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Abstract In this paper, (2+1)-dimensional nonlinear
Rossbywaves are consideredwith the generalized beta,
the dissipation and the topography which includes both
basic part and slowly varying part with time. Starting
with a barotropic quasi-geostrophic potential vortic-
ity equation, by using methods of multiscales and per-
turbation expansions, a generalized forced Zakharov–
Kuznetsov equation is obtained in describing the evolu-
tion of Rossby wave amplitude. The effects of general-
ized beta, topography along with latitude and slowly
variation with time are all included, indicating that
the generalized beta is an essential factor in inducing
the nonlinear Rossby solitary waves and the other two
are both important factors for the evolution of Rossby
wave amplitude. Periodic and solitary wave solutions
of Zakharov–Kuznetsov equation are obtained by the
elliptic function expansion method; meanwhile, soli-
tary wave solution of generalized forced Zakharov–
Kuznetsov equation is obtained by reduced differential
transform method. At last, graphical presentations for
solitary wave amplitude with different dissipations and
slowly varying topographies with time are shown by
the Mathematica.
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1 Introduction

Themotions of large-scale atmospheres and oceans are
described by a series of primitive equations including
the continuity equation and the momentum equations.
Investigators are trying to simplify them according to
scale analysis or in specific situations, for example,
the quasi-geostrophic approximation is mostly used.
Among the theories, Rossby waves are more impor-
tant. Kinds of nonlinear equations with multiple phys-
ical factors, such as shear basic flow and topography,
were derived to simulate the evolution of Rossby soli-
tary waves in the past. Long obtained a Korteweg–
deVries (KdV) equation for Rossby wave amplitude
under beta-plane approximation [1]. Redekopp and
Wadati obtained KdV equation and modified KdV
(mKdV) equation [2,3]. Redekopp and Weidman also
studied the formation of Rossby solitons with a shear
basic flow and obtained necessary conditions for the
existence of Rossby solitons [4]. Boyd and Li [5–
7] derived KdV, mKdV equations in describing the
equatorial Rossby solitary wave from primitive equa-
tions. Ono put forward to an integral–differential equa-
tion [8]. Luo used a nonlinear Schrödinger equation
(NLS) to describe the evolution of Rossby solitary
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wave packets [9], which pointed out that the NLS equa-
tion was also appropriate for the Rossby solitons as
other equations.Recently, kinds of nonlinear equations,
such as integro-differential equation, mBO–mKdV–
Burgers equation, ILW-Burgers equation and nonlin-
ear Schrödinger equation, were derived by multiscale
method by Yang et al. [9–13] to describe the evolu-
tion of Rossby solitary waves or wave packets. At the
same time, it is also worth noting that Le and Nguyen
have made great progress in investigating the nonlinear
waves by the variational–asymptotic method in recent
years [14–16], which is an effective method for the
multiscale and perturbation analysis.

Looking at the above research, on the one hand,
most research did the assumption of constant Rossby
parameter; Liu and Tan discussed the variation of it
along with latitude in a generalized beta approxima-
tion [17]. Luo further used the generalized form to
study the dipole blocking phenomenon in atmospheres
[18]. Song et al. [19,20] extended the beta effect to
a general case indicating its importance in inducing
the evolution of Rossby solitary waves. On the other
hand, (1 + 1)-dimensional nonlinear partial differ-
ential equations were mainly used in describing the
evolution of nonlinear Rossby waves. However, real
atmospheric and oceanic motions are not just in one
spatial direction. Providing higher-dimensional theo-
ries for the nonlinear Rossby waves is necessary. To
our knowledge, Gottwald firstly derived the (2 + 1)-
dimensional Zakharov–Kuznetsov (ZK) equation for
nonlinear Rossby waves from the quasi-geostrophic
barotropic vorticity equation [21]. Recently, Yang et
al. [22] obtained ZK–Burgers equation in simulating
the (2 + 1)-dimensional Rossby solitary waves. But
they did not consider the variation of Rossby parameter
neither. Moreover, topographymakes important effects
on the study of solitons [10,23–25]. However, no atten-
tions are paid to such effect on the higher-dimensional
Rossby waves.

Analytical solutions for nonlinear partial differen-
tial equations are also important, and many methods
have been proposed [26–38]. However, each method
was only appropriate for special kinds of equations.
For example, Yang et al. [22] used sine–cosine and
rational methods to give analytical solutions for the
ZK equation they obtained, but did not get analytical
solution for the ZK–Burgers equation because of the
limitation of their method. It is also necessary for us
to choose appropriate method to obtain the analytical

solutions for the equation we encounter in the present
paper.

Considering all of the above discussions, the main
purpose of this paper is to consider a (2 + 1)-
dimensional nonlinear Rossby waves with effects of
generalized beta, topography and dissipation. The
paper is organized as follows: In Sect. 2, we derive a
generalized forced Zakharov–Kuznetsov (fZK) equa-
tion which includes basic topographical effect part,
slowly varying effect part and dissipative effect to
describe the evolution of Rossby solitary wave. In
Sect. 3, analytical solutions ofZKequation are obtained
by elliptic function expansion method; meanwhile,
fZK equation is solved by efficient reduced differen-
tial transform method, respectively. In Sect. 4, discus-
sions are done on the effects of slowly varying topog-
raphy and dissipation by the graphical presentations of
the analytical solutions. Brief conclusions are given at
last.

2 Derivation of fZK equation

2.1 Governing equations and boundary conditions

Beginning with a dimensionless barotropic potential
vorticity equation with topography and turbulent dissi-
pation, it is written as [20]

(
∂

∂t
+ ∂Ψ

∂x

∂

∂y
− ∂Ψ

∂y

∂

∂x

) (
∇2Ψ + f + h(x, y)

+h1(t)) = −μ∇2Ψ + Q, (1)

where Ψ is the total stream function, f = f0 + β(y)y
is the vertical component of Coriolis parameter with
f0 = 2Ω sin ϕ0, Ω is the angular velocity of the earth
rotation and ϕ0 is the local latitude. β(y) is the gener-
alized Rossby parameter [19,20], h(x, y) is the basic
topography part, and h1(t) represents the slowly varia-
tion of topographywith time.μ is the turbulent dissipa-
tion parameter. Q denotes the external heating source,
and ∇2 is the two-dimensional Laplace operator.

Boundary conditions are necessary to solve the prob-
lem completely; they are written as

∂Ψ

∂x

∣∣∣∣
y=0

= ∂Ψ

∂x

∣∣∣∣
y=1

= 0 (2)
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2.2 Multiscale method and perturbation expansion
method

The form of total stream function is assumed to be

Ψ = −
y∫

0

[ū(s) − c0] ds + ε2Ψ ′(x, y, t) (3)

where Ψ̄ = − ∫ y
0 [ū(s) − c0]ds is the basic stream

function andΨ ′ is the perturbed one. ε is a small param-
eter which characterizes the weak nonlinearity. The
external heating source balances the diffusion of the
basic flow ū according to the assumption by Caillol et
al. [39]. Further assumptions are made in order to sat-
isfy the balance between topography and nonlinearity

h(x, y) = ε2h′(y),
h1(t) = ε2h′

1(t), μ = ε3μ0. (4)

It is reasonable to neglect the zonal variation of topog-
raphy for the study of large-scale atmospheric motions.
Substituting Eqs. (3) and (4) into Eqs. (1) and (2) yields

[
∂

∂t
+ (ū − c0)

∂

∂x

]
∇2Ψ ′ + p(y)

∂Ψ ′

∂x

+ ε2 J
[
Ψ ′,∇Ψ ′ + h′] + dh′

1(t)

dt
= −ε3μ0∇2Ψ ′, (5)

∂Ψ ′

∂x

∣∣∣∣
y=0

= ∂Ψ ′

∂x

∣∣∣∣
y=1

= 0, (6)

where p(y) = [β(y)y − ū′]′ represents the shear basic
flow effect and generalized β(y) effect, J [a, b] =
∂a
∂x

∂b
∂y − ∂a

∂y
∂b
∂x is the Jacobi operator.

Introducing multiple scales

X = εx, Y = εy, T = ε3t, (7)

and perturbation expansions

Ψ ′ = Ψ0 + εΨ1 + ε2Ψ2 + · · · . (8)

Substituting Eqs. (7) and (8) into Eqs. (5) and (6) yields

O(ε)

⎧⎨
⎩

(ū − c0)
∂

∂X

(
∂2Ψ0
∂ y2

)
+ p(y) ∂Ψ0

∂X = 0

∂Ψ0
∂X = 0, y = 0, 1

. (9)

O(ε2)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(ū − c0)
∂

∂X

(
∂2Ψ1
∂ y2

)
+ p(y) ∂Ψ1

∂X

= −2(ū − c0)
∂

∂X

(
∂2Ψ0
∂y∂Y

)
∂Ψ1
∂X = 0, y = 0, 1

. (10)

O(ε3)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ū − c0)
∂

∂X

(
∂2Ψ2
∂ y2

)
+ p(y) ∂Ψ2

∂X

= − ∂
∂T

(
∂2Ψ0
∂ y2

)
− (ū − c0)

∂
∂X ∇2Ψ0

−2(ū − c0)
∂

∂X

(
∂2Ψ1
∂y∂Y

)
− ∂Ψ0

∂X
∂
∂y

(
∂2Ψ0
∂ y2

)

− dh′
1(t)
dT + ∂Ψ0

∂y
∂

∂X

(
∂2Ψ0
∂ y2

)

− ∂Ψ0
∂X

dh′
dy − μ0

∂2Ψ0
∂ y2

∂Ψ2
∂X = 0, y = 0, 1

. (11)

2.3 Derivation of fZK equation

Assuming a separable formal solution of Eq. (9) is

Ψ0 = A(X,Y, T )ϕ0(y). (12)

Substituting (12) into Eq. (9) yields

{
(ū − c0)ϕ′′

0 (y) + p(y)ϕ0(y) = 0
ϕ0(0) = ϕ0(1) = 0

. (13)

When ū − c0 �= 0, it becomes

{
ϕ′′
0 (y) + p(y)

(ū−c0)
ϕ0(y) = 0

ϕ0(0) = ϕ0(1) = 0
. (14)

Equation (14) is the well-known Rayleigh–Kuo
equation, which determines the meridional structure of
the waves. We need to solve higher-order equations to
determine the evolution of amplitude A(X,Y, T ) with
time and space.

Assuming a separable solution of Eq. (10) is

Ψ1 = B(X,Y, T )ϕ1(y). (15)

Substituting (15) into Eq. (10) yields

∂B

∂X
ϕ′′
1 (y) + p(y)

ū − c0
ϕ1(y)

∂B

∂X

= −2
∂2A

∂X∂Y
ϕ′
0(y). (16)

Without loss of generality, we set

∂B

∂X
= ∂2A

∂X∂Y
. (17)
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Equation (16) becomes into the following

{
ϕ′′
1 (y) + p(y)

(ū−c0)
ϕ1(y) = −2ϕ′

0(y)
ϕ1(0) = ϕ1(1) = 0.

(18)

Equation (18) does not determine the structure of
A(X,Y, T ) neither. Substituting (12) and (15) into Eq.
(11) and using (14) and (18) yield

(ū − c0)
∂

∂X

(
∂2Ψ2

∂y2

)
+ p(y)

∂Ψ2

∂X
= F. (19)

where

F = −∂A

∂T

(
∂2ϕ0

∂y2

)
− (ū − c0)ϕ0(y)

∂3A

∂X3

−(ū − c0)
[
ϕ0(y) + 2ϕ′

1(y)
] ∂3A

∂X∂Y 2

−A
∂A

∂X

[
ϕ0(y)ϕ

′′′
0 (y) − ϕ′

0(y)ϕ
′′
0 (y)

]

− ∂A

∂X

dh′

dy
ϕ0(y) − μ0Aϕ′′

0 (y) − dh′
1

dT
. (20)

The homogeneous part of Eq. (19) is the same as
Eq. (9), and non-singular condition must be satisfied in
order to obtain a regular solution of Eq. (19) as follows

1∫
0

ϕ0(y)

ū − c0
Fdy = 0. (21)

Substituting (20) into Eq. (21) yields

∂A

∂T
+ a1A

∂A

∂X
+ a2

∂A

∂X
+ a3

∂3A

∂X3

+a4
∂3A

∂X∂Y 2 + μ0A = a6
dh′

1

dT
, (22)

where the coefficients are

a1 = I1/I, a2 = I2/I, a3 = I3/I, a4 = I4/I,

a6 = I6/I and

I =
1∫

0

p(y)

(ū − c0)2
ϕ2
0(y)dy,

I1 =
1∫

0

(
p(y)

ū − c0

)
′ ϕ3

0(y)

ū − c0
dy,

I2 = −
1∫

0

ϕ2
0(y)

ū − c0

dh′

dy
dy,

I3 = −
1∫

0

ϕ2
0dy,

I4 = −
1∫

0

[
2ϕ0(y)ϕ

′
1(y) + ϕ2

0(y)
]
dy,

I6 =
1∫

0

ϕ0(y)

(ū − c0)
dy, respectively.

Equation (22) is a (2 + 1)-dimensional generalized
fZK equation. Term with coefficient a1 indicates that
both the generalized β(y) and the shear basic flow
are essential in inducing the nonlinear Rossby waves.
It is noted that the variation of β(y) can still induce
nonlinear Rossby solitary waves even if without shear
basic flow. Termwith coefficient a2 represents the basic
topography effect, and it is a phase shift factor, which is
consistent with some previous investigations.μ0 repre-
sents dissipation. The right-hand side term represents
slowly varying topography effect, and it is a external
forced factor, which is an important factor with respect
to the evolution of Rossby solitary waves in a long
time aspect. In addition, Eq. (22) reduces to the case
by Yang et al. [22] when generalized beta effect and
topography are absent. When μ0 = 0, it reduces to
the traditional ZK equation by Gottwald [21]. So, in
conclusion, Eq. (22) we obtained at present is a gener-
alization of some previous studies, which can simulate
more physical mechanism for the evolution of nonlin-
ear Rossby solitary waves.

3 Analytical solutions

3.1 Solution of generalized ZK equation by elliptic
function expansion method

In what follows, the dissipation and slowly vary-
ing topography are both absent. The elliptic function
expansion method is used to solve the generalized ZK
equation with only basic topography. Equation (22)
becomes into the following form:

∂A

∂T
+ a1A

∂A

∂X
+ a2

∂A

∂X
+ a3

∂3A

∂X3 + a4
∂3A

∂X∂Y 2 = 0. (23)
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Doing transformation ξ = kX + lY − ωT yields

(
a2 − ω

k

) dA

dξ
+ a1A

dA

dξ
+

(
a3k

2 + a4l
2
) d3A

dξ3
= 0. (24)

Assuming the formal solution of Eq. (24) to be

A(ξ) =
n∑

k=0

bksn
kξ, (25)

according to the balance between nonlinearity and dis-
persion, it is

2n + 1 = n + 3, (26)

therefore

A(ξ) = b0 + b1snξ + b2sn
2ξ. (27)

Substituting (27) into Eq. (24) yields the solution
according to the principles of elliptic function expan-
sion method

A = 8
(
1 + m2

) (
a3k2 + a4l2

) + ω/k − a2
a1

−12m2
(
a3k2 + a4l2

)
a1

sn2 (kX + lY − ωT ) .

(28)

When m → 1, the solitary wave solution is

A(X,Y, T ) = ω/k − a2 − 4(a3k2 + a4l2)

a1

+12(a3k2 + a4l2)

a1
sec h2(kX + lY − ωT ). (29)

Especially when ω/k−a2 −4(a3k2 +a4l2) = 0 satis-
fies, which is just the linear dispersion relation for Eq.
(23), the solitary wave becomes into

A(X,Y, T ) = 12
(
a3k2 + a4l2

)
a1

sech2
[
kX + lY

−
(
4a3k

3 + 4a4kl
2 + a2

)
T

]
. (30)

From (30), phase shifting effect of basic topography
and inducing effect of generalized β(y) on the nonlin-
ear Rossby solitary waves are evident.

3.2 Solution of generalized fZK equation by reduced
differential transform method

It is noted that the elliptic function expansion method
can solve the specific nonlinear equations with only
odd derivatives or even derivatives, and it is not so suit-
able for the obtained generalized fZK equation in the
present paper. We will use the efficient reduced differ-
ential transform method in the following procedures to
solve Eq. (22) [36]

∂A

∂T
+ a1A

∂A

∂X
+ a2

∂A

∂X
+ a3

∂3A

∂X3

+a4
∂3A

∂X∂Y 2 + μ0A = a6
dh′

1

dT
. (31)

Assume

A =
∞∑
k=0

Ak(X,Y )T k, (32)

and

h′
1(T ) = sin γ T =

∞∑
k=0

h′
1,kT

k . (33)

The following iterations are obtained according to the
method,

Ak+1 = − 1

k + 1

[
a2

∂Ak

∂X
+ a3

∂3Ak

∂X3

+a4
∂3Ak

∂X∂Y 2 + a1

k∑
r=0

Ar
∂Ak−r

∂X

+ μ0Ak

]
+ a6h

′
1,k+1. (34)

The initial condition is assumed to be A0(X,Y ) =
sec h2(X + Y ); consecutive terms can be obtained as
follows according to (34) by using Mathematica soft-
ware

A1 = γ a6 − μ0Sech[X + Y ]2
+ 2a1Sech[X + Y ]4Tanh[X + Y ]
+ 2a2Sech[X + Y ]2Tanh[X + Y ]
− a3

(
16Sech[X + Y ]4Tanh[X + Y ]

− 8Sech[X + Y ]2Tanh[X + Y ]3
)

− a4
(
12Sech[X + Y ]4Tanh[X + Y ]

− 2Tanh[X + Y ](−2Sech[X + Y ]4
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+ 4Sech[X + Y ]2Tanh[X + Y ]2)
)

. (35)

A2 = (−4 + 3cosh[2(x + y)])sech[x + y]8a21
+ (−2 + cosh[2(x + y)])sech[x + y]4a22
− 272sech[x + y]8a3a4 − 136sech[x + y]8a24
− 1

2
γ a6μ0 + 1

2
sech[x + y]2μ2

0

− 136sech[x + y]8a23
− 2sech[x + y]6a2((−33 + 26cosh[2(x + y)]
− cosh[4(x + y)])a3 + (−33 + 26cosh[2(x + y)]
− cosh[4(x + y)])a4 + cosh[x + y]3sinh[x + y]μ0)

+ 16sech[x + y]4a3μ0tanh[x + y]
+ 16sech[x + y]4a4μ0tanh[x + y]
+ 1440sech[x + y]6a23 tanh[x + y]2
+ 2880sech[x + y]6a3a4tanh[x + y]2
+ 1440sech[x + y]6a24 tanh[x + y]2
− 8sech[x + y]2a3μ0tanh[x + y]3
− 8sech[x + y]2a4μ0tanh[x + y]3
− 912sech[x + y]4a23 tanh[x + y]4
− 1824sech[x + y]4a3a4tanh[x + y]4
− 912sech[x + y]4a24 tanh[x + y]4
+ 32sech[x + y]2a23 tanh[x + y]6
+ 64sech[x + y]2a3a4tanh[x + y]6
+ 32sech[x + y]2a24 tanh[x + y]6
+ a1(2(−3 + 2cosh[2(x + y)])sech[x + y]6a2
+ 2(74 − 68cosh[2(x + y)]
+ 5cosh[4(x + y)])sech[x + y]8a3
+ 22sech[x + y]8a4 + γ sech[x + y]2a6tanh[x + y]
− 3sech[x + y]4μ0tanh[x + y]
− 192sech[x + y]6a4tanh[x + y]2 + 22sech[x + y]8a4
+ γ sech[x + y]2a6tanh[x + y]
− 3sech[x + y]4μ0tanh[x + y]

+ 80sech[x + y]4a4tanh[x + y]4). (36)

By taking first three terms, solution of Eq. (31) can be
written as

A = A0(X,Y ) + A1(X,Y )T + A2(X,Y )T 2. (37)

This is an analytical solution for the generalized fZK
equation, the dissipation and slowly varying topogra-
phy from (35), (36) and (37) are obviously found. Of
course, (37) is complex; it is necessary for us to con-
sider such a problem through graphical representations
in order to understand the importance from dissipation
and slowly varying topography.

4 Discussion

In what follows, we will simply set the coefficients be
a1 = 1, a2 = 1, a3 = 1, a4 = 1, a6 = 1 in order to
study the dissipation and topography on the (2 + 1)-
dimensional nonlinear solitaryRossbywaves by graph-
ical representation for the above analytical solutions.
we will use special two-dimensional cases to present
the results.

In Figs. 1 and 2, we have plotted the evolution of
solitary Rossby wave amplitude for different dissipa-
tion parameters. It can be seen the slip effect from dis-
sipation; large dissipation induces much more evident
slip effect.

In Figs. 2 and 3, we have characterized the effect
from slowly varying topography, and it can be seen
that the forcing effect from variation of topography can
enhance the evolution of amplitude.

(a) (b) (c)
4 2 2 4

0.1

0.2

0.3

0.4

4 2 2 4

0.4

0.2

0.2

0.4

4 2 2 4

1.5

1.0

0.5

0.5

1.0

Fig. 1 Evolution of amplitude A at different time for μ0 = 5, γ = 0.5, X = Y . The horizontal coordinate represents the spatial
variable with X = Y , and the vertical coordinate represents the amplitude. a T = 0; b T = 0.5; c T = 1
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200

(a) (b) (c)

Fig. 2 Evolution of amplitude A at different time for μ0 = 0.5, γ = 0.5, X = Y . The horizontal coordinate represents the spatial
variable with X = Y , and the vertical coordinate represents the amplitude. a T = 0; b T = 0.5; c T = 10

Fig. 3 the evolution of
amplitude A at different
time for μ0 = 0.5,
γ = 5, X = Y . The
horizontal coordinate
represents the spatial
variable with X = Y and
the vertical coordinate
represents the amplitude. a
T = 0.5; b T = 10

(a) (b) 
4 2 2 4

2.0

2.2

2.4

2.6

2.8

4 2 2 4

200

100

100

5 Conclusions

We have successfully derived a generalized fZK equa-
tion in describing the (2 + 1)-dimensional nonlinear
Rossby solitary waves with generalized beta, topog-
raphy and dissipation. We specially considered the
effect from slowly varying topography. We found that
the basic topographical effect is an essential factor in
influencing the frequency of the Rossby waves. The
effect from slowly varying topography with time is an
external forcing factor on impacting the evolution of
solitary Rossby waves, and it can enhance the vari-
ations of amplitude. And the generalized beta con-
tributes to the induction of nonlinear Rossby solitary
waves. Moreover, we obtained analytical periodic and
solitary waves for the ZK equation based on the ellip-
tic function expansion method, but the method fails
to the fZK equation. The reduced differential trans-
form method is applicable to the fZK equation for-
tunately. The results demonstrated that both topogra-
phy and dissipation are important factors for the evo-
lution of higher-dimensional nonlinear Rossby solitary
waves.
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