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Abstract This paper investigates the dynamic mod-
eling and performance analysis of the 3-PRRU parallel
manipulator; here, P, R and U denote the prismatic,
revolute and universal joints, respectively. The stud-
ied 3-PRRU parallel manipulator possesses two rota-
tional and one translational degrees of freedom with-
out parasitic motion. For the dynamic modeling, the
Newton–Euler formulation with generalized coordi-
nates is employed to establish the system equations
of motion for the 3-PRRU parallel manipulator. Then,
the dynamic manipulability ellipsoid which provides a
quantitative measure of the ability in manipulating the
end-effector is adopted to evaluate the dynamic perfor-
mance of the studied parallel manipulator. In order to
demonstrate the feasibility of the proposed modeling
and analysis method, numerical simulations are con-
ducted on dynamic response and performance of the
studied manipulator. A prototype is built up based on
the proposed parallel manipulator. And the presented
modeling method can serve the fundamentals for the
optimization and control of the prototype in future
work.
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1 Introduction

Due to the high positioning accuracy, structure stiffness
and load capability, parallel manipulators have been
successfully applied in a wide range of aspects, such
as motion simulators [1,2], pick-and-place devices
[3,4] and high-precision machine tools [5,6]. In these
applications, analysis of dynamic performance
[7–10] plays an important role at the stages of opti-
mization and control of parallel manipulators because
of the highly nonlinear characteristics of dynamic
response.

Dynamic modeling/analysis serves as the funda-
mental for evaluating the dynamics performance of
robot manipulators. The system’s equations of motion
(EOM)which provide a direct relation between the cor-
responding actuation torques and dynamic response are
usually required for the definitions of various perfor-
mance indices. However, due to complexity in kine-
matics structures, dynamics modeling of the parallel
manipulators, especially for the forward problem, is
much more difficult than their serial counterparts.

This paper presents a systematic study on the
dynamics modeling and performance analysis of a
1T2R spatial parallel manipulator. The studied 3-
PRRU parallel manipulator has three identical limbs.
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Fig. 1 CAD model of the 3-PRRU 1T2R parallel manipulator

Here, P, R and U denote prismatic, revolute and univer-
sal joints, respectively. The italic P indicates that the
prismatic joints in the limbs are actuated. As shown
in Fig. 1, among these PRRU limbs, the first two
are arranged within the same plane, while the other
is assembled in a perpendicular manner. It has been
proved [11] that owing to the particular geometric con-
straints, this parallel manipulator possesses one trans-
lational and two rotational DOFs without parasitic
motion. In other words, the end-effector of this par-
allel manipulator can rotate about a fixed point on its
moving platform. Such a feature means that the rota-
tions and translation of the manipulator’s moving plat-
form are decoupled, which significantly reduces the
complexity of kinematic model and is preferable for
control.

However, most studies on this parallel manipula-
tor were focusing on its kinematic analysis and opti-
mization [11,12]. There is a lack of thorough investi-
gation on its dynamics and performance. In this paper,
the Newton–Euler formulation with generalized coor-
dinates [13], also known as Schiehlen’s method [14], is
used to establish the dynamics equations of the studied
parallelmanipulator in a straightforwardmanner. Then,
both the EOM and the equations of reaction (EOR) can
be derived conveniently according to the principle of
virtual work [15]. Numerical simulations are provided
to verify the correctness of the presented dynamicmod-

els through validation with the commercial software
Adams/View.

In order to evaluate the dynamic performance of the
studied parallel manipulator, the concept of dynamic
manipulability ellipsoid (DME) [8] is employed to
depict the manipulability, namely the easiness of
changing the position and orientation of the manipu-
lator’s end-effector. Distribution of this index within
the workspace of the parallel manipulator is obtained
in an intuitive manner. And the results will serve as the
criteria for structural optimization and motion control
of a prototype of the 3-PRRU parallel manipulator.

This paper is organized as follows: Related work
on the dynamics modeling of parallel manipulators is
reviewed in Sect. 2. Then, Sect. 3 presents the kine-
matics modeling of the 3-PRRU parallel manipula-
tor, where the positions, velocities and the accelera-
tions of all bodies in the manipulator are derived in
closed form in terms of the system’s generalized coor-
dinates. Then, in Sect. 4, dynamics modeling is car-
ried out and the system EOM of the studied paral-
lel manipulator are derived in an analytical form. In
order to validate the correctness of the dynamicmodels,
numerical simulations are then conducted in Sect. 5.
Thereafter, according to the derived EOM, the index
of DME is calculated within the workspace of the par-
allel manipulator. In this section, the dynamics per-
formance of the studied 3-PRRU parallel manipula-
tor is also discussed for the further optimization in
the next stage. At last, some conclusions are drawn
in Sect. 6.

2 Related works

From the multi-body system (MBS) dynamics point of
view, there are two main methodologies [16], namely
theNewton–Euler formulation andLagrange approach,
which can be used to establish the dynamic equations
of parallel manipulators.

Geng et al. [17], Bhattacharya et al. [18] and Lebret
et al. [19] used Lagrange method to derive the dynamic
equations of Stewart–Goughparallel platforms, respec-
tively. Then, Lee et al. [20] derived the EOM for the
3-RPS spatial parallel manipulator using Lagrangian
approach. Later, Pendar et al. [21] and Rodriguez et al.
[22], respectively, provided further dynamics analysis
of this parallel manipulator. In addition, the Lagrangian
formulation has also been introduced to the dynam-
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ics modeling and analysis for other types of parallel
manipulators [23–25]. Using the Lagrangian method,
Li et al. [24] performed dynamics modeling/analysis of
the 3PRC translational parallel kinematic machine by
recursive matrix representation. Recently, Kalani et al.
[26] presented an improved general formulation for the
inverse and direct dynamics of 6-UPS Gough–Stewart
parallel robot based on the virtual work method. As
well, Deng et al. [27] developed a closed-form dynam-
icsmodelingmethodof a 3-DOFspatial parallelmanip-
ulator by combining the Lagrangian formulation with
the virtual work principle.

The main advantage of Lagrange formulation is the
direct result of a minimal set of ordinary differential
equations (ODEs) for the dynamics response of robot
manipulators. However, explicit expressions for the
kinetic and potential energies are required for all bodies
in themanipulator, so that the computational cost of the
Lagrange equation will increase vastly when the num-
ber of bodies in aMBS increases. Therefore, the deriva-
tion of Lagrange equations for a parallel manipulator
is extremely complicated, especially when it possesses
a relatively complex kinematic structure.

On the other hand,Newton–Euler approach provides
a straightforward strategy to establish the dynamic
equations of parallel manipulators. Dasgupta et al.
[28,29] developed a general approach for closed-form
dynamic formulation of parallel manipulators through
the Newton–Euler equations. In their method, the
closed-form dynamic equations can be obtained by
means of appropriate selection and ordering the equi-
librium equations of the legs and platform. Thereafter,
Khalil and his colleagues [30,31] proposed a simple
general solution for both inverse and forward dynamics
by means of projecting the dynamics of the platform
and the legs on the actuated joint axes using partic-
ular constructed Jacobian matrices. Using the modu-
lar method, Wang et al. [32,33] established the con-
cept of composite modeling method for the forward
dynamics analysis of parallelmanipulators based on the
Newton–Euler formulation. Besides, other variations
of Newton–Euler methods [34–37] have been proposed
for the dynamic modeling of parallel manipulators.

Although, the derivation process for the dynamics
modeling by Newton–Euler method is rather straight-
forward, it results in a set of differential algebra equa-
tions (DAE) with a maximum number of coordinates.
Since the Newton–Euler equations of all bodies and the
constraint equations of all connecting joints are inte-

grated together, the dimension of the DAE for the for-
ward dynamics of parallel manipulators will be huge,
and it will be a tedious work to solve them.

Except for the two main methods, other principles
such as the theory of screws [38], the Kane’s equa-
tions [39,40], the differential manifold [41], Lie alge-
bra/group theory [42],Hamilton’s equation [43] and the
generalized momentum approach [44] have also been
employed for the dynamic modeling and simulation
of parallel manipulators. In addition, efficient meth-
ods [45–47] have also been proposed for the nonlinear
dynamics analysis of complex systems.

As mentioned above, forward dynamics of parallel
manipulators consists of a set of ODE in Lagrangian
formulation, or a large number of DAE in Newton–
Euler equations. Because of the necessity of the calcu-
lation of kinetic and potential energies for all bodies, or
the integration of a maximum set of coordinates, enor-
mous computing effort should be paid in both afore-
mentioned formulations. Since the dynamic perfor-
mance analysis for the parallel manipulators requires
a closed-form solution to the system EOM, effec-
tive deduction strategy is demanded to calculate the
dynamic performance indices in a convenient and effi-
cient manner.

3 Kinematics modeling of the 3-PRRU parallel
manipulator

As mentioned above, the studied 3-PRRU parallel
manipulator possesses one translational and two rota-
tional DOFs without parasitic motion. To simplify the
kinematic analysis, two particular coordinate frames
are established on the fixed base and moving platform,
respectively, namely the inertia and tool frames {S} and
{T} as illustrated in Fig. 1. Hence, the end-effector of
the parallel manipulator can only translate along the
z-axis of {S} and rotate about u- and v-axis of {T},
without introducing any parasitic translations along x
and y-axes, and the rotation about w-axis.

3.1 Position analysis

Let the above three pose variables of the manipula-
tor’s end-effector be the generalized coordinates of the
whole system. Then, the configuration of the whole
parallel manipulator, including all bodies, can be rep-
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Fig. 2 The sketch of the body-fixed frames and body-joint vec-
tors

resented in terms of these variables. Firstly, the ori-
entation and position of the moving platform can be
expressed directly as

RP = exp
(
ê1q1

)
exp

(
ê2q2

)
, pP = q3 e3 (1)

where q1 and q2 denote the rotation angles about the u-
and v-axes, respectively. q3 represents the position of
{T} with respect to {S} in z direction. e1 = [1, 0, 0]T ,
e2 = [0, 1, 0]T and e3 = [0, 0, 1]T are unit vectors.
And êi , i = 1, 2, 3 are their 3 × 3 skew-symmetric
matrices.

Here, the matrix exponential mapping is introduced
to represent the orientations of the links’ body-fixed
frames. It can be expressed in an expanded form as

exp(ω̂θ) = I3 + sin θ

θ
ω̂ + 1 − cos θ

θ2
ω̂
2 (2)

where ω̂ is the 3×3 skew-symmetric matrix associated
with the direction of rotation axis ω ∈ R

3.
As shown in Fig. 2, attach a body-fixed frame,

denoted by {Blink}, to each link at the center of mass.
Then, for the lower links in limbs 1 and 2, the orien-
tations and positions of their body-fixed frames can be
obtained as

RLi = exp
(
ê1q1

)
, pLi

= pP + RPρP,i − RLi ρLi ,2

(3)

where ρP,i , i = 1, 2, 3 are the position vectors of the
universal joints represented in {T}, while ρLi ,2 is the

Fig. 3 The sketch of the PRRU limbs: a the first and second
limbs, b the third limb

vector of the lower link’s universal joint in its local
frame

{
BLi

}
.

For the sliders and upper links in the first two limbs,
the poses of their body-fixed frames can be derived as
{
RSi = E3

pSi = bie2 + die3 − ρSi ,1
,

{
RUi = exp

(
ê1αi

)

pUi
= pSi + ρSi ,2 − RUi ρUi ,1

(4)

where RSi and pSi , i = 1, 2 are the rotation matrix and
positionvector of the local frame

{
BSi

}
which is located

at the center ofmass and parallel to {S}.RUi and pUi
are

those of the upper links’. ρSi ,1 and ρSi ,2 are the body-
joint vectors of the slider associated with the prismatic
and revolute joints, respectively. ρUi ,1 and ρUi ,2 are
those of the upper link associated with revolute joints
connected to slider and lower link, respectively. bi is
the position of the prismatic joint in {S}.E3 is the third-
order identity matrix.

As shown in Fig. 3, the joint variable di and αi in
Eq. (4) can be obtained as

⎧
⎨

⎩

α1 = − arccos
yB1−yA1

l1,1
, d1 = zB1 − l1,1 sin α1

α2 = arccos
yA2−yB2

l2,1
, d2 = zB2 + l2,1 sin α2

where yBi and zBi are the y- and z-position of the limb’s
second revolute joint with respect to {S}. yAi = bi
denotes the y-position of the limb’s first revolute joint.
li,1 = ‖ρUi ,2−ρUi ,1‖ represents the length of the upper
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link. The positions of the second revolute joints in the
limbs, namely the point Bi , can be derived as rBi =
pLi

+ RLi ρLi ,1.
Since the third limb is constrained within xz-plane

of {S}, the rotation angles of its universal joint can be
derived according to the constraint

RP exp
(
ê3θ

)
exp

(
ê1ϕ

)
e2 = e2 (5)

which relates to the direction of revolute joints in this
limb.

Solving Eq. (5), we have

{
θ = arctan (− tan q1 sin q2)
ϕ = arcsin (− sin q1 cos q2)

Thus, the orientation and position of the lower link
in limb 3 can be obtained as

RL3 = exp
(
ê2γ

)
, pL3

= pP + RPρP,3 − RL3ρL3,2

(6)

where ρL3,2 is the position vector of the universal joint
in the lower link’s frame with respect to

{
BL3

}
. And

the rotation angle γ can be given by

γ = arctan
tan q2
cos q1

Similar to (4), the poses of the slider and the upper
link in this limb can be represented as
{
RS3 = E3

pS3 = b3e1 + d3e3 − ρS3,1
,

{
RU3 = exp

(
ê2α3

)

pU3
= pS3 + ρS3,2 − RU3ρU3,1

(7)

where b3 is the x-position of the third prismatic joint
in {S}. ρU3,1 and ρS3,1 are body-joint vectors as same
as those in the first two limbs. And the variables d3
and α3 of the prismatic and revolute joints are given
by

α3 = arccos
xB3 − xA3

l3,1
, d3 = zB,3 + l3,1 sin α3

where l3,1 = ‖ρU3,2−ρU3,1‖ is the length of the upper
link. And the position of the second revolute joint can
be obtained as rB3 = pL3

+ RL3ρL3,1.

3.2 Velocity and acceleration analysis

According to (1)–(7), the poses of all links can
be obtained once the generalized coordinates q =
[q1, q2, q3]T are given. Then, the velocities and accel-
erations of the corresponding links can be derived by
means of the time differentiation and represented as
functions of q, q̇ and q̈.

The angular and linear velocity of the moving plat-
form can be derived readily as

{
ωP = (

ṘPRT
P

)∨ = e1q̇1 + exp(ê1q1)e2q̇2 = JP,R q̇
vP = ṗP = e3q̇3 = JP,T q̇

(8)

where q̇ = [q̇1, q̇2, q̇3]T denotes the time differ-
entiation of the generalized coordinates. The corre-
sponding translational and rotational Jacobian matri-
ces are given by JP,T = [03, 03, e3] and JP,R =[
e1, exp(ê1q1)e2, 03

]
.

In a similar way, the accelerations of the moving
platform can be obtained as
{

ω̇P = JP,R q̈ + δP
v̇P = JP,T q̈ + μP

(9)

where δP = ê1 exp(ê1q1)e2 q̇1q̇2 and μP = 03.
Using the same strategy, the relative velocities of the

local frames of the lower/upper links and slider in the
first two limbs can be obtained as
{

ωLi = e1q̇1 = JLi ,R q̇

vLi = ṗP + ω̂PRPρP,i − ω̂LiRLi ρLi ,2 = JLi ,T q̇{
ωSi = 03 = JSi ,R q̇

vSi = ḋie3 = JSi ,T q̇{
ωUi = e1α̇i = JUi ,R q̇

vUi = ṗSi − ω̂UiRUi ρUi ,1 = JUi ,T q̇

(10)

where the corresponding Jacobian matrices are given
by

{
JLi ,R = [e1, 03, 03]
JLi ,T = JP,T − r̂P,iJP,R + r̂Li ,2JLi ,R{
JSi ,R = 03×3

JSi ,T = [03, cot αie3, e3](JLi ,T − r̂Li ,1JLi ,R){
JUi ,R = 1

li,1 sin αi
e1eT2 (JLi ,T − r̂Li ,1JLi ,R)

JUi ,T = JSi ,T + r̂Ui ,1JUi ,R
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where rP,i = RPρP,i , rLi ,1 = RLi ρLi ,1, rLi ,2 =
RLi ρLi ,2 and rUi ,1 = RUi ρUi ,1 are the links’ body-
joint vectors expressed in the inertia frame {S}. And
their skew-symmetricmatrices (the cross-product oper-
ators) satisfy r̂P,i = RP ρ̂P,iR

T
P , r̂Li ,1 = RLi ρ̂Li ,1R

T
Li
,

r̂Li ,2 = RLi ρ̂Li ,2R
T
Li

and r̂Ui ,1 = RUi ρ̂Ui ,1R
T
Ui
.

Then, the corresponding accelerations can be repre-
sented in the form of

{
ω̇Li = JLi ,R q̈ + δLi

v̇Li = JLi ,T q̈ + μLi{
ω̇Si = JSi ,R q̈ + δSi
v̇Si = JSi ,T q̈ + μSi{
ω̇Ui = JUi ,R q̈ + δUi

v̇Ui = JUi ,T q̈ + μUi

(11)

where the coefficients are given by

{
δLi = 03
μLi

= ω̂
2
PrP,i − r̂P,iδP − ω̂

2
Li
rLi ,2 + r̂Li ,2δLi⎧

⎪⎨

⎪⎩

δSi = 03
μSi = [03, cot αie3, e3](μLi

− r̂Li ,1δLi )

+ li,1 cscαi α̇
2
i e3{

δUi = 1
li,1 sin αi

e1eT2 (μLi
− r̂Li ,1δLi ) − cot αi α̇

2
i e1

μUi
= μSi + r̂Ui ,1 + δUi − ω̂

2
Ui
rUi ,1

For the third limb, the angular/linear velocities and
accelerations of the bodies can also be derived in a
similar way. By differentiating the pose functions, we
have

{
ωL3 = (ṘL3R

T
L3

)∨ = e2γ̇ = JL3,R q̇
vL3 = ṗP − r̂P,3ωP + r̂L3,2ωL3 = JL3,T q̇{
ωS3 = 03 = JS3,R q̇
vS3 = ḋ3e3 = JS3,T q̇{
ωU3 = e2α̇3 = JU3,R q̇
vU3 = ṗS3 + r̂U3,1ωU3 = JU3,T q̇

(12)

where the coefficients are given by

{
JL3,R = e2xT3 ŵ

wT ê2x3
JP,R

JL3,T = JP,T − r̂P,3JP,R + r̂L3,2JL3,R{
JS3,R = 03×3

JS3,T = [− cot α3e3, 03, e3](JL3,T − r̂L3,1JL3,R){
JU3,R = − e2eT1

l3,1 sin α3
(JL3,T − r̂L3,1JL3,R)

JU3,T = JS3,T + r̂U3,1JU3,R

where w = RP e3 is the unit vector of the w-axis with
respect to {S}. x3 = exp(ê2γ )e1 is the unit direction
vector associated with O ′B3.

Then, the corresponding accelerations of the bodies
in the third limb can be represented in the form of

{
ω̇L3 = JL3,R q̈ + δL3

v̇L3 = JL3,T q̈ + μL3{
ω̇S3 = JS3,R q̈ + δS3
v̇S3 = JS3,T q̈ + μS3{
ω̇U3 = JU3,R q̈ + δU3

v̇U3 = JU3,T q̈ + μU3

(13)

where the coefficients are given by
{

δL3 = −e2
wT ê2x3

(
2ωT

P ŵê2x3γ̇ + ωT
P ŵx̂3ωP + wT

0 ê
2
2x3γ̇

2
)

μL3
= ω̂

2
P rP,3 − r̂P,3δP − ω̂

2
L3
rL3,2 + r̂L3,2δL3⎧

⎨

⎩

δS3 = 03
μS3 = [− cot α3e3, 03, e3](μL3

− r̂L3,1δL3 + ω̂
2
L3
rL3,1)

−l3,1e3cscα3α̇
2
3⎧

⎪⎨

⎪⎩

δU3 = − e2eT1
l3,1 sin α3

(μL3
− r̂L3,1δL3 + ω̂

2
L3
rL3,1)

− cot α3 α̇2
3e2

μU3
= μS3 + r̂U3,1δU3 − ω̂

2
U3
rU3,1

4 Dynamics modeling of the 3-PRRU parallel
manipulator

Using Newton–Euler method with generalized coordi-
nates [13], this section presents the dynamics modeling
of the 3-PRRU parallel manipulator. The principle of
virtual work is employed to construct the orthogonal
space of the system’s constraint forces reacted in the
connecting joints. Finally, both EOM and EOR can be
derived for the dynamic analysis of the studied parallel
manipulator.

4.1 Newton–Euler equations of the bodies

Considered as a spatial rigid body, the Newton–Euler
equations of the moving platform can be represented
as

{
IP ω̇P + εP = Ma

P + Mn
P

mP v̇P = Fa
P + Fn

P
(14)

wheremP and IP denote the mass and inertia tensor of
the platform with respect to {S}. εP = ωP × (IP ωP )

denotes the item including the Coriolis and centrifugal
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forces. Ma
P and Mn

P represent the external and con-
straint toques exerted on the platform related to its cen-
ter of mass. Fa

P and Fn
P are the corresponding forces

applied on the platform.
The moving platform is connected with the limbs

through three universal joints. Thus, the forces and
torques exerted on it can be represented as linear func-
tions of the constraint forces and torques reacted in the
universal joints, as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Mn
P = PA1,RλA1 + PA2,RλA2 + PA3,RλA3

= PA,R λA

Fn
P = PA1,TλA2 + PA2,TλA2 + PA3,TλA3

= PA,TλA

(15)

where

⎧
⎪⎨

⎪⎩

λA = [λT
A1

,λT
A2

,λT
A3

]T ∈ R
12×1

PA,R = [PA1,R,PA2,R,PA3,R] ∈ R
3×12

PA,T = [PA1,T ,PA2,T ,PA3,T ] ∈ R
3×12.

where λAi ∈ R
4×1, i = 1, 2, 3 denote the ideal reac-

tion forces and torques in the universal joint connected
to the i th limb. PAi ,R ∈ R

3×4 and PAi ,T ∈ R
3×4

are the transformation matrices related these reaction
forces/torques to the body-fixed frame, which are given
by

⎧
⎪⎨

⎪⎩

PA1,R = [
r̂P,1, u

]
, PA2,R = [

r̂P,2, u
]
,

PA3,R = [
r̂P,3, v

]

PA1,T = PA2,T = PA3,T = [
E3, 03×1

]

where r̂P,i is the skew-symmetric matrices associated
with the body-joint vectors of the universal joints on
the moving platform with respect to the inertial frame
{S}.

It should be noted that the ideal reactions in the uni-
versal joints consist of three forces and one torque since
they have two rotational DOFs. The constraint forces
are assumed parallel to the coordinate axes of {S} and
through the center of the universal joint. Meanwhile,
the constraint torques in the first and second limbs are
parallel to the w-axis of {T}, while the one in the third
limb is parallel to the v-axis.

By substituting (9) and (15) into (14), the Newton–
Euler equations of themovingplatformcanbe rewritten
as

{
IP JP,R q̈ = KP,R + Ma

P + PA,RλA

mPJP,T q̈ = KP,T + Fa
P + PA,TλA

(16)

where KP,R = −IP δP − εP and KP,T = −mPμP .
For other links, the Newton–Euler equations with

generalized coordinates can also be derived in the same
method.

– Sliders

The Newton–Euler equations can be represented as

{
ISi ω̇Si + εSi = Ma

Si
+ Mn

Si
mSi v̇Si = Fa

Si
+ Fn

Si

(17)

where the constraint forces Mn
Si

and torques Fn
Si

are
given by

{
Mn

Si
= SPi ,R λPi + SAi ,R λAi

Fn
Si

= SPi ,T λPi + SAi ,T λAi

(18)

where λPi ∈ R
5×1 and λAi ∈ R

5×1 are the ideal
constraint forces/torques reacted in the prismatic and
first revolute joints of the limbs. The prismatic joints
have one translational DOF, such that λPi consists of
two forces and three torques. While λAi comprises
three forces and two torques since the revolute joints
have one rotational DOF. The transformation matri-
ces SPi ,R ∈ R

3×5, SAi ,R ∈ R
3×5, SPi ,T ∈ R

3×5 and
SAi ,T ∈ R

3×5 can be derived as
{
SPi ,R = [

03×2, E3
]
, SA1,R = [

r̂S1,2, e2, e3
]
,

SA2,R = [
r̂S2,2, e2, e3

]
,SA3,R = [

r̂S3,2, e1, e3
]

{
SPi ,T = [

e1, e2, 03×3
]

SAi ,T = [
E3, 03×2

]

Thus, the Newton–Euler equations of the sliders can
be rewritten as

{
ISi JSi ,R q̈ = KSi ,R + Ma

Si
+ SPi ,RλPi + SAi ,RλAi

mSi JSi ,T q̈ = KSi ,T + Fa
Si

+ SPi ,TλPi + SAi ,TλAi

(19)

where KSi ,R = −ISi δSi − εSi and KSi ,T = −mSi μSi .

– Upper links

The Newton–Euler equations of the upper links can
be represented as
{
IUi ω̇Ui + εUi = Ma

Ui
+ Mn

Ui

mUi v̇Ui = Fa
Ui

+ Fn
Ui

(20)
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where the constraint forces Mn
Ui

and torques Fn
Ui

are
{
Mn

Ui
= UAi ,R λAi + UBi ,R λBi

Fn
Ui

= UAi ,T λAi + UBi ,T λBi
(21)

where λBi ∈ R
5×1 is the ideal constraint forces/torques

reacted in the second revolute joint of the limb. It con-
sists of two forces and three torques same as λAi . The
transformationmatricesUAi ,R ∈ R

3×5,UBi ,R ∈ R
3×5,

UAi ,T ∈ R
3×5 and UBi ,T ∈ R

3×5 can be derived as
⎧
⎪⎨

⎪⎩

UA1,R = − [
r̂U1,1, e2, e3

]

UA2,R = − [
r̂U2,1, e2, e3

]

UA3,R = − [
r̂U3,1, e1, e3

]
,

⎧
⎪⎨

⎪⎩

UB1,R = [
r̂U1,2, e2, e3

]

UB2,R = [
r̂U2,2, e2, e3

]

UB3,R = [
r̂U3,2, e1, e3

]
,

{
UAi ,T = − [

E3, 03×2
]

UBi ,T = [
E3, 03×2

]

where rUi ,1 = RUi ρUi ,1 and rUi ,2 = RUi ρUi ,2 are the
body-joint vectors of the revolute joints with respect to
{S}.

Thus, the Newton–Euler equations of the sliders can
be rewritten as

{
IUi JUi ,R q̈ = KUi ,R + Ma

Ui
+ UAi ,RλAi + UBi ,RλBi

mUi JUi ,T q̈ = KUi ,T + Fa
Ui

+ UAi ,T λAi + UBi ,TλBi

(22)

where KUi ,R = −IUi δUi − εUi and KUi ,T =
−mUi μUi

.

– Lower links

The Newton–Euler equations of the lower links can
be represented as
{
ILi ω̇Li + εLi = Ma

Li
+ Mn

Li

mLi v̇Li = Fa
Li

+ Fn
Li

(23)

where the constraint forces Fn
Li

and torques Mn
Li

are
be represented as
{
Mn

Li
= LBi ,R λBi + LCi ,R λCi

Fn
Li

= LBi ,T λBi + LCi ,T λCi

(24)

where the transformation matrices LBi ,R ∈ R
3×5,

LCi ,R ∈ R
3×4, LBi ,T ∈ R

3×5 and LCi ,T ∈ R
3×4 can

be derived as

⎧
⎪⎨

⎪⎩

LB1,R = − [
r̂L1,1, e2, e3

]

LB2,R = − [
r̂L2,1, e2, e3

]

LB3,R = − [
r̂L3,1, e1, e3

]
,

⎧
⎪⎨

⎪⎩

LC1,R = − [
r̂L1,2, u

]

LC2,R = − [
r̂L2,2, u

]

LC3,R = − [
r̂L3,2, v

]
{
LBi ,T = − [

E3, 03×2
]

LCi ,T = − [
E3, 03×1

]

where rUi ,1 = RUi ρUi ,1 and rUi ,2 = RUi ρUi ,2 are
the lower links’ body-joint vectors of the revolute and
universal joints with respect to {S}.

Thus, theNewton–Euler equations of the lower links
can be rewritten in terms of the system’s generalized
coordinates and the constraint forces reacted in their
corresponding connecting joints as

{
ILi JLi ,R q̈ = KLi ,R + Ma

Li
+ LBi ,R λBi + LCi ,R λCi

mLi JLi ,T q̈ = KLi ,T + Fa
Li

+ LBi ,T λBi + LCi ,T λCi

(25)

whereKLi ,R = −ILi δLi −εLi andKLi ,T = −mLi μLi
.

4.2 System Newton–Euler equations of the parallel
manipulator

According to the above analysis, the system Newton–
Euler equations of the whole 3-PRRU parallel manip-
ulator can be obtained by concatenating those of all
bodies as
{
I ω̇ + ε = Ma + Mn

m v̇ = Fa + Fn (26)

where the system inertia and force/torque coefficients
are given by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

I = Blkdiag
(
IP , IL1 , · · · , IS3

)

m = Blkdiag
(
mPE3, mL1E3, · · · , mS3E3

)

ε =
[
εTP , εTL1

, · · · , εTS3

]T

⎧
⎪⎨

⎪⎩

Ma =
[
(Ma

P )T , (Ma
L1

)T , · · · , (Ma
S3

)T
]T

Fa =
[
(Fa

P )T , (Fa
L1

)T , · · · , (Fa
S3

)T
]T

⎧
⎪⎨

⎪⎩

Mn =
[
(Mn

P )T , (Mn
L1

)T , · · · , (Mn
S3

)T
]T

Fn =
[
(Fn

P )T , (Fn
L1

)T , · · · , (Fn
S3

)T
]T
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According to the kinematics analysis presented in
the above section, the accelerations of all bodies of
the parallel manipulator can be represented in a matrix
form as

{
ω̇ = JR q̈ + δ

v̇ = JT q̈ + μ
(27)

where

ω̇ =

⎡

⎢⎢⎢
⎣

ω̇P

ω̇L1
...

ω̇S3

⎤

⎥⎥⎥
⎦

, v̇ =

⎡

⎢⎢⎢
⎣

v̇P
v̇L1
...

v̇S3

⎤

⎥⎥⎥
⎦

, JR =

⎡

⎢⎢⎢
⎣

JP, R

JL1,R
...

JS3,R

⎤

⎥⎥⎥
⎦

,

JT =

⎡

⎢⎢
⎢
⎣

JP, T

JL1,T
...

JS3,T

⎤

⎥⎥
⎥
⎦

, δ =

⎡

⎢⎢
⎢
⎣

δP
δL1
...

δS3

⎤

⎥⎥
⎥
⎦

, μ =

⎡

⎢⎢
⎢
⎣

μP
μL1

...

μS3

⎤

⎥⎥
⎥
⎦

Substituting (27) into Eq. (26), the system Newton–
Euler equations of the whole parallel manipulator can
be represented as a set of DAEs of the generalized coor-
dinates and the reaction forces as,

�H q̈ + K (q, q̇) = F
a + Qλ (28)

where the items can be determined as

⎧
⎪⎪⎨

⎪⎪⎩

� =
[
I 0
0 m

]
, H =

[
JR
JT

]
, K =

[
Jδ + ε

mμ

]

F
a =

[
Ma

Fa

]
, λ = [

λT
C , λT

B, λT
A, λT

P

]T

and

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q =

⎡

⎢
⎢⎢
⎢
⎣

PT
C, R LT

C, R 0 0 PT
C, T LT

C, T 0 0

0 LT
B, R UT

B, R 0 0 LT
B, T UT

B, T 0

0 0 UT
A, R STA, R 0 0 UT

A, T STA, T

0 0 0 STP, R 0 0 0 STP, T

⎤

⎥
⎥⎥
⎥
⎦

T

LC, X = Blkdiag
(
LC1, X , LC2, X , LC3, X

)

LB, X = Blkdiag
(
LB1, X , LB2, X , LB3, X

)

UB, X = Blkdiag
(
UB1, X , UB2, X , UB3, X

)

UA, X = Blkdiag
(
UA1, X , UA2, X , UA3, X

)

SA, X = Blkdiag
(
SA1, X , SA2, X , SA3, X

)

SP, X = Blkdiag
(
SP1, X , SP2, X , SP3, X

)

where X = R or T for rotation and translation, respec-
tively.

According to the principle of virtual work, the
ideal constraint forces/torques reacted in the connect-
ing joints do not produce any work to the multi-body
system. Then, we have

HT Q ≡ 0 (29)

Then, the constraint forces in Eq. (28) can be elim-
inated by means of left-multiplying the transpose of
HT . And the system equations of motion of the paral-
lel manipulator can be obtained directly as

HT�H q̈ + HTK (q, q̇) = HT F
a

(30)

where F
a
integrates all external forces/torques exerted

on the parallel manipulator, including the gravities of
all bodies, the driving forces in the actuated joints, and
the work load applied to the end-effector.

Meanwhile, the system equations of reaction of the
parallel manipulator can be obtained in a similar way
as

λ =
(
QT�−1Q

)−1
QT�−1

(
K − F

a
)

(31)

where QT�−1Q is always invertible because the sys-
tem inertia matrix � is non-singular andQ is full rank.

Comparing with the Lagrange method and convec-
tionalNewton–Euler formulation, the advantages of the
proposed dynamic modeling method include the fol-
lowing aspects.

Firstly, the derivation process of the parallel manip-
ulator’s forward dynamics is relatively straightforward.
As indicated in Sect. 3, the pose of the 3-PRRU paral-
lel manipulator’s end-effector is selected as the system
generalized coordinates. Thus, the closed-form solu-
tions to the position, velocity and acceleration analysis
can be derived conveniently by taking advantage of
the manipulator’s inverse kinematics. Meanwhile, the
principle of virtual work can be employed to directly
separate the ideal constraint forces reacted in the con-
necting joints.

Secondly, using the proposed method, both equa-
tions ofmotion and reaction can be analytically derived
in the form of ODE and purely linear algebraic equa-
tions, respectively. Hence, both the dynamic response
and reaction force can be obtained by solving the sys-
tem’s EOM and EOR separately. And this information
is necessary during the performance optimization of
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the studied parallel manipulator by taking the bodies’
dynamic effects into account.

Furthermore, the proposed method can be extended
to a modular dynamic modeling approach by means of
taking further consideration into account. For instance,
the clearance and friction effects of the connecting
joints can also be added as a subsystem into the manip-
ulator’s dynamic models. Then, nonlinear dynamics
analysis can be conducted for themanipulators of inter-
est. This aspect will be further studied in our future
work.

4.3 Numerical simulation of the manipulator’s
dynamic response

Based on the system EOM (30) and EOR (31), the
dynamic responses, including the generated move-
ment and the reacted constraint forces/torques, of the
studied 3-PRRU parallel manipulator can be obtained
directly according to the external load exerted on the
manipulator. This section presents a numerical simula-
tion to verify the correctness of the obtained dynamic
models.

In the numerical simulation, the preset values of
the parallel manipulator’s kinematic parameters illus-
trated in Fig. 3 are given by b1 = b2 = 0.360m,
b3 = 0.315m for the positions of the prismatic joints,

Table 1 Mass and inertia tensors of the bodies in the 3-PRRU
parallel manipulator

Bodies Mass (kg) Inertia tensors (kgm2)

Moving platform 1.77 Diag (0.0024, 0.0028, 0.0032)

Lower links 0.64 Diag (0.0025, 0.0003, 0.0027)

Upper links 1.31 Diag (0.0065, 0.0016, 0.0079)

Sliders 1.59 Diag (0.0036, 0.0032, 0.0015)

l1,1 = l2,1 = l3,1 = 0.230m, l1,2 = l2,2 = l3,2 =
0.225m for the lengths of the upper and lower links,
and l1,3 = l2,3 = 0.045m for the size of the moving
platform, respectively. The mass and inertia tensors of
the manipulator’s bodies are listed in Table 1. Since all
the bodies are symmetric in structure, the inertia ten-
sors are principal ones in their body-fixed frames. The
initial pose of the manipulator’s end-effector is set q =
[0, π

6 , −0.8]T rad/m and the parallel manipulator is
assumed stationary, namely q̇ = 0, at the beginning of
the simulation. And the driving forces in the actuated
prismatic joints are assigned to Fa = [50, 40, 25]T N
constantly. Meanwhile, a harmonic external load is
exerted on the end-effector of the parallel manipulator
as Fa

P = [50 sin(4π t),−50 cos(4π t), 0]T N (Fig. 4).
The corresponding simulation results are illustrated

in Figs. 5 and 6. It should be noted that all those
results have been validated by the commercial code
Adams/View. Figure 5 shows the dynamic response of
the studied parallel manipulator under a specific load
condition. The historic trajectory of the generalized
coordinates is obtained by means of the direct integra-
tion of the system’s EOM (30) using ODE45 algorithm
in MATLAB. Accordingly, the displacements of the
active prismatic joints can be specified via the inverse
kinematics analysis presented in Sect. 3.

Meanwhile, all constraint forces/torques reacted in
the connecting joints can be obtained according to the
system’s EOR (31). Figure 4 illustrates the constraint
forces reacted in the universal joints. From the results, it
is obvious that the external forces along the x-direction
of {S} are mainly supported by limbs 1 and 2, while
the exerted load parallel to the y-axis of {S} is mainly
distributed into limb 3. Therefore, once there are some
large external forces exerted on the end-effector of the
parallel manipulator, all its three limbs will bear rel-
atively large loads perpendicular to their assembling
planes. And this phenomenon is crucial for the struc-

Fig. 4 Constraint forces
reacted in the universal
joints connected to the
moving platform
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Fig. 5 Dynamic response
of parallel manipulator
under the given load
condition: a generalized
coordinates; b actuated
joints

Fig. 6 Constraint forces reacted in the prismatic joints attached to the fixed base

tural design of the bodies in the studied parallel manip-
ulator.

As illustrated in Fig. 6, horizontal external loadswill
be transferred to the actuated joints through the limbs.
Meanwhile, extra torques about the axes of the pris-
matic joints will be generated to the limbs. As a result,
torsional effects will be caused to the sliders connected
to the prismatic joints. Therefore, not only perpendicu-
lar forces, but also torsional loads will be exerted on the
supporting pillars of the parallel manipulator’s limbs.
Since screw-guide mechanisms are used to actuate the

prismatic joints of the 3-PRRU parallel manipulator,
particular attentions must be paid on the selection of
concrete structures and specifications of the actuation
systems according to their complex load conditions.

5 Dynamic performance analysis of the 3-PRRU
parallel manipulator

Based on the dynamic model obtained in the above
section, performance analysis of the 3-PRRU parallel
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Fig. 7 Dynamic manipulability ellipsoids and the corresponding measure

manipulator is conducted in this section. The concept of
dynamic manipulability ellipsoid (DME) [8] is used to
evaluate the parallel manipulator’s ability in changing
the end-effector’s position/orientation under the con-
straint of the driving forces in theprismatic joints. Then,
the distribution of DME index in the whole workspace
is also provided in this section.

In the concept of DME, the effect of the links’
dynamics is taken into account in the quantitative eval-
uation of the ability in manipulating the end-effector
of the robot manipulators. Thus, accelerations of the
manipulator’s end-effector are calculated to quantify
the easiness of changing the pose in various directions
under some constraint on the driving forces in the active
joints.

Then, for the studied 3-PRRU manipulator, the sys-
tem dynamic Eq. (30) can be rewritten in the form of

J−T
d HT �HJ+

e ( ˙̃ve − J̇e q̇) = Fd + J−T
d HT (Fa −K)

(32)

where Fd = [
Fd,1, Fd,2, Fd,3

]T denotes the driving
forces applied on the sliders. And the matrix Jd relates
the system’s generalized coordinates to the actuated

joints, namely ḋ = Jd q̇. The vector ˙̃ve = [
ω̇T
P , v̇TP

]T

integrates the rotational and translational accelerations
of the parallel manipulator’s end-effector. Since the
end-effector of the manipulator is attached to the mov-
ing platform, its Jacobian yields

Je = JP =
[
JTP,R, JTP,T

]T
.

According to (32), an ellipsoid can then be obtained
to describe the boundary of the end-effector’s accel-
erations in various directions under the constraint of
driving forces as

‖F̃‖ ≤ 1 ⇒ ãT J̃
+T

M̃
T
M̃ J̃

+
ã ≤ 1 (33)

where F̃ = Fd + J−T
d HT (Fa −K) and ã = ˙̃ve − J̇e q̇

are the generalized driving forces and end-effector
acceleration of the parallel manipulator. J̃ = Je J

−1
d is

the Jacobian relating the manipulator’s actuated joints
to its end-effector. M̃ = J−T

d HT �HJ−1
d is the sys-

tem’s reduced inertia matrix.
Moreover, the separated DMEs associated with the

rotational and translational aspects of the manipulator
can be derived from (33) by replacing the correspond-
ing Jacobians with separate ones. As a consequence,
two ellipsoids can be obtained to evaluate the rotational
and translation dynamic manipulability, respectively,
as

‖F̃‖ ≤ 1 ⇒
⎧
⎨

⎩
ãTR J̃

+T
R M̃

T
M̃ J̃

+
R ãR ≤ 1

ãTT J̃
+T
T M̃

T
M̃ J̃

+
T ãT ≤ 1

(34)

where ãR and ãT correspond to the rotational and trans-
lational aspects of ã, respectively. Accordingly, the
separate Jacobians are given by J̃R = JP,R J

−1
d and

J̃T = JP,T J−1
d .

Since the studied 3-PRRU parallel manipulator has
two rotational and one translation DOF without para-
siticmotion, the separatedDMEsdegenerate to a planar
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ellipse and a line, respectively, as shown in Fig. 7a. It is
obvious that the degenerate rotational DME lies on the
plane spanned by x and v, while the translational accel-
erations only occurs along the z-axis. Furthermore, the
axes with themaximum andminimum rotational accel-
erations on the locating plane can be directly obtained
from the degenerate ellipse.

To evaluate the isotropic property of dynamic

manipulability, the condition number of M̃ J̃
+
R is

adopted as a measure of the manipulator’s dynamic
performance as

wR = σR,1

σR,2

(35)

where σR,1 are σR,2 are the nonzero singular values of

M̃ J̃
+
R , and σR,1 ≥ σR,2 .

From kinematics analysis, it is known that pure
translation of the end-effector only generate a motion
of the whole manipulator along the z-axis, so it does
not influence the dynamicmanipulability performance.
Hence, in the performance analysis, the z-coordinate
of the end-effector is fixed at the home position,
namely q3 = 0, while for the 2-DOF rotational
workspace, a rectangular area is selected in the range
of [−π/6, π/6] × [−π/4, π/6] for q1 and q2 by tak-
ing the manipulator’s motion limit into account. The
workspace is discretized by the two rotation angles q1
and q2, respectively. For each configuration within the
above workspace, the isotropic measure wR is calcu-
lated according to (35).

As a result, a surface, as shown Fig. 7b, can be
obtained to illustrate the distribution of the studied
3-PRRU parallel manipulator’s dynamic performance
within the 2-DOF rotational workspace.

As indicated in the above, the proposed 1T2R par-
allel manipulator has a partial symmetric structure.
Since limbs 1 and 2 are symmetric about the xz-plane
of {S}, the rotation about q1 can be considered as a
result of their differential motions. Therefore, the per-
formance index wR should also be symmetric about
q1, which can be verified by the surface obtained in
Fig. 7b. As shown in the figure, for a specific q2, the
isotropic property of the manipulator’s dynamic per-
formance is symmetric whenever the rotation about
q1 is to left or right side. On the other hand, the end-
effector’s rotation aboutq2 is produced only by the third
limb, which can be regarded as a planar slider-crank
mechanism as shown in Fig. 3b. Thus, the transmis-

sion property is different when the angle γ is positive
or minus.

Further, from Fig. 7a, it is known that the rotational
acceleration of q1 is much larger than that of q2. As
indicated in the above, the rotation of q1 is generated
by the differential motion of two limbs, while q2 is gen-
erated by only one. Therefore, the isotropic indexwR is
not close to 1 even at the home configuration of manip-
ulator, namely q1 = 0, q2 = 0. At themean time, it can
be seen that the isotropic property becomes better when
themagnitude of q1 increases. This is because the effect
of differential motion between limbs 1 and 2 decreases
at a more oblique configuration of the manipulator’s
end-effector. Then, the ability of rotational accelera-
tions about q1 and q2 becomes closer, so does wR to
1. In addition, a corresponding contour plot is pro-
vided in Fig. 7c to demonstrate the distribution prop-
erty of the dynamic performance index in an intuitive
way.

As a general purpose robot manipulator, the condi-
tion number (35) is usually minimized as close as 1 to
make the dynamic performance of the manipulator as
isotropic as possible. In other words, the index surface
illustrated in Fig. 7b should be maximally decreased
to the horizontal plane wR = 1. Then, the studied par-
allel manipulator has an equal ability in changing the
end-effector’s orientation in various directions on the
locating plane as illustrated in Fig. 7a. Therefore, the
overall distancebetween the index surface and theplane
wR = 1 can be defined as an assessment to evaluate the
isotropic property of manipulator’s acceleration ability
within the workspace.

In futurework, two differentwayswill be carried out
to achieve the above subject. One is to employ kinemat-
ics and structural optimizations to minimize the index,
such that the isotropic property of the dynamic per-
formance can be improved. The other is introducing
actuation redundancy to the current design. An extra
limb will be added, such that the rotation of q2 is also
generated by two limbs. As a result, the ability of rota-
tional accelerations about q1 and q2 can be set more
equally.

In addition, the influences of themanipulator’s kine-
matic parameters and the bodies’ inertia properties
on the index of dynamic performance will be further
studied based on the modeling and analysis method
proposed in this paper, such that optimization can
be employed to improve the performance. Moreover,
physical experimentswill also be conducted on a proto-
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Fig. 8 A prototype of the 3-PRRU 1T2R parallel manipulator

type, which is developed based on the studied 3-PRRU
parallel manipulator as shown in Fig. 8, to verify the
method presented in this paper.

6 Conclusions

This paper presents the dynamic modeling and perfor-
mance analysis of the 3-PRRU 1T2R parallel manipu-
lator without parasitic motion. Based on the Newton–
Euler formulation with generalized coordinates, both
system EOM and EOR are established to predict the
dynamic response of the studied parallel manipulator
under specific external loads. The proposed modeling
method has been validated by means of numerical sim-
ulations with the comparison of commercial softwares.
From the numerical results, the load transferring prop-
erty of the studied parallel manipulator has also been
investigated. The concept of DME is then adopted to
evaluate the dynamic manipulability performance of
the 3-PRRU parallel manipulator. And the global dis-
tribution of a related measure within the workspace of
the parallel manipulator is derived, which will serve
as the criteria for further kinematic and structure opti-
mizations of the studied parallel manipulator in future
work.
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