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Abstract The characteristic defect frequencies are
widely used for diagnosing the local defect of the ball
bearing. The varying compliance (VC) frequency of
a fault-free rotor–bearing system equals to the BPFO
(ball bearing outer race defect frequency) due to the
internal kinematic relationship of a bearing assem-
bly. In order to indicate this issue, a semi-analytical
method—the harmonic balance method with alternat-
ing frequency/time domain technique—is exploited to
obtain the solutions of rotor–ball bearing systems with
/without an outer race defect. The solutions and the
features of a rotor–ball bearing system with essentially
nonlinear parametric excitation are analyzed.We prove
the VC frequency equals the BPFO and explain the rea-
sons that the harmonics of the characteristic defect fre-
quency generally appear in the frequency domain. The
VC, BPFO as well as their harmonics affected by the
primary and super-harmonic resonance of the system
are found out. Finally, a test rig of a rigid rotor–bearing
system is established to verify the theoretical analy-
sis qualitatively by presenting the performance of VC,
BPFO and their harmonics in the frequency domain.
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In addition, the tests are accomplished in a cycle of
running up and down to reveal the primary and super-
harmonic resonance characteristics. On the basis of the
theoretical and experimental results, the basic BPFO
is not enough to judge an outer race defect. The dis-
cussion on frequency spectrum, the primary and super-
harmonic resonance provides a more reliable way to
elucidate the characteristic defect frequencies.

Keywords Outer race defect · Rotor–ball bearing
system · Characteristic defect frequency · Varying
compliance

List of symbols

m half mass of the rotor
W half gravity of the shaft
M mass of the rotor
c damping coefficient
Fr the load on the rotor in experiment
fx restoring force from the ball bearing
fy restoring force from the ball bearing
Q j contact force between each ball and race
G(·) Heavisde function (witch function)
θ j angular position of each ball
θe the angular span of the local defect
θbd j the angular difference betweenball and defect
θs space angle in experiment
θ∗
j angular position of each ball after dimension-

less

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11071-017-3692-x&domain=pdf


782 R. Yang et al.

β contact angle of ball bearing
ϕ defect angular position
δ j deformation between each ball and race
δ0 half of the radial clearance
δd the depth of the local defect
δ∗
j contact deformation after dimensionless

δs the projection of δr along θs in
experiment

δr vertical displacement of the rotor in
experiment

ωs rotor speed of ball bearing
ωc cage speed of ball bearing
Nb ball numbers
Di diameter of the inner race
Do diameter of the outer race
D pitch diameter
B bearing structure parameter,

B = Di/(Di + Do)

d ball diameter
mod(·) function calculating remainder after division
VC vary compliance
BPFO defect frequency for outer race
ωvc VC frequency
nX nth order shaft frequency harmonics
τ dimensionless angularity
Ω cage speed after dimensionless process
X horizontal dimensionless displacement
Y horizontal dimensionless displacement
Fx horizontal restoring force (dimensionless

process)
Fy vertical restoring forces (dimensionless

process)
k Order of the harmonic terms
N Discrete point number in time domain
ωx (t) time-vary for horizontal natural resonance
ωy(t) time-vary for vertical natural resonance
ω resonance frequency of the system in

experiment
nX horizontal natural resonance point
nY horizontal natural resonance point
nXVC horizontal natural resonance point for VC
nYVC horizontal natural resonance point for VC
Krr stiffness in aero-engine design manual
Z ball numbers in contact for stiffness

estimation
Ai amplitude for ith free vibration in

experiment
kbar assumed stiffness of the load the

equipment

1 Introduction

A rolling bearing failure is one of the most common
causes for breakdowns of a rotating machine. The local
defects have become one central issue of concerns in
the usual types, e.g., a pit or spall on the raceway, ball,
attracting the attention of researchers in many areas.
A localized defect is usually initiated by subsurface
fatigue cracks that appear during the operation. Even
the bearing is in good operating condition, the subsur-
face cracks will grow and break through to the surface
to cause a spall or crack as the service time increases
[1].

In recent years, a great many researchers worked on
local defect of rolling bearings. McFadden and Smith
[2] modeled the short-time impact produced by a local
defect as a pulse and calculated the frequency spec-
trum of the inner race defect. Tandon and Choudhury
[3,4] thought the impact as an impulse because of the
short duration of the striking process, and they utilized
the mode harmonic superposition method to acquire
the frequency spectrum of ball bearings with differ-
ent local defects. Choudhury and Tandon [5] employed
the pulse model to establish an analytical formulation
for a defective bearing test rig to show the frequency
performance of a defective bearing system. Rafsan-
jani et al. [6] employed the pulse model to set up a
dynamic equation of a rigid rotor–bearing system with
various local defects. Some complex behaviors such
as quasi-periodic and chaotic motions were reported
in the paper. Feng et al. [7] modeled the local defect
with an angle span and a depth to illustrate the vibra-
tion behavior. Sopanen and Mikola [8,9] embedded
a rectangle shaped local defect into a bearing model
to exhibit the vibration behavior. Sawalhi and Randall
[10,11] presented a combined dynamicmodel for gears
and bearings containing a local and an extended fault in
the inner/outer race of rolling element bearings under
gear interaction. Sassi et al. [12] modeled the vibra-
tion generated by a point defect as a function of the
operational and structural parameters of a rolling bear-
ing system. Cao and Xiao [13] investigated the effects
of localized surface defects on vibration responses of
a double-row spherical roller bearing system. Arslan
and Aktürk [14] established a dynamic model of a
bearing–rotor system where the shaft, balls and race-
ways were treated as contact springs, and the vibra-
tions of the system with/without defects were stud-
ied in both time and frequency domains. Nakhaeine-
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jad and Bryant [15] developed a dynamic model of
rolling element bearing in vector bond graphs, in which
each component has rotationDOFand translationDOF.
Patil et al. [16] presented an analytical model for pre-
dicting the effect such as the size and location of a
localized defect on the ball bearing vibrations. Patel et
al. [17] studied the dynamic characteristics of a deep
groove ball bearing system, single and multiple sur-
face defects were explored, and some frequency char-
acteristics were concluded. Tadina and Boltežar [18]
modeled the outer raceway using finite elementmethod
to simulate its flexible deformations, and various sur-
face defects due to local deformations were introduced
into the developed model. Kankar et al. [19] set up
a dynamic equation of a rigid rotor–bearing system
with various defects to reveal complex dynamic behav-
iors. Pandya et al. [20] proposed a dynamic rotor–
bearing model containing combined local defects to
explore the dynamic behaviors, and the results show
the motion of the system is quite unstable and quasi-
periodic and chaotic trends to appear in the entire speed
range. Bogdevicius and Skrickij [21] investigated five
cases of various defects on different components based
on a dynamic model established by Lagrange equa-
tion. Wang et al. [22] established 5-DOF roller bearing
model, and the effects of time-varying surface mod-
els, different defect types and defect sizes on system
dynamic responseswere studied. Liu et al. [23–26] pro-
posed piecewise function models to describe different
local defect types and the edge effect based onHertizian
contact mechanism, and the ratio of the ball size to the
defect size was considered. Ahmadi et al. [27] thought
of the edge effect of a local defect on the contact defor-
mation to stress the importance of modeling the finite
size of rolling elements. Niu et al. [28,29] established
comprehensive dynamic models based on the Gupta’s
model to explore the high-speed vibration response and
ball passing frequencies of a defective bearing system.
Among them, a few scholars modeled pedestal free-
doms to simulate resonance of some components of a
bearing assembly or model vibrations of the bearing
housing [7,10,11,28–30]. Besides, some scholars ana-
lyzed the multi events in the time domain responses
based on the geometric model to judge a local defect
or estimate the size or severity of the defect [31–34].

Recently, Singh et al. [35] and El-Thalji and Jan-
tunen [36] reviewed the current literatures on model-
ing and dynamic behaviors of the local defect of rolling
bearings, in which Singh et al. laid particular emphasis

on the dynamicmodeling and the dynamic phenomena,
while El-Thalji et al. emphasized the signals analysis
and features extraction methods. Compared to other
criterion [36,37], the characteristic defect frequencies
[38] which can give a direct insight into the defective
bearing system are widely used for the judgement of
a local defect [3–6,9–25,27–29,35,37,39,40]. Some
signal processing methods such as the envelope analy-
sis [2,7,10,11,28–30,41] and time–frequency analysis
methods [42–44] are usually used to obtain the defect
characteristic frequency. In addition, many other math-
ematical theories and techniques are also employed
to enhance the useful information to match the char-
acteristic defect frequency for diagnosis [36,37,45,
46].Therefore, the characteristic defect frequency plays
an important role for judgment of defective rollingbear-
ing.

The number of rolling elements and their position in
the load zone change with shaft rotation, which leads
to a periodical variation in the total stiffness of the
rolling bearing, known as varying compliance (VC)
vibration [47]. The nature of the VC vibration is not
changedwhen a local defect exists, so theVC frequency
equals to theBPFO in frequency domain.However, few
scholars pay attention to the relationship between VC
and BPFO in the frequency domain (see Appendix). In
addition, few scholars highlight the fact that a rotor–ball
bearing system is an essentially nonlinear parametric
excitation, the solution of which usually contains the
basic excitation and the harmonics. Furthermore, they
are influenced by the resonance characteristic, which in
turn affects the frequency spectrum of a rotor–bearing
system with an outer race defect. Therefore, the moti-
vation of this paper is to stress the issue that the VC
frequency equals to the BPFO and study the frequency
spectrum performance based on nonlinear dynamics.

The rest of the paper is organized as follows. Sec-
tion 2 briefly introduces the modeling process. Sec-
tion 3 contains establishment of experiment system and
dynamic parameters estimation. The numerical analy-
sis is carried out in Sect. 4. The experimental results
are presented and analyzed in Sect. 5. The discussions
and conclusion lie in Sect. 6.

2 System modeling

The 2-DOF mass–spring rotor–bearing system model
used in this paperwasdevelopedbySunnersjö [47].The
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rotor is simplified as a lumped mass point in the center
with two same bearings at ends (Fig. 1a). The ball bear-
ing is simplified as a spring and damping system based
on theHertzian contact (Fig. 1b). The outer race and the
inner race are assumed to be, respectively, fixed rigidly
by an interference fit in a rigid support and with the
shaft. Because we focus on a fundamental and qual-
itative research, some factors such as the gyroscopic
moment, centrifugal force and lubrication traction/slip
between bearing components are neglected [34]. The
equation of motion for a rotor–bearing system can be
established as

m

[
ẍ
ÿ

]
+ c

[
ẋ
ẏ

]
+

[
fx
fy

]
=

[
0

−W

]
, (1)

where m is half mass of the rotor, fxand fy are the
restoring forces, W is half the gravity of the shaft, c is
the damping coefficient and the rotor is assumed to be
balanced.

2.1 Restoring forces

Based on the Hertzian point contact theory [39], the
force between rolling element and raceway is modeled
as

Q j = Kcδ
3/2
j , (2)

where Kc is contact stiffness and δ j is the contact defor-
mation of the j th rolling element, and it is given by

δ j = xcosθ j + ysinθ j − δ0, (3)

where 2δ0 is the radial clearance and θ j is angular posi-
tion of the j th rolling element.

θ j = 2π( j − 1)/Nb + ωct, (4)

where ωc is the cage speed and Nbis the number of
the rolling elements. The cage speed has a relationship
with the rotor speed ωs, which is determined by the
structure of a bearing assembly.

ωc = Bωs, (5)

where B = Di/(Di + Do) for a deep groove ball bear-
ing Di is the diameter of the inner raceway and Do

is the diameter of the outer raceway. Referring to the
coordinate system in Fig. 1b, the restoring forces are
accumulated over each rolling element to give overall
forces on the shaft and housing into x and y directions.

fx =
Nb∑
j=1

G(δ j )Q jcosθ j , (6)

fy =
Nb∑
j=1

G(δ j )Q j sinθ j , (7)

where G(·) is the Heavisde function, obtaining the
value 1 for positive arguments and the value 0 for neg-
ative or zero arguments. The parametric excitation VC
is determined by the number of the rolling elements
and the cage rotation speed.

ωvc = Nbωc. (8)

2.2 Defect model

The pits or spalls affect the deformation relation of each
ball and race, and additional deformation is introduced
into Eq. (3) when a ball runs over the defect zone as
shown in Fig. 1b. This kind ofmodeling tries to directly
depict the physical boundaries of a local defect, which
is essentially the change of the clearance [7]. The con-
tact deformationof j th element inEq. (1) changeswhen
the ball runs across the defect

δ j =
{

δ j − δd |θbd j | < θe/2
δ j |θbd j | > θe/2

, (9)

where θe is the span of the defect (see Fig. 1b), δd
is the depth of the defect, θbd j is the angular differ-
ence between j th rolling element and the local defect,
denoted as

θbd j = mod(θ j , 2π) − ϕ, (10)

where mod(·) is the function calculating the remain-
der after division and ϕ is the defect angle (Fig. 1b).
To avoid the stiff problem during the calculation, a
dimensionless equation is implemented. Introducing a
nondimensional time τ = ωct , differentiation with t
being changed with τ , the governing equation is trans-
formed into the following equation. Letting X = x/δ0,
Y = y/δ0, the governing equation of the defective bear-
ing rotor system can be expressed as follows[
X ′′
Y ′′

]
+ c

mΩ

[
X ′
Y ′

]
+ 1

mΩ2

[
Fx
Fy

]

=
[

0
− W

mδ0Ω2

]
; (11)
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Fig. 1 Schematic map of a defective bearing–rotor system. a
Bearing–rotor system and b defective bearing

the restoring force is expressed as
[
Fx
Fy

]
= Kcδ

0.5
0

Nb∑
j=1

(
δ∗
j G

(
δ∗
j

))1.5 [
cos θ∗

j
sin θ∗

j

]
, (12)

δ∗
j =

{
Xcosθ∗

j + Y sinθ∗
j − 1 − δd/δ0 |θbd j | < θe/2

Xcosθ∗
j + Y sinθ∗

j − 1 |θbd j | > θe/2
, (13)

where θ∗
j = 2π( j − 1)/Nb + τ and Ω is taken instead

of ωc in the dimensionless process. Then, the nondi-
mensional VC frequency of Eq. (11) is Nb.

2.3 Methodology

The harmonic balance (HB) method can obtain a solu-
tion expression to reflect the relationship between the
excitation and its response. Moreover, the HB is a suit-
able numericalmethod to solve a nonlinear system [48–
51]. Thus, this HB method will elucidate the topics of
this paper. The solution of Eq. (11) can be expressed by
Eq. (14) through Fourier series, and the restoring force
of Eq. (12) is replaced by Eq. (15) identically.

[
X
Y

]
=

[
aX0
aY0

]

+
K∑

k=1

([
aXk
aYk

]
cos(kτ) −

[
bXk
bYk

]
sin(kτ)

)
, (14)

[
FX

FY

]
=

[
cX0
cY0

]

+
K∑

k=1

([
cXk
cYk

]
cos(kτ) −

[
dXk
dYk

]
sin(kτ)

)
, (15)

where k is the order of the harmonic terms.
Substituting these two equations into the govern-

ing Eq. (11), the algebraic equations about coefficient
aXk, aYk,. . ., cXk and cYk can be obtained according
to the different orders of harmonic terms. The coeffi-
cients of the displacement and restoring force can be
expressed as a vector [49].

[
U
V

]
=

[
aX0 aY0 aX1 aY1 bX1 bY1 , . . . , aXK aY K bXK bY K

cX0 cY0 cX1 cY1 dX1 dX2 , . . . , cXK cY K dXK dY K

]
,

(16)

The number of the algebraic equations is less than that
of the harmonic coefficients. The AFT procedure can
be a bridge for aXk ,cXk ,aYk and cYk [48,49].⎡
⎣ cX0

cY0

⎤
⎦ = 1

N

N−1∑
n=0

⎡
⎣ FX

FY

⎤
⎦, (17)

⎡
⎣ cXk

cYk

⎤
⎦ = 2

N

N−1∑
n=0

⎡
⎣ FX

FY

⎤
⎦ cos

(
2πkn

N

)
, (18)

⎡
⎣dXk

dYk

⎤
⎦ = 2

N

N−1∑
n=0

⎡
⎣ FX

FY

⎤
⎦ sin

(
2πkn

N

)
, (19)

where N is the discrete point number in time domain.
After theAFT procedure, the numbers of the unknowns
and the algebraic equations are equal. The Newton–
Raphson iteration procedure is used to obtain har-
monic coefficients of the solutions of Eq. (14). A brief
flowchart of the HB-AFT is displayed in Fig. 2. The
details can refer the reference [48–51].

3 Experiment system

This section contains the brief introduction of the test
rig, estimation of contact stiffness and damping effi-
cient.
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Fig. 2 Flowchart of the HB-AFT

3.1 Brief introduction of test rig

The system consists of three parts: (a) the test rig of
a rotor bearing system; (b) the signal acquisition and
motor controlling system; (c) the eddy current displace-
ment sensors. In Fig. 3a, the right end of the rig is the
tested rolling bearing, and the fault-free bearing and
outer raceway defective bearing can be installed there.
The real bearings used in this paper are displayed in
Fig. 4, and they are 6312 deep groove bearing. The
loading equipment lies in the middle of the rig which

can supply the vertical force on the shaft; the left end of
the bearing rig is the accompanying bearing; the drive
end is a servo motor; and the motor and shaft are con-
nected through a coupling and a soft rope to reduce
the disturbance from the motor. The signal acquisition
and motor controlling system are displayed in Fig. 3b.
Figure. 3c shows the eddy current sensors installation,
and sensors are mounted to measure the vertical and
horizontal displacements of shaft and bearing pedestal
in the right end. The eddy current sensors are fixed to
the ground through a magnet base, and the eddy sen-
sors can acquire the direct displacement responses of
the rotor. The parameters of the test bearing and rotor
are listed in Table 1.

3.2 Contact stiffness and damping estimation

The contact stiffness Kc in Eq. (2) can be calculated or
estimated [39]; however, some parameters are changed
after installation. The estimation of contact stiffness of
rolling bearing is measured by a test in the paper, and
the schematic diagram and measuring schematic are
illustrated in Fig. 5. The deformation and radial load
has a relationship when one rolling element is adjusted
in the vertical direction [39], in which the space angle
θs is π /4 due to three rolling elements in the load zone
(Fig. 5a).

2Kc(δs cos θs − Pd/2)
1.5 cos θs + Kc(δr − δ0)

1.5

= Fr/2 + W/2, (20)

where Kc is the contact stiffness, δs is the projection of
δr along θs, δr is the vertical displacement of the rotor,Fr

Fig. 3 Experiment system
of bearing–rotor system. a
Test rig of ball bearing, b
systems of signal
acquisition and motor
controlling and c sensors
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Fig. 4 6312 deep groove ball bearing used in this paper. a Fault-
free bearing and b outer raceway defect

Table 1 Parameters for numerical analysis and experiment

Parameters of the system Values

Stiffness Kc (N/m1.5) 7.26 × 109

Equivalent rotor mass M (kg) 44

Radial load W (N) 411.6

Damping coefficient (Ns/m) 200

Ball diameter d (mm) 22.02

Pitch diameter D (mm) 95.65

Inner race diameter Di (mm) 73.62

Outer race diameter Do (mm) 117.67

The number of rolling element 8

Working radial clearance (numerical) (um) 2

Span of defect 2θe (rad) π/128

Height of defect δd (m) 1 × 10−4

Order of the harmonic terms k 8

Discrete point number in time domain N 1024

Fig. 5 Schematic diagram of stiffness measuring. a Schematic
of bearing under load and b measuring schematic

is the vertical load force, W is the weight of the rotor
(Fig. 5a). The two eddy current sensors are mounted
in the vertical direction to measure the displacement
of the loaded rotor (Fig. 5b). Thus, Kc can be gained
through Eq. (20). The displacement and the load are
plotted in Fig. 6 marked as blue circle. The displace-

Fig. 6 Relationship between radial load and deformation

ment and Load can be fitted by Hertzian point contact
via the least squares fit method marked as the red star.
Furthermore, according to an aeroengine design man-
ual [52], the radial stiffness estimation canbe calculated
as follows.

Krr = 0.117 × 104 3
√
FrZ2d cos5 β, (21)

where d is the diameter of a rolling element (mm),
Z is the number of rolling elements in contact which
is three for 6312 deep groove ball bearing, β is the
contact angle (zero for deep groove ball bearing), Fr
is the radial load force (N). The approximate formula
results via Eq. (21) are displayed in green plus. It shows
the approximate stiffness is a little larger than the test
data and Hertzian fitting results. The contact stiffness
Kc from experiment is 7.26×109 (N/m1.5) and is listed
in Table 1.

For the damping coefficient, Krämer [53] provided
an estimation of the bearing damping, and Wang et al.
put up an identification method for damping ratio in
rotor systems [54]. We estimate the damping by the
free attenuation vibration method [55].

c = Mω

nπ
In

Ai

Ai+n
(22)

where Ai is the amplitude of the i th free periodic vibra-
tion, n is the periodic interval, M is the mass of the
rotor,ω is the linearized resonance frequency. The esti-
mated damping is about 142Ns/ml; thus, a linearized
damping of 200Ns/m is used in this paper. In addition,
the first-order natural resonance of the rotor is 808Hz
through a theoretical analysis. It is noted all the struc-
ture parameters in the operation state are different from
those measured in a static status.
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Fig. 7 Orbit results
contract between the RK
method and the HB-AFT
method (4055 rpm). a
Healthy system and b
defective system

4 Numerical analysis

X1
fault−free(t) = 0.004 + 0.031 cos(ωvct)

+ 0.846 sin(ωvct)

− 0.001 cos(2ωvct) − 0.025 sin(2ωvct)

+ 0.001 sin(3ωvct), (23)

Y 1
fault−free(t) = −7.593 + 0.126 cos(ωvct)

+ 0.003 sin(ωvct)

+ 0.012 cos(2ωvct) − 0.001 sin(2ωvct), (24)

X1
od(t) = 0.001 + 0.033 cos(ωBPFOt)

+ 0.941 sin(ωBPFOt)

− 0.001 cos(2ωBPFOt) − 0.007 sin(2ωBPFOt), (25)

Y 1
od(t) = −7.746 − 0.954 cos(ωBPFOt)

+ 0.014 sin(ωBPFOt)

− 0.213 cos(2ωBPFOt) + 0.002 sin(2ωBPFOt)

+ 0.070 cos(3ωBPFOt)

+ 0.004 cos(4ωBPFOt)

+ 0.019 cos(5ωBPFOt) + 0.012 cos(6ωBPFOt)

+ 0.008 cos(7ωBPFOt) + 0.005 cos(8ωBPFOt) (26)

A rectangular defect is adopted in this paper, and the
defect parameters are listed in Table 1. The solution
of the rotor–bearing system at shaft speed 4055 rpm
is first calculated by the HB-AFT method. The itera-
tion error set as 1 × 10−12 and the item less 1 × 10−3

are ignored. The orbits comparison based on different
methods for fault-free and defective system is illus-
trated in Fig. 7, where the Runge–Kutta (RK) and the
HB method match well for each other. The solution
expressions obtained by HB-AFT method are listed in
Eqs. (23)–(26). It is clear that the expressions con-
tain the excitation frequency and its harmonics for
both fault-free and defective systems, this is due to

Fig. 8 Frequency spectrums contract of two directions
(4055 rpm). a Horizontal direction and b vertical direction

nonlinearity of Hertzian contact and the radial clear-
ance, and it is one feature that distinguishes the non-
linear dynamic system from the linear dynamics sys-
tem [56]. As the defect locates in vertical direction and
the impact energy concentrates, the harmonic terms of
rotor response of Eq. (26) are increased. The FFTmaps
of the response solutions are illustrated inFig. 8 tomake
it clear. Their frequencies are equal as is mentioned
in Introduction; besides, the frequency difference in
Fig. 8b is tiny and the basic VC frequency and BPFO
are evident.
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Fig. 9 Orbit results
contract between the RK
method and the HB method
(2345 rpm). a Healthy
system and b defective
system

Fig. 10 Frequency spectrums contract of two directions
(2345 rpm). a Horizontal direction and b vertical direction

Another case is carried out at rotor speed 2345 rpm.
The orbit contrast for fault-free and defective system
obtained by different methods is illustrated in Fig. 9.
The Runge–Kutta and the HB method match well for
a fault-free system, while there are some errors for the
defective system, and this is because of theweakness of
theHB-AFT. The solution expressions are listed in Eqs.
(27)–(30), inwhich every solutionhas the basic andhar-
monics of the excitation frequency. The FFT maps of
the response solutions are illustrated in Fig.10 as well.
In Fig. 10a, the basic and the harmonics are similar. In
Fig. 10b, the difference for the basic frequency is tiny,

while the imparity for the second harmonic is obvious.
It is clear the basic characteristic defect frequency is not
enough to judge an outer race defect from the results
comparison at rotor speed 4055 and 2345 rpm.

X2
fault−free(t) = 0.011 + 0.019 cos(ωvct)

− 0.349 sin(ωvct) − 0.003 cos(2ωvct)

+ 0.064 sin(2ωvct)

+ 0.002 sin(3ωvct) − 0.002 cos(3ωvct)

+ 0.002 sin(4ωvct)

−0.001 cos cos(4ωvct) + 0.003 sin(5ωvct), (27)

Y 2
fault−free(t) = −7.600 + 0.054 cos(ωvct)

− 0.001 sin(ωvct)

− 0.018 cos(2ωvct) + 0.969 sin(2ωvct)

− 0.001 cos(3ωvct) + 0.001 sin(3ωvct)

+ 0.006 cos(4ωvct) (28)

X2
od(t) = −0.007 − 0.004 cos(ωBPFOt)

− 0.379 sin(ωBPFOt)

+ 0.005 cos(2ωBPFOt) + 0.064 sin(2ωBPFOt)

− 0.002 cos(3ωBPFOt) − 0.005 sin(3ωBPFOt)

− 0.002 sin(4ωBPFOt) − 0.006 cos(4ωBPFOt) (29)

Y 2
od(t) = −7.403 − 0.098 cos(ωBPFOt)

+ 0.009 sin(ωBPFOt) + 3.501 cos(2ωBPFOt)

− 0.889 sin(2ωBPFOt) + 0.089 cos(3ωBPFOt)

− 0.005 sin(3ωBPFOt) − 0.048 cos(4ωBPFOt)

+ 0.043 sin(4ωBPFOt)

+ 0.013 cos(5ωBPFOt) + 0.001 sin(5ωBPFOt)

+ 0.009 cos(6ωBPFOt) + 0.001 sin(6ωBPFOt)

+ 0.006 cos(7ωBPFOt) + 0.001 sin(7ωBPFOt)

+ 0.004 cos(8ωBPFOt) (30)
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From the results of the two cases above, the dif-
ference for the solution responses is large. In fact, the
response is affected by the resonance characteristics. It
is noted the resonance concept in the rotor–bearing sys-
tem is different from the bearing component resonance
or the pedestal resonance in the bearing fault diagnosis
[7,10,12,37,40]. The resonance characteristics of the
rotor–bearing system can be estimated by the linearized
stiffness [57,58]; in addition, the relationship between
the single rolling element as well as total bearing stiff-
ness and externally applied load agrees with Hertzian
contact theory and is nonlinear [39], written as

[
kx (t)
ky(t)

]
=

[
∂Fx/∂x
∂Fy/∂y

]
, (31)

where Fx and Fy are the restoring forces in Eq. (11).
The coupling stiffness kxy is nearly null on average
[57]. Then, the time-varying resonance frequencies of
the rotor–bearing system are

[
ωx (t)
ωy(t)

]
=

[√
kx (t)/m√
ky(t)/m

]
, (32)

wherem is the mass of the rotor. These frequencies are
changing with the rotation of the rotor, ωx and ωy can
be averaged and then resonance frequencies can also
be calculated.

[
nX
nY

]
=

[
mean(ωx (t))
mean(ωy(t))

]
. (33)

Generally, resonances are aroused when the para-
metric frequencies or combination of them run near the
estimated ones. For example, the resonance frequency
caused by BPFO or VC is expressed as follows.

[
nXVC
nYVC

]
=

[
nX/Nb

nY/Nb

]
. (34)

The estimation resonance of vertical direction is
4750 rpm for fault-free system and 4870 rpm for the
defective system, the rotor speed 2345 rpm for the sec-
ond case is about half of the resonance frequency, and
this is the twice super-harmonic resonance, which is a
unique phenomenon for a nonlinear system. The sim-
ilar results appeared in the similar dynamic system
for a cracked rotor–ball bearing system during flight

maneuvers [59]. The theoretical calculations show VC
frequency equals to the BPFO and the frequency per-
formance is affected by resonance characteristics of
the rotor system. The mechanism of producing the
harmonics is also explained in the view of nonlinear
dynamics.

5 Experiment results

The experimental results in this section are to verify
the theoretical calculations and the topics of this paper
qualitatively.As theVCand theBPFOconvey the infor-
mation for rotor–bearing system, the VC, BPFO, and
their harmonics are paid attention during the tests, and
the sample rate is set as 16384 Hz. The change of rotor
rotation speed is in a cycle of running up and down, the
step of which is 30–200 rpm (a small step in resonance
zone or a big step in nonresonance zone). It maintains
10–15s for every speed step. The values are averaged
during running up and down in the nonresonance zone
while the higher values retain in resonance zone. The
local defect locates in the center of the bearing load
zone.

The horizontal direction and vertical direction fre-
quency spectrums and time response of the fault-free
system at rotation speed 3600 and 2800 rpm are dis-
played in Fig. 11a, b, respectively. The VC frequency
is shown in Fig. 11a, b, while the 2VC is relatively
weak in Fig. 11a, b. Because the eccentricity of the
rotor cannot be eliminated, the basic shaft frequency
(X) and its harmonics appear in the frequency spec-
trums maps. As the 3X and VC frequency are close
and dominated, the time response reveals beat phe-
nomenon in time response map (see Fig. 11a). The
results in Fig. 11a, b can be affirmed faulty depending
on the basic BPFO; therefore, the basic BPFO is not
enough for judging an outer race defect.

The VC and 2VC frequency–amplitude values for
two directions at different rotation speeds are extracted
to form the frequency–amplitude curves in Fig. 12.
There exist obvious peaks around 3600 rpm for hor-
izontal direction and 2800 rpm for vertical direction,
while peaks on the 2VC curves are not distinct. By
analyzing the frequency–amplitude curves in Fig. 12a,
b and the FFT maps in Fig. 11, the obvious peak
are actually the resonance peak of the rotor–bearing
system, the resonance characteristics of which have
been studied by Zhang [58,60] and Jin et al. [61].
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Fig. 11 Experiment frequency spectrums and time response for the fault-free system at different rotation speeds, X stands for shaft
frequency. a Horizontal direction (3600 rpm) and b vertical direction (2800 rpm)

The frequency–amplitude curves of BPFO and 2BPFO
for two directions are illustrated in Fig. 13, in which
the resonance characteristic is more complicated com-
pared to the results in Fig. 12. One obvious difference
is the occurrence of the super-harmonic resonance for
two directions. The vibration level for the basic excita-
tion frequency (VC and BPFO) is similar; however,
the vibration level for the second harmonic 2BPFO
and 2VC is different. The comparisons for the sec-
ond harmonic are illustrated in Fig. 14, in which the
vibration level of the 2BPFO is much larger than the
2VC for the vertical direction in the whole speed range,
while the 2BPFO is larger than the 2VC only in the
super-harmonic and the primary regions for vertical
direction. The static clearance of the fault-free bear-
ing is much larger than that of the defective bearing
(the static clearance is measured by a dial indicator,
and the difference is apposed to be more obvious if the
two tested bearings are with the same radial clearance
[62,63]).

The frequency spectrums and time response for both
directions in the super-harmonic resonance region are
displayed in Fig. 15. That the 2BPFO is larger than
the basic BPFO is clearly seen in Fig. 15, which can
be a sign for the twice super-harmonic resonance of
defective bearing–rotor system and in accordance with
the results in Fig. 10b. Furthermore, the cage frequency
appears evidently in Fig. 15a, b, which is different from
the results in Fig. 11, and the similar results are reported
inPandya’s paper [20].Basedon the current experiment
results, the VC and the BPFO are clearly presented in
the frequency spectrum, which is in agreement with the
theoretical analysis. The experiment results show the
basic BPFO is not enough to judge an outer race local
defect and the harmonic of the BPFO is more reliable
to judge a local defect.

Some unusual phenomena, such as the resonance
point for the vertical direction and horizontal direc-
tion, are further explained. The effect of the load device
needs to bementioned here (Fig. 16). The slide bar, act-
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Fig. 12 Frequency–amplitude curves of VC and 2VC for two
directions. a Horizontal direction and b vertical direction

Fig. 13 Frequency–amplitude curves of BPFO and 2BPFO for
two directions. a Horizontal direction and b vertical direction

Fig. 14 Comparison of the harmonics of the fault-free system
and defective system. aHorizontal direction and b vertical direc-
tion

ing as a guide rail, leads the vertical load on the shaft
in the vertical direction. However, the friction force
between the bar and the sliding block can decrease
vertical displacement of the rotor. This is why the
resonance amplitude value of the vertical direction is
smaller than that of the horizontal direction, which is
different from the theoretical results [58,60]. In addi-
tion, the loading device constrains the horizontal dis-
placement of the rotor, and it can be depicted as a
resilience force. The bar can be regarded as a beam
with two ends restrained, the effect of which on the
rotor can be expressed as simple linear spring.

Fx_extra = kbarx, (35)

Considering linearized stiffness Eq. (31), the general
stiffness can be depicted as[

∂F/∂x
∂F/∂y

]

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1.5Kc

Nb∑
j=1

(δ j H(δ j ))
0.5 cos2 θ j + kbar

1.5Kc

Nb∑
j=1

(δ j H(δ j ))
0.5 sin2 θ j

. (36)
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Fig. 15 FFT maps and time responses in resonance regions, X stands for the shaft frequency. a Horizontal (2300 rpm) and b vertical
(1650 rpm)

It can be concluded from Eq. (36) the restraint
from the slide bars can increase the equivalent stiff-
ness of the horizontal direction. Generally, the res-
onance point of the vertical direction is higher than
that of the horizontal direction because of the grav-
ity action [57]. However, the additional stiffness in
bold form in Eq. (36) will enlarge the resonance point.
This is why the resonance point of vertical direction
is lower than that of the horizontal for the experi-
ment results. In addition, the experimental resonance
points of two systems (fault-free and defective) are
different that is mainly because of the radial clear-
ance. The static radial clearances of two tested bear-
ing are different, about 4um for the defective bearing
and about 30um for the fault-free bearing. Generally,
the resonance point decreases with the increase in the
radial clearance [58,63], that is why that the resonance
points of the two directions of the fault-free system
are lower than those of the defective system in experi-
ment.

Fig. 16 Enlarged view of the loading device

6 Discussions and conclusions

In view of a direct problem, the frequency performance
of rigid rotor–bearing systems with/without an outer
race defect is studied because the VC frequency equals
to the BPFO due to the internal kinematics property
of a rolling bearing. A rotor–ball bearing system is
an essentially nonlinear parametric excitation system
affected by the varying compliance characteristic, Her-
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tizian contact nonlinearities and clearance. The funda-
mental excitation for a balanced rotor–bearing system
is the varying compliance excitation, so the response
solution contains the basic excitation and harmonics
whatever a local defect exists. The semi-analytical HB-
AFT is exploited to analyze the relationship between
the excitation and response. The basic excitation and
their harmonics are demonstrated in the analytical solu-
tions of the fault-free and defective system, and they are
equal in frequency domain. Thus, only the basic BPFO
is not reliable to judge an outer race local defect. In
addition, the results show that the super-harmonic and
sub-harmonic resonance tend to occur in a parametric
excitation system and the resonance characteristics are
revealed. Then, an experiment system is established
to verify the topics of this paper from the qualitative
aspect. The basic VC frequency and the BPFO are
clearly exhibited in the frequency spectrumsof the rotor
response, which agree well with the theoretical analy-
sis. The experiment results prove the basic BPFO is
not sufficient to judge an outer race local defect, while
the results show the 2BPFO is more reliable. The pri-
mary and super-harmonic resonance produced by an
outer race local defect is illustrated via measuring the
vibration signal in a cycle of running up and down.
Therefore, the conclusions can be drawn as follows:

(1) The BPFO equals to the VC in frequency domain,
the basic BPFO is not sufficient to judge the outer
race defect, while the harmonic frequency is more
reliable;

(2) The harmonics of BPFO and VC take place
because of nonlinear characteristics of the rotor–
bearing system;

(3) The super-harmonic resonance occurs in a rotor–
ball bearing system with an out race defect.

The results obtained in this paperwill help elucidate the
dynamic behaviors of rotor–ball bearing systems with
an outer race defect and may make an improvement for
the diagnosis of the rolling bearing.
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Appendix

When the outer race is fixed, the characteristic defect
frequencies for outer race are as follows [39]:

Cage rotation frequency

ωc = ωs

2

(
1 − d

D
cosα

)
(A.1)

VC frequency

ωvc = Nbωc = Nbωs

2

(
1 − d

D
cosα

)
(A.2)

Outer raceway defect (BPFO)

ωBPFO = Nbωc = Nbωs

2

(
1 − d

D
cosα

)
(A.3)

where ωsis the shaft rotation speed, d is the diameter
of the ball, D is the pitch diameter,α is contact angle,
Nbis the number of the rolling element.
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