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Abstract In this paper, the problem of global syn-
chronization for complex directed dynamical networks
via adaptive aperiodically intermittent pinning control
is studied. By constructing a piecewise Lyapunov func-
tion, some sufficient conditions to guarantee global
synchronization are derived based on the analytical
technique and theory of series with nonnegative terms.
Different from previous works, the adaptive intermit-
tent pinning control is aperiodic with non-fixed both
control period and control width, and moreover, the
adaptive approach is decentralized relying only on the
state information of the controlled node. Hence, the
adaptive intermittent pinning control strategy proposed
in this paper ismore practically applicable than those in
previousworks.Additionally, it is noted that the derived
synchronization criteria are dependent on the control
rates, but not the control widths or the control periods,
which makes the theoretical results are less conserva-
tive than the corresponding results given in the exist-
ing works. A numerical example is finally provided to
illustrate the validity of our theoretical results.
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Introduction

In the past few decades, complex dynamical networks
consisting of a number of coupled dynamical nodes
connected by edges have received great attention in var-
ious fields of science and engineering. Actually, many
large-scale systems in nature and human societies can
be modeled as complex dynamical networks, such as
power grid networks, communication networks, food
webs, biomolecular networks, and social networks [1–
3]. As a typical collective behavior of complex dynam-
ical networks, synchronization has become a hot topic
due to the potential applications in image processing,
secure communication, etc. Up to now, various syn-
chronization patterns have been studied, such as com-
plete synchronization, phase synchronization, cluster
synchronization, lag synchronization, and generalized
synchronization [4–6].

In a dynamical network, as is well known, for forc-
ing the states of all network nodes to synchronize
with a desired objective trajectory, appropriate con-
trollers should be added to the network nodes. Hith-
erto, many control techniques have been developed
for synchronization problem, including pinning con-
trol [7,8], adaptive control [9], impulsive control [10],
intermittent control [11], sample-data control [12],
and event-triggered control [13]. Among these con-
trol approaches, intermittent control is a discontinu-
ous feedback control, which is activated during certain
nonzero time intervals but is off during other time inter-
vals [11,14]. Owing to its practical and easy imple-
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mentation in engineering control, intermittent con-
trol has been widely used in engineering fields, such
as manufacturing, transportation and communication
[11,14,15].

Recently, a periodically intermittent control strat-
egy has been proposed and its application on synchro-
nization has also been investigated [11,14–27]. For
example, the exponential synchronization of complex
dynamical networks with finite distributed delays cou-
pling via periodically intermittent control was explored
in [15]. In [16,17], the authors studied the expo-
nential synchronization of delayed chaotic systems
with parameter mismatches via periodically intermit-
tent control. In [18], the exponential synchronization
of neural networks with mixed delays and reaction dif-
fusion was discussed by using periodically intermit-
tent control. In [11,19–21], the pinning synchroniza-
tion problem for complex dynamical networks with or
without delaywas considered via periodically intermit-
tent control. In [22–25], the cluster synchronization of
complex dynamical networks was analyzed by means
of periodically intermittent pinning control. In [26,27],
the finite-time synchronization of complex dynami-
cal networks with or without time-varying delay under
periodically intermittent control was investigated.

It should be noted that the intermittent control
adopted in previous works [11,14–27] is periodic,
where the control period and the control width are both
required to be fixed constants. Obviously, this require-
ment is quite restricted and may be unreasonable in
practice. In fact, in practical applications, the control
period and control width of intermittent control strat-
egy are both expected to be changeable and therefore
adjusted in accordance to actual requirements. In view
of this, Liu and Chen [28] generalizes the periodically
intermittent control strategy to aperiodically intermit-
tent control strategy, see Fig. 1. For any time span
[tk, tk+1) (k ∈ Z+ = {1, 2, . . .}), [tk, tk + δk] is the
kth work time and δk > 0 is called the kth control
width (control duration), while

(
tk + δk, tk+1

)
is the

kth rest time and (tk+1 − tk) − δk > 0 is called the
kth rest width (rest duration). In addition, (tk+1 − tk)
is called the kth control period. Evidently, here each
control period and each control width is non-fixed, and
hence this control strategy is more general. In particu-
lar, when tk+1 − tk ≡ T and δk ≡ δ, k ∈ Z+, the inter-
mittent control type becomes the periodic one, which
has been studied in [11,14–27].

Fig. 1 Sketch map of aperiodically intermittent control strategy,
where Tk = tk+1 − tk , k ∈ Z+

Currently, some initial results have been reported
on the synchronization of chaotic systems and complex
dynamical networks via aperiodically intermittent con-
trol [28–32]. In [28] and [29], the authors considered
the synchronization problem for complex dynamical
networks with linear coupling function as well as non-
linear coupling function via aperiodically intermittent
pinning control, respectively. In [30,31], aperiodically
intermittent pinning control for the exponential syn-
chronization of complex delayed dynamical networks
was investigated. In [32], the stabilization and synchro-
nization for chaotic systems with mixed time-varying
delays were considered via aperiodically intermittent
control. Additionally, the synchronization of complex
dynamical networks under adaptive scheme for aperi-
odically intermittent pinning control was also investi-
gated in [28–30]. It is worth mentioning that the adap-
tive approach proposed in [28–30] is centralized, which
requires the state information of all network nodes
(i.e., global information of the whole network). Obvi-
ously, it is hard and costly to implement for large-scale
networks. For a given node in a dynamical network,
the state information of network nodes directly con-
nected with it can be easily accessed. Therefore, amore
reasonable adaptive approach is decentralized (or dis-
tributed) [21,33–35], which only relies on local infor-
mation instead of global information of the whole net-
work. However, to the best of our knowledge, synchro-
nization of complex dynamical networks under decen-
tralized adaptive strategy for aperiodically intermittent
pinning control has not been investigated, despite its
importance for potential practical applications. In this
paper, we will solve this problem.

Motivated by the above analysis, the purpose of
this paper is to introduce a decentralized adaptive
strategy for aperiodically intermittent pinning con-
trol to investigate global synchronization of complex
directed dynamical networks. By employing the ana-
lytical technique and theory of series with nonnega-
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tive terms, some global synchronization criteria are
obtained through constructing a piecewise Lyapunov
function. Numerical simulations are also given to illus-
trate the effectiveness of the proposed control method-
ology. The main contribution of this paper lies in the
following three aspects: (1) the intermittent pinning
control is aperiodic with non-fixed both control period
and control width, which expands intermittent control
strategy’s scope; (2) the designed adaptive approach is
decentralized relying only on the state information of
the controlled node, which is more practically appli-
cable than that in previous works; (3) the derived syn-
chronization criteria are dependent on the control rates,
but not the control widths or the control periods, which
makes the theoretical results are less conservative than
the corresponding results given in the existing works.

Throughout this paper, the following notations and
definitions will be used. Let R = (−∞,+∞) be the
set of real numbers, R+ = [0,+∞) be the set of
nonnegative real numbers, and Z+ = {1, 2, . . .} be
the set of positive integer numbers. Rn denotes the
n−dimensional Euclidean space. The superscript �
denotes matrix or vector transposition. For a vector
u ∈ R

n , its norm is defined as ||u|| = √
u�u. Rn×n

stands for the set of n×n real matrices. In ∈ R
n×n is an

n−dimensional identitymatrix, diag(γ1, γ2, . . . , γn) ∈
R
n×n is the diagonal matrix with diagonal entries γi

(1 ≤ i ≤ n). For a square matrix A ∈ R
n×n ,

As = 1
2 (A + A�) is its symmetric part, and λmin(A)

and λmax(A) denote its minimum andmaximum eigen-
value, respectively. For a real symmetric matrix M ∈
R
n×n , write M > 0 (M < 0) if M is positive (nega-

tive) definite, andM ≥ 0 (M ≤ 0) ifM is semi-positive
(semi-negative) definite. The Kronecker product of an
N × M matrix A = (ai j ) and a p × q matrix B is the
Np × Mq matrix A ⊗ B, defined as

A ⊗ B =
⎛

⎜
⎝

a11B · · · a1M B
...

. . .
...

aN1B · · · aNM B

⎞

⎟
⎠

and the Kronecker product has the property

(A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD).

Model and preliminaries

Consider a general complex network consisting of N
linearly coupled identical dynamical nodes, which is
described by the following equations [5]:

ẋi (t) = f (t, xi (t)) + c
N∑

j =1, j 
=i

gi j �
(
x j (t)

−x i (t)
)
, i ∈ T, (1)

where T = {1, 2, . . . , N }, xi (t) = (xi1(t), xi2(t), . . . ,
xin(t))� ∈ R

n is the state vector of the i th node,
f (t, xi (t)) = (

f1(t, xi (t)), f2(t, xi (t)), . . . , fn(t,

xi (t))
)� : R

+ × R
n → R

n is a continuous vector-
valued function describing the local dynamics of each
isolated node, c > 0 is the coupling strength, � =
(γi j )n×n ∈ R

n×n > 0 is the inner connecting matrix
describing the individual coupling between nodes,G =
(gi j )N×N ∈ R

N×N is the coupling matrix represent-
ing the underlying topological structure of the whole
network, in which gi j is defined as follows: if there
is a directed link from node j to node i ( j 
= i),
then gi j > 0; otherwise, gi j = 0. Additionally,
the diagonal elements of matrix G are defined by
gii = −∑N

j=1, j 
=i gi j , i ∈ T, and therefore one has
∑N

j=1 gi j = 0, i ∈ T. Note that the coupling matrix
G is not necessarily symmetric or irreducible, which is
more consistent with a realistic dynamical network.

For convenience , let Degin(i) and Degout(i) be the
in-degree and out-degree of the i th node in network (1),
respectively. By the definition of matrix G, one has

Degin(i) =
N∑

j=1, j 
=i

gi j = −gii and Degout(i)

=
N∑

j=1, j 
=i

g j i , i ∈ T. (2)

In addition, define the degree difference between the
out-degree and in-degree of node i as Degdiff(i) =
Degout(i) − Degin(i), i ∈ T. The degree-difference
information of all network nodes will be used later to
guide what kind of nodes should be preferentially cho-
sen to be pinned.

Clearly, the dynamical behavior of each uncoupled
node in network (1) is expressed by

ẋ(t) = f (t, x(t)), (3)

where x(t) = (
x1(t), . . . , xn(t)

)� ∈ R
n . This general

model takes many dynamical systems as special cases,
for instance, Hodgkin–Huxley models, Lorenz chaotic
oscillators, Chua’s circuits, recurrently connected neu-
ral networks, cellular neural networks, and so on [9,22].

Let s(t) be a solution of the uncoupled node dynam-
ics ẋ(t) = f (t, x(t)). The main objective of this paper
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is to apply adaptive aperiodically intermittent control
scheme combined with pinning strategy to make the
states of all network nodes xi (t), i ∈ T globally asymp-
totically synchronize with the desired trajectory s(t),
i.e., for any initial conditions

lim
t→∞ ||xi (t) − s(t)|| = 0, i ∈ T. (4)

For achieving the control aim (4), some adaptive ape-
riodical intermittent controllers are added to partial
nodes of network (1). Without loss of generality, sup-
pose the first l (1 ≤ l < N ) nodes are selected to be
controlled; otherwise, we can rearrange the order of the
network nodes. Then the controlled dynamical network
can be described as:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẋi (t) = f (t, xi (t)) + c
N∑

j=1

gi j �x j (t) + ui (t), 1 ≤ i ≤ l,

xi (t) = f (t, xi (t)) + c
N∑

j=1

gi j �x j (t), l + 1 ≤ i ≤ N ,

(5)

Here, the control input ui (t) is designed as an adaptive
aperiodical intermittent controller, which is defined by

ui (t) = di (t)�
(
s(t) − xi (t)

)
, 1 ≤ i ≤ l, (6)

where

di (t) =
⎧
⎨

⎩

di (0), t = 0,
di
(
tk + δk

)
, t = tk+1,

0, tk + δk < t < tk+1,

(7)

and

ḋi (t) = hi
(
xi (t) − s(t)

)�
�
(
xi (t)

−s(t)
)
, tk ≤ t ≤ tk + δk, (8)

where t1 = 0, k ∈ Z+, hi (1 ≤ i ≤ l) are small
positive constants, di (0) ≥ 0 (1 ≤ i ≤ l). Without

loss of generality, we assume that supk∈Z+{tk+1 − tk}
= Tsup < ∞ and infk∈Z+{tk+1 − tk} = Tinf > 0.

For k ∈ Z+, denote T0 = T̂0 = t1, Tk = tk+1 − tk ,
T̂k =∑k

j=0 T j , and θk = δk/Tk , where θk is called the
control rate of the kth control period. Then, one can get
that tk = T̂k−1 and δk = θkTk , k ∈ Z+. Define error
variables as ei (t) = xi (t) − s(t), i ∈ T. According to
(6)–(8), we can derive the following error dynamical
system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ėi (t) = f̃ (t, xi , s) + c
N∑

j=1

gi j �e j (t) − di (t)�ei (t), T̂k−1 ≤ t ≤ T̂k−1 + θkTk, 1 ≤ i ≤ l,

ėi (t) = f̃ (t, xi , s) + c
N∑

j=1

gi j �e j (t), T̂k−1 ≤ t ≤ T̂k−1 + θkTk, l + 1 ≤ i ≤ N ,

ėi (t) = f̃ (t, xi , s) + c
N∑

j=1

gi j �e j (t), T̂k−1 + θkTk < t < T̂k, 1 ≤ i ≤ N ,

(9)

where k ∈ Z+ and f̃ (t, xi , s) = f (t, xi (t)) −
f (t, s(t)). It is evident that globally asymptotical syn-
chronization of the controlled dynamical network (5)
is achieved if the error variables satisfy limt→∞ ||
ei (t)|| = 0, i ∈ T.

To derive ourmain results, the following assumption
and lemmas are necessary.

Assumption 1 [8]: For the vector-valued function
f (t, x(t)), suppose there exists a positive constant
L0 > 0 such that for any x(t), y(t) ∈ R

n , the fol-
lowing condition holds:
[
x(t) − y(t)

]�[
f (t, x(t)) − f (t, y(t))

]

≤ L0
[
x(t) − y(t)

]�
�
[
x(t) − y(t)

]
.

Remark 1 Assumption 1 gives some requirements for
the dynamics of isolated node in network (1). If the
function f (t, x(t)) satisfies Lipschitz condition with
respect to the time t , i.e., || f (t, x(t)) − f (t, y(t))|| ≤
K0||x(t)− y(t)||, where K0 > 0 is a positive constant,
then one can choose L0 = K0

λmin(�)
to satisfy Assump-

tion 1. Moreover, it has been verified in [7–9,31,36]
that many well-known chaotic systems such as Lorenz
system, Chen system, Lü system, Rössler system, and
Chua’s circuit also satisfy Assumption 1.

Lemma 1 [37]: Assume that B1 and B2 are two real
symmetric matrices in R

N×N . Let α1 ≥ α2 ≥ . . . ≥
αN , β1 ≥ β2 ≥ . . . ≥ βN and γ1 ≥ γ2 ≥ . . . ≥
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γN be eigenvalues of matrices B1, B2 and B1 + B2,
respectively. Then, one has αi + βN ≤ γi ≤ αi + β1,
i ∈ T.

Lemma 2 (Schur complement [38]): The following
linear matrix inequality (LMI):
(
S11 S12
S�
12 S22

)
< 0

where S11 = S�
11, S22 = S�

22, and S12 is a matrix with
suitable dimensions, is equivalent to the following con-
dition:

S22 < 0, S11 − S12S
−1
22 S�

12 < 0.

Results

Hereinafter, let the matrix Gs be defined as Gs def=
(G + G)/2, and (Gs)l be the minor matrix of Gs by
removing its first l row–column pairs. It is easy to see
that Gs is a symmetric matrix with nonnegative off-
diagonal elements and generally does not possess the
property of zero row sums. In the following, by con-
structing a piecewise Lyapunov function, some suf-
ficient conditions for globally asymptotical synchro-
nization of the controlled dynamical network (5) under
the adaptive aperiodical intermittent controllers (6)–(8)
will be derived based on the analytical technique and
theory of series with nonnegative terms [21,39].

Theorem 1 Suppose that inf
k∈Z+ θk = θinf > 0. Under

Assumption 1, the controlled dynamical network (5)
with the adaptive aperidical intermittent controllers
(6)–(8) is globally asymptotically synchronized if there
exist two constants a1 > 0 and a2 ≥ 0 such that

(i) L0 + a1 + cλmax
(
(Gs)l

)
< 0,

(ii) (L0 − a2)IN + cGs ≤ 0,
(iii) (p1 + p2)θinf − p2 > 0,

where p1 = 2a1λmin(�) and p2 = 2a2λmax(�).

Proof Introduce a piecewise function defined as

	(t)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1

2
exp

{
−p1

(
t − T̂k−1

)} l∑

i=1

1

hi

(
di (t) − d∗

i

)2
, T̂k−1 ≤ t ≤ T̂k−1 + θkTk,

1

2
exp

{
p2
(
t −

(
T̂k−1 + θkTk

))
− p1θkTk

} l∑

i=1

1

hi

(
di
(
T̂k−1 + θkTk

)
− d∗

i

)2
,

T̂k−1 + θkTk < t < T̂k,

(10)

where k ∈ Z+, and d∗
i > 0 is a sufficiently large

positive constant to be determined later. Let 
k =
p2(1− θk) − p1θk , k ∈ Z+. By (7) and (10), it is easy
to verify that	(t) is continuous except for t = T̂k with
k ∈ Z+ and

	
(
T̂k
) = 	+

(
T̂k
) = exp

{− 
kTk
}
	−

(
T̂k
)
, (11)

where 	−
(
T̂k
) = limt→T̂−

k
	(t) and 	+

(
T̂k
) =

limt→T̂+
k

	(t) represent the left-hand limit and the

right-hand limit of 	(t) at time t = T̂k , respectively.

Let e(t) = (
e�
1 (t), e�

2 (t), . . . , e�
N (t)

)�
, and con-

struct the following Lyapunov function

V (t) = W (t) + 	(t), (12)

where

W (t) = 1

2
e�(t)(IN ⊗ In)e(t) = 1

2

N∑

i=1

e�
i (t)ei (t).

Obviously,W (t) is continuous for all t ≥ 0, and V (t) is
continuous except for t = T̂k with k ∈ Z+ andV

(
T̂k
) =

V+
(
T̂k
)
, k ∈ Z+.

Since di (t) ≥ 0 for t ≥ 0 which is clear from (7)–
(8), using Assumption 1, the upper right derivative of
V (t) with respect to the time t along the trajectories of
(9) can be calculated as follows:

When T̂k−1 ≤ t ≤ T̂k−1 + θkTk , k ∈ Z+,

V̇ (t) =
N∑

i=1

e�
i (t)

⎡

⎣ f̃ (t, xi , s) + c
N∑

j=1

gi j �e j (t)

⎤

⎦

−
l∑

i=1

di (t)e
�
i (t)�ei (t)

− p1
2

exp
{
−p1

(
t − T̂k−1

)} l∑

i=1

1

hi

(
di (t) − d∗

i

)2
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+ exp
{
−p1

(
t − T̂k−1

)} l∑

i=1

(
di (t) − d∗

i

)
e�
i (t)�ei (t)

≤
N∑

i=1

L0e
�
i (t)�ei (t) + c

N∑

i=1

N∑

j=1

gi j e
�
i (t) �e j (t)

− exp {−p1θkTk}
l∑

i=1

d∗
i e

�
i (t)�ei (t)

− p1
2

exp
{
−p1

(
t − T̂k−1

)} l∑

i=1

1

hi

(
di (t) − d∗

i

)2

=
N∑

i=1

L0e
�
i (t)�ei (t) + ce�(t)

(
G ⊗ �

)
e(t)

− exp
{− p1θkTk

} l∑

i=1

d∗
i e

�
i (t)�ei (t) − p1	(t)

= e�(t)
((

L0 IN + cGs − Dk
)⊗ �

)
e(t) − p1	(t)

= e�(t)
((

(L0 + a1)IN + cGs − Dk
)⊗ �

)
e(t)

− a1

N∑

i=1

e�
i (t)�ei (t) − p1	(t), (13)

where Dk = diag
(
exp

{ − p1θkTk
}
d∗
1 , . . . , exp

{ −
p1θkTk

}
d∗
l , 0, . . . , 0

)
∈ R

N×N .

For k ∈ Z+, let (L0 + a1)IN + cGs − Dk =
Q − Dk =

(
E − D̃k S
S� Ql

)
, where D̃k = diag

(
exp

{ −
p1θkTk

}
d∗
1 , . . . , exp

{ − p1θkTk
}
d∗
l

)
and Ql is the

minor matrix of Q by removing its first l row–column
pairs. Evidently, Ql = (

(L0 + a1)IN + cGs
)
l and it

is a real symmetric matrix. Therefore, by Lemma 1

and condition (i), one has λmax(Ql) = λmax

((
(L0 +

a1)IN + cGs
)
l

)
≤ L0 + a1 + cλmax

(
(Gs)l

)
< 0,

which means that Ql < 0. Consequently, when d∗
i

> 0, 1 ≤ i ≤ l are sufficiently large such that
d∗
i > exp

{
p1Tsup

}
λmax(E−SQ−1

l S�), it is easy to see
that Q − Dk < 0 for k ∈ Z+, which directly follows
from Lemma 2. This combines with (13) to produce

V̇ (t) ≤ −a1λmin(�)

N∑

i=1

e�
i (t)ei (t) − p1	(t)

= −p1V (t), T̂k−1 ≤ t ≤ T̂k−1 + θkTk, k ∈ Z+,

(14)

which implies that

V (t) ≤ V (T̂k−1)exp
{− p1(t − T̂k−1)

}
,

T̂k−1 ≤ t ≤ T̂k−1 + θkTk, k ∈ Z+. (15)

Similarly, when T̂k−1 + θkTk < t < T̂k , k ∈ Z+,
using condition (ii), we can obtain that

V̇ (t) =
N∑

i=1

e�
i (t)

[
f̃ (t, xi , s) + c

N∑

j=1

gi j �e j (t)
]

+ p2	(t)

≤ e�(t)
((

L0 IN + cGs)⊗ �
)
e(t) + p2	(t)

≤ e�(t)
((

(L0 − a2)IN + cGs)⊗ �
)
e(t)

+ a2

N∑

i=1

e�
i (t)�ei (t) + p2	(t)

≤ a2λmax(�)

N∑

i=1

e�
i (t)ei (t)+ p2	(t)= p2V (t).

(16)

Denote T θk
k−1 = T̂k−1 + θkTk , k ∈ Z+, and then it

follows from (16) that

V (t) ≤ V+(T θk
k−1) exp

{
p2
(
t −

(
T̂k−1 + θkTk

))}
,

T̂k−1 + θkTk < t < T̂k, k ∈ Z+. (17)

By (11), (12), (15), and (17), we can derive that

V−
(
T̂k

)
≤ exp

{
p2 (1 − θk)Tk

}
V+

(
T θk
k−1

)

= exp
{
p2
(
1 − θk)Tk

}
V
(
T θk
k−1

)

≤ exp
{
p2
(
1 − θk)Tk

}
exp

{− p1θkTk
}
V
(
T̂k−1

)

= exp
{

(−p1θk + p2 (1 − θk))Tk

}
V
(
T̂k−1

)

= exp
{

kTk

}
V
(
T̂k−1

)
, (18)

and

V
(
T̂k
) = W

(
T̂k
)+ 	

(
T̂k
)

= W−
(
T̂k
)+ exp

{− 
kTk
}
	−

(
T̂k
)

= exp
{− 
kTk

}
V−
(
T̂k
)

+
(
1 − exp

{− 
kTk
})

W
(
T̂k
)
. (19)

Combining with (18) and (19), we have

V
(
T̂k

)
−V

(
T̂k−1

)
≤
(
1 − exp

{−
kTk
})

W
(
T̂k

)
.

(20)

Denote η = (p1+ p2)θinf − p2. Recalling that p1 > 0,
p2 ≥ 0, infk∈Z+ θk = θinf > 0 and infk∈Z+{tk+1 −
tk} = Tinf > 0, from condition (iii), one can obtain
that−
k = (p1+ p2)θk − p2 ≥ (p1+ p2)θinf − p2 =
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η > 0, and so −
kTk ≥ ηTk ≥ ηTinf > 0. This
implies that

V
(
T̂k

)
− V

(
T̂k−1

)
≤ (

1 − exp{ηTinf}
)
W
(
T̂k

)
,(21)

and then

V
(
T̂k
)− V

(
T̂0
) ≤ (

1 − exp{ηTinf}
) k∑

j=1

W
(
T̂ j
)
.

(22)

It shows that
+∞∑

j=1

W
(
T̂ j
) ≤ V

(
T̂0
)

exp{ηTinf} − 1
. (23)

Therefore, the series of nonnegative terms
∑+∞

j=1 W
(
T̂ j
)

converges [39], then

lim
j→+∞ W

(
T̂ j
) = 0. (24)

Additionally, for T̂k−1 ≤ t < T̂k , k ∈ Z+, according
to the nonnegativity of di (t), the following estimation
of W (t) can be deduced

Ẇ (t) ≤
N∑

i=1

e�
i (t)

⎡

⎣ f̃ (t, xi , s) + c
N∑

j=1

gi j �e j (t)

⎤

⎦

= e�(t)
((

(L0 − a2)IN + cGs)⊗ �
)
e(t)

+ a2

N∑

i=1

e�
i (t)�ei (t)

≤ a2λmax(�)

N∑

i=1

e�
i (t)ei (t) = p2W (t). (25)

Hence, one can obtain that

W (t) ≤ W
(
T̂k−1

)
exp

{
p2
(
t − T̂k−1

)}

≤ W
(
T̂k−1

)
exp

{
p2Tk

} ≤ W
(
T̂k−1

)

exp
{
p2Tsup

}
,

T̂k−1 ≤ t < T̂k, k ∈ Z+. (26)

Since k → +∞ when t → +∞, by (24) and (26), we
can get

lim
t→+∞ W (t) = 0, (27)

whichmeans that limt→+∞ ||ei (t)|| = 0, i ∈ T, that is,
globally asymptotical synchronization of the controlled
dynamical network (5) is achieved. This completes the
proof of Theorem 1. �

Remark 2 As δk → Tk or θk → 1, k ∈ Z+, the
adaptive intermittent pinning control is reduced to the
continuous-time adaptive pinning control which has
been investigated in [8,9]. Under such circumstance,
conditions (i) and (ii) guarantee global synchroniza-
tion of the controlled dynamical network (5) due to the
fact that condition (iii) holds automatically.

Remark 3 It is clear from (7) and (8) that the adaptive
intermittent feedback control gains di (t) for 1 ≤ i ≤ l
are increasing in each work time but identically equal
to zero in each rest time. When the synchronization is
realized, the values of di (t) (1 ≤ i ≤ l) will approach
to somepositive constants in eachwork time. This point
will be illustrated by numerical simulations in the next
section.

Letting �0 = L0 + cλmax
(
Gs
)
and selecting a2 =

max{0, �0}, then condition (ii) in Theorem 1 holds.
Thus, we can reduce Theorem 1 to the following Corol-
lary.

Corollary 1 Suppose that inf
k∈Z+ θk = θinf > 0. Under

Assumption 1, the controlled dynamical network (5)
with the adaptive aperidical intermittent controllers
(6)–(8) is globally asymptotically synchronized if there
exists a positive constant a1 > 0 such that

(i) λmax
(
(Gs)l

)
< − L0 + a1

c
,

(ii)
p2

p1 + p2
< θinf < 1,

where p1 = 2a1λmin(�) and p2 = 2a2λmax(�) with
a2 = max{0, �0}.

When each control period and each control width is
fixed, i.e., Tk ≡ T and δk ≡ δ for all k ∈ Z+, where
T and δ are both positive constants, the control type is
adaptive periodically intermittent one [21]. Denote θ =
δ/T, by Corollary 1, and we can derive the following
result.

Corollary 2 Under Assumption 1, the controlled
dynamical network (5) with the adaptive periodical
intermittent controllers (6)–(8) is globally asymptot-
ically synchronized if there exists a positive constant
a1 > 0 such that

(i) λmax
(
(Gs)l

)
< − L0 + a1

c
,

(ii)
p2

p1 + p2
< θ < 1,

123



294 P. Zhou, S. Cai

where p1 = 2a1λmin(�) and p2 = 2a2λmax(�) with
a2 = max{0, �0}.
Remark 4 In [21], the pinning synchronization of
directed dynamical networks via adaptive intermittent
controlwas studied.However, the designed intermittent
controllers in [21] are periodical, which require that all
the control periods and control widths should be fixed
(i.e, tk+1−tk ≡ Tand δk ≡ δ, for all k ∈ Z+). In reality,
this requirement is unreasonable obviously. Moreover,
in [21], the graph corresponding to the directed dynam-
ical network is assumed to be strongly connected and
balanced (that is, the coupling matrix of the directed
dynamical network is irreducible, and the in-degree and
the out-degree of each node in the network are equiv-
alent), which is a very strict condition. In this paper,
the adaptive intermittent control can be aperiodic with
non-fixed both control period and control width, the
coupling matrix is not restricted to be irreducible, and
the in-degree and the out-degree of each node are not
necessarily equivalent. Hence, our theoretical results
extend the results in [21].

Remark 5 In [28–30], an adaptive scheme for aperi-
odically intermittent pinning control was proposed to
realize the synchronization of complex dynamical net-
works. However, the adaptive rule in [28–30] is cen-
tralized, which needs the state information of all net-
work nodes (i.e., global information of the whole net-
work). For large-scale dynamical networks, it is clear
that this adaptive rule is hard and costly to implement.
In this paper, a new adaptive scheme for aperiodically
intermittent pinning control is introduced. It can be
observed from (6)–(8) that the designed adaptive inter-
mittent controller depends on the state information of
the controlled node itself other than all network nodes.
In other words, our adaptive scheme for aperiodically
intermittent pinning control is decentralized. Hence,
the theoretical results established here is more practi-
cally applicable than those in [28–30].

Remark 6 In [28–31], in order to derive the results, an
assumption that the time span of each control width
should be not less than a certain positive constant δinf
and the time span of each control period should be
not larger than another certain positive constant Tsup

(namely, there exist two positive constants δinf and Tsup

such that infk∈Z+ δk = δinf and supk∈Z+{tk+1 − tk} =
supk∈Z+ Tk = Tsup) has been introduced. If themethod
presented in [28–31] is applied to deal with the prob-

lem addressed in this paper, then condition (iii) of The-
orem 1 becomes

(p1 + p2)
δinf

Tsup
− p2 > 0. (28)

Notice that for all k ∈ Z+, δk ≥ δinf , Tk ≤ Tsup, and
therefore

θinf = inf
k∈Z+

{ δk

Tk

}
≥ δinf

Tsup
.

This means that condition (iii) of Theorem 1 derived by
using θinf is easier to be satisfied and less conservative
than inequality (28) obtained by using δinf/Tsup. There-
fore, the theoretical results derived in this paper are
less conservative than the corresponding results given
in [28–31]. For clarity, an example is given to verify the
statement. Consider a special time sequence {tk}+∞

k=1 ={
ε0, 2ε0, . . . , (N0 − 1)ε0, N0Ta, N0Ta + ε0, N0Ta +
2ε0, . . . , N0Ta + (N0 − 1)ε0, 2N0Ta, . . .

}
, which can

also be rewritten in the following form [40,41]:

tk+1 − tk =
{

ε0, if mod(k + 1, N0) 
= 0,
N0(Ta − ε0) + ε0, if mod(k + 1, N0) = 0,

(29)

where k ∈ Z+, ε0 and Ta are positive constants sat-
isfying ε0 < Ta , and N0 is a positive integer. From
the structure of the time sequence, one can obtain that
infk∈Z+{tk+1 − tk} = ε0 and supk∈Z+{tk+1 − tk} =
N0(Ta − ε0) + ε0 [40]. Let the kth control period
Tk = tk+1 − tk satisfying Eq. (29) and the kth con-
trol width δk = θTk , where k ∈ Z+ and 0 < θ < 1 is
a positive constant. Then, we get

δinf = θε0, Tsup = N0(Ta − ε0) + ε0, and θinf = θ.

Since 0 < ε0 < Ta , it is easy to see that

θinf = θ > θ
ε0

N0(Ta − ε0) + ε0
= δinf

Tsup
,

and hence the above statement holds. Especially, when
ε0 is sufficiently small and N0 is sufficiently large, the
quantity δinf/Tsup will be very small. In such case, the
results in [28–31] would not be applicable.

Remark 7 From Theorem 1 and Corollary 1, it can be
observed that the synchronization criteria are depen-
dent on the quantity θinf , but not the control widths δk
(k ∈ Z+) or the control periods Tk (k ∈ Z+). This
implies that, for achieving the global synchronization,
each control period Tk can be arbitrarily chosen. In
particular, for practical problems, the control periods
Tk , k ∈ Z+ can be selected according to the actual
requirement.
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Remark 8 Corollary 1 provides a simple pinning cri-
terion to guarantee the globally asymptotical synchro-
nization. Evidently, to ensure pinning condition (i) in
Corollary 1 is satisfied, at least one has to choose l
pinned candidates such that λmax

(
(Gs)l

)
< 0. For

a directed dynamical network, however, what kinds
of nodes should be chosen as pinned candidates is
still an open problem. In [8], the authors showed that
the nodes whose out-degrees are bigger than their in-
degrees should be selected as pinned candidates, which
can result in λmax

(
(Gs)l

) ≤ 0. Based on this idea, for
the controlled dynamical network (5), we first apply
adaptive intermittent control to the nodes with zero in-
degrees since their states are not influenced by others.
Then, we continue to pick other nodes in descending
order according to their degree differences as defined
above until condition (i) in Corollary 1 holds. In addi-
tion, fromcondition (i) ofCorollary 1, it can be deduced
that the least number of pinned nodes l0 should satisfy

λmax
(
(Gs)l0−1

) ≥ − L0 + a1
c

and λmax
(
(Gs)l0

)

< − L0 + a1
c

.

Remark 9 To shed light on how to design appropriate
adaptive aperiodical intermittent controllers in practi-
cal application for realizing network synchronization,
the following procedures are provided:

(1) Given a1, then pick l pinned nodes by means of
Remark 8 such that condition (i) of Corollary 1 is
satisfied.

(2) For the given a1, calculate the value of p2/(p1
+ p2), and then optionally choose the control rates
θk , k ∈ Z+, only if condition (ii) of Corollary 1
holds.

(3) Select the control periods Tk , k ∈ Z+ according
to the actual requirement.

(4) In the light of the above chosen pinned nodes, θk
and Tk , k ∈ Z+, design the adaptive aperiodical
intermittent controllers described in (6)–(8).

Remark 10 It should be pointed out that the network
model (1) presented in this paper does not include time
delays. Indeed, time delays are often encountered in
dynamical networks because of the finite information
transmission and processing speeds among the units
[15,19,20,30–32]. Hence, time delays should be taken
into account in realistic modeling of dynamical net-
works. The main reason why the time delays are not

considered here is that we do not find a rigorous proof
for the aperiodically intermittent pinning control with
the above adaptive rule (8) to realize global synchro-
nization of delayed dynamical networks. It is an inter-
esting topic to be investigated in future.

Numerical simulations

In this section, a numerical example is given to show the
effectiveness of the obtained synchronization criteria.
The Chua’s circuit is used as uncoupled node in net-
work (1). The dynamics ofChua’s circuit is given by [8]

ẋ(t) = f (t, x(t)) = Ax(t) + h(x(t)), (30)

where x(t) = (x1(t), x2(t), x3(t))� ∈ R3, A =⎛

⎝
−α α 0
1 −1 1
0 −β 0

⎞

⎠, h(x(t)) = (−αψ(x1(t)), 0, 0
)� ∈ R3,

ψ(x1(t)) = ν1x1(t)+ 1
2 (ν2−ν1)

(|x1(t)+1|−|x1(t)−
1|), and α = 10, β = 17.8, ν1 = −3/4, ν2 = −4/3.
The numerical simulation of system (30) is represented
in Fig. 2, which indicates that system (30) displays
chaotic behavior.

Consider a scale-free network (1) consisting of 200
identical Chua’s circuit, which is described by

ẋi (t) = Axi (t) + h(xi (t))

+ c
200∑

j=1

gi j �x j (t), 1 ≤ i ≤ 200, (31)

where � = diag(1, 1, 1), G = (gi j )200×200 is a dif-
fusive coupling matrix with gi j = 0 or 1( j 
= i), and
the coupling strength c = 20. Here we assume that the
network structure of (31) obeys the scale-free distribu-
tion of the Barabási–Albert (BA) network model [42].

−5
−3

−1
1

3
5

−8
−4

0
4

8
−1

−0.5

0

0.5

1

X1
X3

X
2

Fig. 2 Chaotic behavior of system (30) with initial conditions
x1(0) = 0.2, x2(0) = 0.6, x3(0) = 0.8
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The parameters of the BA network model are given by
m0 = m = 5, N = 200. In this simulation, we obtain
that λmax(Gs) = 0. In addition, it is easy to get that [8]
[
x(t) − s(t)

]�[
f (t, x(t)) − f (t, s(t))

]

= [
x(t) − s(t)

]�
A
[
x(t) − s(t)

]

+[x(t) − s(t)
]�[

h(x(t)) − h(s(t))
]

= 1

2

[
x(t) − s(t)

]�
(A + A�)

[
x(t) − s(t)

]

+|αν2|
(
x1(t) − s1(t)

)2

≤ λmax( Ã)
[
x(t) − s(t)

]�[
x(t) − s(t)

]

where Ã = (A + A�)/2 + diag(|αν2|, 0, 0).
Note that� = diag(1, 1, 1), henceAssumption 1 can

be satisfied by selecting L0 = λmax( Ã) = 10.253. And
then we get that �0 = L0 + cλmax

(
Gs
) = 10.253. If

a1 = 26 is selected, then we can obtain that p1 = 52
and p2 = 20.506. It follows from conditions (i) and
(ii) of Corollary 1 that

λmax
(
(Gs)l

)
< −1.8127 and 0.2828 < θinf < 1.

(32)

Using the pinned-node selection scheme for the con-
trolled dynamical network (5) in Remark 8, we rear-
range nodes of network (31). Pick l from 1 to 100,
and plot λmax

(
(Gs)l

)
in Fig. 3, which reveals that

λmax
(
(Gs)l

)
decreases with the increase of the num-

ber of pinned nodes (l). In particular, when l = 14
and l = 15, we have λmax

(
(Gs)14

) = −1.7792 and
λmax

(
(Gs)15

) = −1.8160. Therefore, we can only
choose the first l = 15 rearranged nodes of network
(31) as pinned nodes for realizing network synchro-
nization.

In numerical simulations, for brevity, we select the
control periods Tk = tk+1 − tk , k ∈ Z+ satisfy Eq.
(29) with Ta = 0.5, ε0 = 0.2, and N0 = 3, the con-
trol rates θk ≡ θ = 0.3, k ∈ Z+, and l = 15, then
condition (32) is satisfied. Figures 4 and 5 indicate,
respectively, the time responses of the synchronization
errors ei (t) (1 ≤ i ≤ 200) and the adaptive inter-
mittent feedback control gains di (t) (1 ≤ i ≤ 15),
where the initial conditions of the numerical simula-
tions are xi (0) = (−2+ 0.3i,−4+ 0.3i,−6+ 0.3i)�,
s(0) = (1, 2, 3)�, 1 ≤ i ≤ 200, and d1(0) = · · · =
d15(0) = 0.01, h1 = · · · = h15 = 0.02. It can
be observed that the asymptotical synchronization is
realized, and the adaptive intermittent control gains
di (t) (1 ≤ i ≤ 15) intermittently converge to some
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Fig. 3 λmax
(
(Gs)l

)
versus the number of pinned nodes (l)
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Fig. 4 Time evolutions of the synchronization errors ei1(t),
ei2(t), ei3(t) (1 ≤ i ≤ 200) of network (31) under the adap-
tive aperiodically intermittent pinning control

positive constants. This implies that the synchroniza-
tion of network (31) with 200 nodes can be achieved
by only pinning 15 rearranged network nodes with the
control rate θ = 0.3. Figure 6 shows the dynamics of

the quantity E(t) =
√(∑200

i=1 ||xi (t) − s(t)||2)/200,
which further verifies the achievement of the asymptot-
ical synchronization of network (31) under the adaptive
aperiodically intermittent pinning control.

For the above selected control periods and con-
trol rates, according to Remark 6, one can get that
δinf = infk∈Z+ δk = 0.06 and Tsup = supk∈Z+ = 1.1.
If the method presented in [28–31] is utilized to derive
the synchronization criterion, then the synchronization
of network (31) can be realized via the adaptive aperi-
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 1
5)

Fig. 5 Time evolutions of the adaptive intermittent feedback
control gains di (t) (1 ≤ i ≤ 15) of network (31) under the
adaptive aperiodically intermittent pinning control

odically intermittent pinning control when the follow-
ing condition

η̃
�= (p1 + p2)

δinf

Tsup
− p2 > 0, (33)

holds. For this example, by simple computation, we
get η̃ = −16.5511, and so inequality (33) is not sat-
isfied. Hence, synchronization criterion (33) derived
by using δinf/Tsup fails to judge whether network (31)
can be synchronized under the adaptive aperiodically
intermittent pinning control. This shows that results of
this paper are less conservative than the corresponding
results given in [28–31], which are obtained by using
δinf/Tsup.

It is noteworthy that when the control rates θk ≡
θ = 1.0, k ∈ Z+, the adaptive aperiodically intermit-
tent pinning control degenerates to the continuous-time
adaptive pinning control. For comparison, the dynam-
ics of the quantity E(t) with the control rates θk ≡ θ =
1.0, k ∈ Z+ (the other parameters are the same as those
in the above simulations) is also plotted in Fig. 6. The
simulation results indicate that the adaptive aperiodi-
cally intermittent pinning control is more cost-effective
than the continuous-time adaptive pinning control since
the latter activates the control all the times.

Conclusion

In this paper, we have developed a decentralized adap-
tive aperiodically intermittent pinning control scheme

0 5 10 15 20 25

0

20

40

60

80

100

120

t

E
(t)

θ=0.3
θ=1.0

Fig. 6 Dynamics of the E(t) of network (31) under the adaptive
aperiodically intermittent pinning control with the control rates
θk ≡ θ = 0.3, k ∈ Z+ (blue) and θk ≡ θ = 1.0, k ∈ Z+ (red).
(Color figure online)

for global synchronization of complex directed dynam-
ical networks. Some effective global synchronization
criteria have been established by constructing a piece-
wise Lyapunov function and using theory of series with
nonnegative terms. It is noted that our adaptive strat-
egy relies only on the state information of the con-
trolled node rather than all networks nodes. Moreover,
the derived synchronization criteria have been shown to
be less conservative than the corresponding results pre-
sented in the existing works. Finally, some numerical
simulations have been presented to verify the feasibility
of the obtained theoretical results. Further research top-
ics include the extension of the decentralized adaptive
aperiodically intermittent pinning control to study the
problems of synchronization and consensus for more
general complex dynamical networks with time delays
or uncertain perturbations.
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