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Abstract Many important physical situations such
as fluid flows, plasma physics and solid-state physics
have been described by (3+1)-dimensional generalized
shallow water equation. In this article, we construct
new periodic solitary wave solutions for the (3+1)-
dimensional generalized shallow water equation by
using the auto-Bäcklund transformation and a direct
test function. These obtained new periodic solitary
wave solutions enrich the solution structure. Evidently,
with the help of symbolic computation, the physical
structure for these periodic solitary wave solutions is
presented with some figures. The direct test function
approach can be also applied to solve other nonlinear
differential equations.
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1 Introduction

Nonlinear evolution equations (NLEEs) are widely
used to describe complex sciences phenomena such
as the marine engineering, fluid dynamics, plasma
physics, chemistry and physics and many other appli-
cations [1–15]. During the past several decades, many
efficient methods have been proposed to obtain the
exact solutions of NLEEs such as inverse scatter-
ing method [16], the homotopy perturbation method
[17],Hirota directmethod [18–26], hyperbolic function
method [27], homogeneous balance method [28–30],
F-expansion method [31], exp function method [32–
34], the extended mapping method [35], the (G′/G)-
expansion method [36–38] and three-wave approach
[39–44].

In this paper, we will research the following (3+1)-
dimensional generalized shallow water equation:

uxxxy − 3 ux uxy − 3 uy uxx + uyt − uxz = 0. (1)

Equation (1) has been used in weather simulations,
tidalwaves, river and irrigation ows, tsunami prediction
and researched in differentways. Tian [45] obtained the
soliton-type solutions of Eq. (1) by using the general-
ized tanh algorithm method. Zayed [46] got the trav-
eling wave solutions of Eq. (1) by using the (G′/G)-
expansion method. Tang [47] presented the Grammian
and Pfaffian solutions of Eq. (1) by the Hirota bilinear
form.Multiple soliton solutions of Eq. (1) are discussed
byZeng [1].Next,wewill discuss the newperiodic soli-
tary wave solutions for Eq. (1) by using the direct test
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functionmethod.Thedirect test function is used instead
of text function in the originalHirota bilinearmethod. If
the bilinear equation of nonlinear evolution equations is
available, then rich variety of exact solutions canbepre-
sented by using the direct test function method. These
exact solutions are found to possess dynamic charac-
teristics. This used method being simple and straight-
forward than the method in Refs. [45–47].

The paper is organized as follows: in Sect. 2, by
using the auto-Bäcklund transformation and a direct
test function, new periodic solitary wave solutions
for the (3+1)-dimensional generalized shallow water
equation are obtained. In Sect. 3, the conclusions are
presented.

2 New periodic solitary wave solutions for the
(3+1)-dimensional generalized shallow water
equation

According to the idea of the extended variable-
coefficient homogeneous balance method (EvcHB)
[48], the solutions of Eq. (1) can be supposed as fol-
lows:

u(x, y, z, t) = [ −2 ln(ξ) + δ(η)

+ ξ σ (η) ]x + u0(x, y, z, t), (2)

where ξ = ξ(x, y, z, t), η = η(y, z, t) and u0(x, y,
z, t) is a special solution of Eq. (1). Substituting Eq. (2)
into (1), we have the following auto-Bäcklund transfor-
mation:

ξ σ (η) ξ2x ( ξx ξxy + ξy ξxx ) = 0, (3)

− 2 ξz ξ2x + 2 ξt ξy ξx + [ 3 ξ σ (η) + 2 ] ξy ξxxx ξx

− 6 u0y ξ3x + 3 ξy [ ξ σ (η) ξ2xx − 2 ξ2x u0x ]
+ 3 { [ 5 ξ σ (η) − 2 ] ξxy ξxx

+[ ξ σ (η) + 2] ξx ξxxy } ξx = 0,−3u0xy ξ2x (4)

+ ξyt ξx − ( 2 ξxz + 6 u0x ξxy + 9 u0y ξxx ) ξx

+ 4 ξxxxy ξx − ξz ξxx + ξxy ( ξt − 2 ξxxx )

− 3

2
ξ σ (η) [ ξ σ (η) − 4 ] (ξxx ξxxy + ξxy ξxxx )

+ ξy ( ξxt − 3 u0x ξxx − 3 ξx u0xx + ξxxxx ) = 0,

(5)

ξxyt − 3 u0xy ξxx − 3 ξxy u0xx − ξxxz − 3 u0x ξxxy

−3 u0y ξxxx + ξxxxxy = 0, (6)

σ ′(η) ( ηt ξxy − ηz ξxx ) = 0, (7)

u0xxxy − 3 u0x u0xy − 3 u0y u0xx + u0yt − u0xz = 0.

(8)

Aiming at the new periodic solitary wave solutions, we
suppose that σ(η) = 0, u0(x, y, z, t) = 0 and a direct
test function

ξ(x, y, z, t) = k1 e
θ1 + e−θ1 + k2 tan (θ2)

+ k3 tan h (θ3) , (9)

where θi = αi x+βi y+γi z+δi t, i = 1, 2, 3, 4 andαi ,
βi , γi , δi are constants to be determined later. Substitut-
ing Eq. (9) into (3)–(8) and equating all the coefficients
of different powers of eθ1 , e−θ1 , tan (θ2), tan h (θ3) and
constant term to zero, we can obtain a set of algebraic
equations for αi , βi , γi , δi , ki (i = 1, 2, 3, 4). Solving
the system with the aid of Mathematical, we obtain the
following results:

Case(1)

k2 = β1 = γ1 = α3 = δ3 = 0, γ3 = β3α
3
1 + β3δ1

α1
,

(10)

where α1, δ1, β3, k1 and k3 are arbitrary constants. Sub-
stituting Eq. (10) into (9), we have

ξ(x, y, z, t) = exα1+tδ1k1 + e−xα1−tδ1

+ k3 tan h[yβ3 + z
(
β3α

3
1 + β3δ1

)

α1
].
(11)

Therefore, we obtain the first new periodic solitary
wave solution for Eq. (1):

u1 = − 2
(
exα1+tδ1k1α1 − e−xα1−tδ1α1

)

exα1+tδ1k1 + e−xα1−tδ1 + k3 tan h

[
yβ3+ z

(
β3α

3
1+β3δ1

)

α1

].

(12)

The evolution and mechanical feature of Eq. (12) are
shown in Figs. 1, 2.
Case(2)

k3 = β1 = γ1 = α2 = δ2 = 0, γ2 = β2α
3
1 + β2δ1

α1
,

(13)

where α1, δ1, β2, k1 and k2 are arbitrary constants. Sub-
stituting Eq. (13) into (9), we have

ξ(x, y, z, t) = exα1+tδ1k1 + e−xα1−tδ1 + k2 tan

[
yβ2

+ z
(
β2α

3
1 + β2δ1

)

α1

]
. (14)

Therefore, we obtain the second new periodic solitary
wave solutions for Eq. (1):
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u2 = − 2
(
exα1+tδ1k1α1 − e−xα1−tδ1α1

)

exα1+tδ1k1 + e−xα1−tδ1 + k2 tan

[
yβ2 + z

(
β2α

3
1+β2δ1

)

α1

] .

(15)

The evolution and mechanical feature of Eq. (15) are
shown in Figs. 3, 4 and 5.
Case(3)

k1 = α2 = δ2 = α3 = δ3 = 0, γ1 = β1α
3
1 + β1δ1

α1
,

γ2 = β2α
3
1 + β2δ1

α1
, γ3 = β3α

3
1 + β3δ1

α1
, (16)

where α1, δ1, β1, β2, β3, k2 and k3 are arbitrary con-
stants. Substituting Eq. (16) into (9), we have

ξ(x, y, z, t) = k2 tan

[

yβ2 + z
(
β2α

3
1 + β2δ1

)

α1

]

+ e
−xα1−yβ1−tδ1− z(β1α31+β1δ1)

α1

+ k3 tan h

[

yβ3 + z
(
β3α

3
1 + β3δ1

)

α1

]

.

(17)

Therefore, we obtain the third new periodic solitary
wave solutions for Eq. (1):

u3 = 2e
−xα1−yβ1−tδ1− z(β1α31+β1δ1)

α1 α1/

[

k2 tan

[

yβ2

+ z
(
β2α

3
1 + β2δ1

)

α1

]

+ e
−xα1−yβ1−tδ1− z(β1α31+β1δ1)

α1

+ k3 tan h

[

yβ3 + z
(
β3α

3
1 + β3δ1

)

α1

]]

. (18)

The evolution and mechanical feature of Eq. (18) are
shown in Figs. 6, 7.
Case(4)

k1 = α2 = β2 = α3 = β3 = 0, γ1 = β1α
3
1 + β1δ1

α1
, γ2

= β1δ2

α1
, γ3 = β1δ3

α1
, (19)

where α1, δ1, β1, δ2, δ3, k2 and k3 are arbitrary con-
stants. Substituting Eq. (19) into (9), we have

ξ(x, y, z, t) = k2 tan

(
tδ2 + zβ1δ2

α1

)

+ k3 tan h

(
tδ3 + zβ1δ3

α1

)

+ e
−xα1−yβ1−tδ1− z(β1α31+β1δ1)

α1 . (20)

Therefore, we obtain the fourth new periodic solitary
wave solutions for Eq.(1):

u4 = 2e
−xα1−yβ1−tδ1− z(β1α31+β1δ1)

α1 α1/

[
k2 tan

(
tδ2 + zβ1δ2

α1

)

+ k3 tan h

(
tδ3 + zβ1δ3

α1

)

+ e
−xα1−yβ1−tδ1− z(β1α31+β1δ1)

α1

]

. (21)

The evolution and mechanical feature of Eq. (21) are
shown in Figs. 8, 9.

3 Conclusion

Byusing the auto-Bäcklund transformation and a direct
test function, we obtain new periodic solitary wave
solutions of the (3+1)-dimensional generalized shallow

(a) (b) (c)

Fig. 1 The solitary wave solution (12) at k1 = k3 = δ1 = −2, α1 = −1, β3 = 5, z = 10, a t = −5, b t = 0, c t = 5
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(a) (b) (c)

Fig. 2 The solitary wave solution (12) at k1 = k3 = δ1 = −2, α1 = −1, β3 = 5, y = −1, a z = −20, b z = 0, c z = 20

(a) (b) (c)

Fig. 3 The solitary wave solution (15) at k1 = k2 = δ1 = −2, α1 = −1, β2 = 5, z = 10, a t = −5, b t = 0, c t = 5

(a) (b) (c)

Fig. 4 The solitary wave solution (15) at k1 = k2 = δ1 = −2, α1 = −1, β2 = 5, t = −5, a x = 5, b x = 10, c x = 15

(a) (b) (c)

Fig. 5 The solitary wave solution (15) at k1 = k2 = δ1 = −2, α1 = −1, β2 = 5, z = 10, a x = −10, b x = 0, c x = 10
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(a) (b) (c)

Fig. 6 The solitary wave solution (18) at k3 = k2 = β1 = δ1 = −2, α1 = 1, β2 = β3 = −5, z = 10, a t = −10, b t = 0, c t = 10

(a) (b) (c)

Fig. 7 The solitary wave solution (18) at k2 = β1 = δ1 = −2, k3 = 0, α1 = 1, β2 = β3 = −5, t = −5, a y = −10, b y = 0, c y = 10

(a) (b) (c)

Fig. 8 The solitary wave solution (21) at k3 = k2 = β1 = δ1 = −2, α1 = 1, δ2 = δ3 = −5, y = 10, a x = −20, b x = 0, c x = 20

(a) (b) (c)

Fig. 9 The solitary wave solution (21) at k3 = k2 = β1 = δ1 = −2, α1 = 1, δ2 = δ3 = −5, y = 10, a t = −10, b t = 0, c t = 10
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water equation. Moreover, the evolution and mechan-
ical feature of solutions (12), (15), (18) and (21) are
clearly presented in Figs. 1, 2, 3, 4, 5, 6, 7 , 8 and 9.

The direct test function method is reliable and effec-
tive and obtains many new periodic solitary wave solu-
tions. The applied method will be used in further works
to seek more entirely periodic solitary wave solutions
of higher dimensional nonlinear evolution equations.

Acknowledgements Wewould like to thank editor and the ref-
erees for their timely and valuable comments.
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