ = −1.35xs,1 + 1.95xs,2 + 1.0xs,3 (29a)

w
[1]
s↑ = [w[1]

s1↑ w
[1]
s2↑]T

=
⎡

⎣
(1.83 × 10−4xs,1 + 8.21 × 10−4xs,2

+ 0.00102xs,3)
0

⎤

⎦ (29b)

Eventually, a cubic polynomial function is chosen
for designing a second -order controller us↓ = u[1]

s↓ +
u[2]
s↓ and is given as

ζ(xs,i )
[3] = qs,1x

3
s,1 + qs,2x

2
s,1xs,2 + qs,3x

2
s,1xs,3 + · · ·

+ sd,10x
3
s,3,

where the unknown coefficients qs, j , j = 1, 2, · · · 10,
are evaluated from the second-order HJI equation (24),
rewritten as (30) with ζ(xs,i )[2], u[1]

s↓ andw
[1]
s↑ are being

taken from the first-order controller.

ζxs,i (xs,i )
[3] (Fsx [1]

s,i + G[1]T
s1 w

[1]
s↑ + G[1]T

s2 u[1]
s↓

)

+ ζxs,i (xs,i )
[2] ( fs(xs,i )

[2] + G[2]T
s1 w

[1]
s↑

+G[2]T
s2 u[1]

s↓
)

= 0 (30)

A set of ten equations are obtained by equating the
terms with equal powers in (30). The unknown coeffi-
cients qs, j are calculated by solving all the ten equa-
tions using MUPAD toolbox in MATLAB and hence
the storage function ζ(xs,i )[3]. Thus, the second-order
nonlinear H∞ control law and the worst-case distur-
bance are obtained as follows

us↓ = u[1]
s↓ + u[2]

s↓
= −1.35xs,1 + 1.95xs,2 + 1.0xs,3 + 0.736x2s,1

−0.426xs,1xs,2 + 0.155xs,1xs,3 − 0.131x2s,2

−0.0997xs,2xs,3 − 1.74 × 10−7x2s,3 (31a)

ws↑ = w
[1]
s↑ + w

[2]
s↑

= [ws1↑ ws2↑]T (31b)

where

ws1↑ = 1.83 × 10−4xs,1 + 8.21 × 10−4xs,2

+ 0.00102xs,3 − 3.87 × 10−4x2s,1

+ 4.84 × 10−4xs,1xs,2 − 2.32 × 10−4xs,1xs,3

− 2.02 × 10−4x2s,2 − 5.66 × 10−5xs,2xs,3

− 1.71 × 10−4x2s,3
ws2↑ = 0

The above control law is implemented as shown in
Fig. 4 by attenuating the internal disturbances as well
as sensor noise associated with depth measurement.

5 Results and discussion

This section presents the performances exhibited by the
proposed nonlinearH∞ control strategies for steering
plane as well as for path following. In this paper, the
parameters of INFANTEAUV[36] are used to simulate
the control algorithm.
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5.1 Steering control

Dynamic response study The simulation studies have
been realized by choosing three desired yaw angles in
every 200 seconds as shown in Figs. 6, 7, 8 and 9. Here,
the fin angle is imposed with a constraint:

|δr| ≤ (δr)MAX,

where (δr)MAX is the maximum allowable fin angle.
Four different cases have been studied by consid-
ering the value of Ws,u = 1, 2, 5 and 10, con-
sidering (δr)MAX = 45◦ in order to analyze the
dynamic response of the closed-loop system. Hence, it
is observed during the analysis that the performance of
the second-order NHSF controller is effective in track-
ing of the desired value by attenuating the disturbance.
The design of control algorithm is depending on the
selection of appropriate penalty vector, and the con-
struction of penalty vector is related to the selection of
scaling matrix Hs,1, which directly influences the state
variables. The transient response of the steering con-
trol becomes faster if Ws,u is small which puts penalty
on the control variable us,i (t) which is clearly shown
in Figs. 6a, 7a, 8a and 9a. The higher- order terms in
the control law (31a) will improve to attenuate external
disturbances encountered by sustaining a better internal
stability.

Closed-loop frequency responseThe frequency resp-
onse of the closed-loop system is studied to show the
fulfillment of bandwidth requirement. Here the param-
eters of AUV considered from [7]; hence, the band-
width should bewithin 0.1 rad/sec to drive the system to
its normal actuation bandwidth. FromFig. 10, the Bode
diagrams show that performance requirements for all
different cases are satisfied for the closed-loop system.

Disturbance attenuation The configuration of the
H∞ control law suggests that the control engineermust
have to introduce the disturbances such as internal dis-
turbances and sensor noises that eventually occur dur-
ing trials in real time. The signals ws,1(t) and ws,2(t)
are driven by random disturbances with power spectral
densities (PSDs) 10 and 1×10−5 respectively. From the
results obtained, it is observed that NHSF control algo-
rithm guarantees better performance toward the attenu-
ation of disturbances with strong internal stability. We
have observed during the analysis that if the PSD val-
ues increased further to a certain level, there is no sig-
nificant change occurs during the tracking of desired
values which ensures the better performance toward
the disturbance attenuation. Consequently, the distur-
bance attenuation improved further by increasing the
order of the Taylor series, but the problem is with the
computation of control algorithm as well as worst-case
disturbance. Therefore, it is required to consider less
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Fig. 6 For Ws,u = 1: a tracking of desired yaw angle, b the corresponding controller output, c yaw rate and d disturbance attenuation
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Fig. 7 For Ws,u = 2: a tracking of desired yaw angle, b the corresponding controller output, c yaw rate and d disturbance attenuation
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Fig. 8 For Ws,u = 5: a tracking of desired yaw angle, b the corresponding controller output, c yaw rate and d disturbance attenuation

number of states so as to increase the order of Taylor
series to avoid the computational burden. For further
analysis, let the attenuation ratio be defined as

Attenuation ratio(Ra) =

T∫

0
‖p(t)‖2dt

T∫

0
‖w(t)‖2dt

≤ γ 2. (32)

According toL2-gain analysis, ifL2-gain≤ γ then
with γ = 1, the attenuation ratio Ra must be less than
or equal to 1. Hence, the analysis of disturbance attenu-
ation is performed as shown in Figs. 6d, 7d, 8d and 9d.
Thus, it can be observed that the attenuation ratio Ra is
always less than 1 for all cases. Hence, it is possible to
solve theH∞ control problem for any desired yaw val-
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Fig. 9 ForWs,u = 10: a tracking of desired yaw angle, b the corresponding controller output, c yaw rate and d disturbance attenuation
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Fig. 10 Closed-loop frequency response

ues. During the sudden variations in desired values, the
nonlinearH∞ second-order control has shown a better
tracking capability by ensuring stability and robustness.
The variations in the yaw rate (in Figs. 6c, 7c, 8c and 9c)
are smoothly driven due to the bounded value of γ .

Robustness AnalysisThe robust behavior of the con-
trol algorithm is verified by providing Gaussian and

non-Gaussian noises to the closed-loop system. Two
different case studies are discussed in order to explore
the efficacies of the control algorithm. The process
noise (i.e., ws,1) in both the cases are Gaussian in
nature. However, the measurement noise (i.e., ws,2) is
subjected with Gaussian and non-Gaussian noises. The
non-Gaussian noise is generated by changing the kur-
tosis (defines the shape of the probability distribution)
and skewness (defines the asymmetry of probability
distribution of a real-valued random signal about its
mean value) of the probability density function (PDF)
for a Gaussian noise as given in [41]. In general, the
kurtosis and skewness of normal distribution (i.e., for
Gaussian noise) are 3 and0, respectively. The generated
Gaussian and non-Gaussian noise signals are shown in
Fig. 11. The two cases are given as follows:

Case I: Both ws,1 and ws,2 are subjected to Gaussian
noises with mean=0.1, variance=0.2, kur-
tosis=3. and skewness=0.

Case II: ws,1 is perturbed with a Gaussian noise with
mean=0.1, variance=0.2, kurtosis=3, and
skewness=0, whereas ws,2 is perturbed with
non-Gaussian noise with mean=0.1, vari-
ance=0.2, kurtosis=5, and skewness=0.5.

The tracking of the desired yaw orientation for both
the cases is shown in Fig. 12. For case I, the rudder
movement is around±2.5◦ withMSE of 0.0038. How-
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Fig. 11 aGaussian noise signal,b normalized PDF forGaussian
noise, c non-Gaussian noise signal, d normalized PDF for non-
Gaussian noise

ever, the rudder movement is ±6◦ for case II and the
corresponding MSE is 0.0129. Thus, the control algo-
rithm is effective in tracking the desired yaw profile by
attenuating both Gaussian and non-Gaussian noises.

5.2 Path following control

For a desired path with path coordinates xD(sr) and
yD(sr) and with an assumption for given sr, the follow-
ing parameters can be evaluated as

ψr(sr) = arctan
(yD)′
(xD)′ ,

pc(sr) = dψr(sr)

dsr
,

ψ̇r = pc(sr )ṡr,

where (xD)′ = dxD/dsr and (yD)′ = dyD/dsr.
The simulation for path following control is per-

formed by considering us = 2ms−1, 
 = 10. Two dif-
ferent 2-dimensional (2D) paths and a circular 3D path
are considered to verify the NHSF control algorithm.
The results of NHSF control algorithm are compared
with AFPID algorithm in order to exhibit the potential
of nonlinear H∞ control algorithm.

5.2.1 Straight path

The coordinates of the desired straight path are consid-
ered as

xD(sr) = srcos(ψr), yD(sr) = srsin(ψr)

The simulation is achieved by considering an ini-
tial condition of [xs(0), ys(0)] = [−30, 30] for both
AFPID and NHSF control algorithms as shown in
Fig. 13. From Fig.13a, it is observed that the perfor-
mance of AFPID controller is better than NHSF con-
troller up to 100 seconds. However, the performance of
AFPIDcontrol algorithmdeteriorates after 100 seconds
compared to NHSF controller. TheMSE analysis given
in Table 4 for straight path suggests that the MSE for
AFPIDcontroller along y-axis is better thanNHSFcon-
troller. Nevertheless, Fig. 13c, d clearly indicates that
the approaching of path error coordinates (i.e., xb/r and
yb/r toward zero) is faster in case of NHSF controller
as compared to AFPID control algorithm.

5.2.2 Spline path

The spline path is designed using the Cartesian space
coordinates with polynomial parameterizationwhich is
given as

xD(sr) =
m∑

k=0

cks
k
r , yD(sr) =

m∑

k=0

dks
k
r

where ck and dk are the path parameters represented
in polynomial functions along x- and y-coordinates,
respectively. The path parameters are given in Table 3.
The initial conditions are considered as [xs(0), ys(0)] =
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Fig. 12 a Yaw angle tracking in the presence of Gaussian noise signal, b corresponding control signal, c yaw angle tracking in the
presence of non-Gaussian noise signal, d corresponding control signal
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Fig. 13 a Path following in steering plane, b corresponding controller output, c path error in x-axis, d path error in y-axis during straight
path following

[20,−10]. From Fig. 14a, it is noticed that the track-
ing of the spline path is faster for NHSF controller
as compared to AFPID controller. The MSE analysis
for NHSF control algorithm is better than AFPID con-

troller as given in Table 4. Similarly, the approaching
of error coordinates shown in Fig. 14c, d is also faster
for NHSF controller.
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Table 3 Spline path parameters

Path parameters

c0 = 0, c1 = 0.81, c2 = −0.018, c3 = 1.3 × 10−5,

c4 = 1.7 × 10−6

d0 = 0, d1 = 0.52, d2 = −5 × 10−5, d3 = 1.3 × 10−5,

d4 = 1.2 × 10−7

5.2.3 Circular path

A circular path is considered at a desired depth of zD =
30m in order to verify the 3D path tracking by both
AFPID andNHSF control algorithms. The desired path
coordinates are given by

xD(sr) = 100 cos(0.01sr), yD(sr) = 100 sin(0.01sr)

The performance of the path following controller
is shown in Fig. 15 considering an initial condi-
tion [xs(0), ys(0), z(0)] = [0, 0, 30]. The coupling
between heading and diving motion is not considered
owing to the negligence of the roll motion of AUV.
In view of this, a separate depth controller is designed
using both AFPID and NHSF control algorithms.

The tracking of the desired path by NHSF control
algorithm produces an excellent result compared to
AFPID controller as shown in Fig. 15a. From Fig. 15b,
c, it is noticed that the control action yielded by NHSF
control algorithm is faster than the AFPID controller.
The error profiles during the 3D path tracking (shown
in Fig. 15d–f) are analyzed by MSE analysis given in
Table 4 which ensures that the NHSF control algorithm
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Fig. 14 a Path following in steering plane, b corresponding controller output, c path error in x-axis, d path error in y-axis during a
spline path following

Table 4 Comparisons of MSE analysis between AFPID and NHSF control algorithms for different paths

Path errors Straight path (Fig. 13) Spline path (Fig. 14) 3D Circular path (Fig. 15)

AFPID
control

NHSF
Control

AFPID
control

NHSF
control

AFPID
control

NHSF
Control

Path error in x-axis (xb/r) 0.2431 0.2269 6.4616 4.5258 6.8935 5.9393

Path error in y-axis (yb/r) 17.6078 19.8782 37.9897 29.2975 442.5575 346.3997

Path error in z-axis − − − − 75.0463 36.9860
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Fig. 15 a Path following in 3D plane, b rudder angle, c stern angle, d path error in x-axis, e path error in y-axis, f path error in z-axis
during path following

is more effective in tracking the desired profile com-
pared to AFPID control algorithm.

6 Conclusion

In this paper, the design of a nonlinear control scheme
using L2-gain analysis is proposed for controlling
the AUV in the horizontal plane. A second-order
polynomial-based NHSF control scheme has been
adopted to achieve the desired performance by solving
the HJI inequality. The resulting control law is simple
in structure and computationally less expensive, albeit
it needed a lot of mathematical computation. The com-
putation of the control algorithm may increase if the
number of states of the system increased. The pro-
ductiveness of the developed nonlinear control algo-
rithm is verified by subjecting the system with Gaus-

sian and non-Gaussian noises. The control law pro-
vides an excellent performance in tracking as well as
disturbance rejection with improved internal stability
and robustness. Furthermore, the nonlinear path fol-
lowing controller using the nonlinear H∞ control is
implemented for different paths in horizontal and 3D
planes. A comparison is carried out between the NHSF
and AFPID control algorithm in order to highlight the
benefits of the developed control algorithm. The track-
ing of the path is achieved byminimizing the path error
coordinates obtained from the difference between the
body and Serret–Frenet frame to zero asymptotically.
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