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Abstract Generalized complex Ginzburg–Landau
equation (GCGLE) can be used to describe the non-
linear dynamic characteristics of fiber lasers and has
rivetedmuch attention of researchers in ultrafast optics.
In this paper, analytic solutions of the GCGLE are
obtained via the modified Hirota bilinear method. Kink
waves and period waves are presented by selecting the
relevant parameters. The influenceof the relatedparam-
eters on them is analyzed and studied. The results indi-
cate that the desired pulses can be demonstrated by
effectively controlling the dispersion and nonlinearity
of fiber lasers.
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1 Introduction

Nonlinear partial differential equations have been
widely studied all the time [1–11]. Among them,
the generalized complex Ginzburg–Landau equation
(GCGLE) is a class of general-purpose models with
wide applications, which have attracted much atten-
tion in both physics and applied mathematics [12–
20]. Researchers have got some achievements in dif-
ferent ways for the GCGLEs [21–28]. With the homo-
topy analysis method, the approximate solution of the
GCGLE has been obtained [29]. Besides, the periodic
attractors of the GCGLE have been identified [30].
Using the modified Hirota method, the soliton ampli-
fication of the GCGLE has been discussed [31]. The
dissipative solitons of the GCGLE have also been stud-
ied [32]. In addition, the GCGLE with a linear dissipa-
tive term has been investigated [33]. In this paper, we
study the following GCGLE,

iut + Puxx + Γ u + Q|u|2u + Q3|u|4u
+ Q1u

2u∗
x + Q2|u|2ux = 0. (1)

Here, u(x, t) is a complex function of time t and
spatial variable x and ∗ is the complex conjugate. The
coefficients are P = p1(t) + i p2(t), Γ = γ1(t) +
iγ2(t), Q = q1(t)+iq2(t), Q3 = c1(t)+ic2(t), Q1 =
d1(t)+ id2(t), and Q2 = s1(t)+ is2(t). What is more,
pl , γl , ql , cl , dl , and sl are complex-valued functions of
t (l = 1, 2).

Kengne et al. [34] have studied Eq. (1) and presented
a set of soliton solutions for this equation using the
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standard semidiscrete approximationmethod. Analytic
solutions for Eq. (1) have been derived with the help
of the double-mapping method combining the similar-
ity method and F-expansion method [35]. In addition,
other researchers have made explorations of relevant
equations [36,37]. Here, analytic solutions for Eq. (1)
are obtained by using the modified Hirota bilinear
method. Those solutions include periodic wave solu-
tions and kink wave solutions.

This paper expands as follows: In Sect. 2, analytic
solution is derived with the modified Hirota method.
Then in Sect. 3, kink wave solutions, period solutions,
and their interactions are presented, and the character-
istics of those waves have been analyzed. Finally in
Sect. 4, we make the summary of our discussions.

2 Analytic solutions for Eq. (1)

According to themodifiedHirotamethod,we introduce
the dependent variable transformations.

u(x, t) = g(x, t)

f (x, t)n
,

u(x, t)∗ = g(x, t)∗

f (x, t)n∗

(
n = 1

2
+ iα

)
.

ut = Dn,t g · f

f n+1 ,

ux = Dn,x g · f

f n+1 , u∗
x = D∗

n,x g
∗ · f

f n∗+1 , (2)

and

uxx = D2
n,x g · f

f n+1 − n(n + 1)g · D2
x f · f

2 f n+2 .

Here D∗
n,x g

∗ · f is the complex conjugate operator
of Dn,x g · f , and they are defined by,

Dn,x g · f =
( ∂

∂x
− n

∂

∂x ′
)
g(x, t) f (x ′, t ′)

∣∣∣∣
x ′=x,t ′=t

;

D∗
n,x g

∗ · f =
( ∂

∂x
− n∗ ∂

∂x ′
)
g∗(x, t) f (x ′, t ′)

∣∣∣∣
x ′=x,t ′=t

;

D2
x f · f =

( ∂

∂x
− ∂

∂x ′
)
f (x, t) f (x ′, t ′)

∣∣∣∣
x ′=x,t ′=t

;

D2
n,x g · f =

( ∂

∂x
− n

∂

∂x ′
)2

g(x, t) f (x ′, t ′)
∣∣∣∣
x ′=x,t ′=t

.

Then Eq. (1) can be derived as,

Q
|g|2g
f n+n∗+n

+ Q3
|g|4g

f 2n+2n∗+n
+ Q1

g2D∗
n,x g

∗ · f

f 2n+n∗+1

+ Q2
|g|2 · Dn,x g · f

f n+n∗+n+1

+ i ·
(
Dn,t g · f

f n+1

)
+ A = 0, (3)

where

A = P

[
D2
n,x g · f

f n+1 − n(n + 1)g · D2
x f · f

2 f n+2

]

+Γ
g

f n
.

Both sides of Eq. (3) are multiplied by f n . In addi-
tion, n + n∗ = 1, and Eq. (3) can be abbreviated as,[
A + i ·

(Dn,t g · f

f n+1

)]
· f n + g · B

f 2
= 0, (4)

where

B = Q|g|2 f + Q3|g|4 + Q1gD
∗
n,x g

∗ · f

+Q2g
∗Dn,x g · f.

Connecting the coefficients 1
f and

1
f 2
, the following

formulas can be obtained,

1

f

[
i · Dn,t g · f + PD2

n,x g · f + Γ g · f

]

+ 1

f 2

[
− 1

8
P(1 + 2iα)(3 + 2iα)D2

x f · f + B

]
g = 0.

Then, the bilinear representation of Eq. (1) can be
derived as,

i Dn,t g · f + PD2
n,x g · f + Γ g · f = 0, (5)

1

8
P(1 + 2iα)(3 + 2iα)D2

x f · f = B. (6)

With the Hirota method, Eq. (2) can be solved by
the following power series expansions for g(x, t) and
f (x, t) as:

g(x, t) = εg1(x, t) + ε3g3(x, t)

+ ε5g5(x, t) + · · · , (7a)

f (x, t) = 1 + ε2 f2(x, t) + ε4 f4(x, t)

+ ε6 f6(x, t) + · · · , (7b)

where ε is a formal expression parameter, gm(x, t)
(m = 1, 3, 5, . . .) are complex functions, and the
f j (x, t)( j = 2, 4, 6, . . .) are the real ones. To obtain
the analytic solution of Eq. (1), we set g(x, t) =
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εg1(x, t), and f (x, t) = 1 + ε2 f2(x, t). The analytic
solution of Eq. (1) can be written as,

u(x, t) = eQ(x,t)ε

[
1 + eQ(x,t)+Q∗(x,t)ε2σ(t)

]− 1
2−iα

,

(8)

where

g1(x, t) = eQ(x,t), f2(x, t) = σ(t)eQ(x,t)+Q∗(x,t),

Q(x, t) = (a1 + ia2)x + [b1(t) + ib2(t)]t + (k1 + ik2),

σ (t) = −a1[s1(t) + d1(t)] + a2[s2(t) − d2(t)] − q1(t)

a21 [−3p1(t) + 4α2 p1(t) + 8αp2(t)]
,

b1(t) =
∫ [−2a1a2 p1(t) − a21 p2(t) + a22 p2(t) − γ2(t)]dt

t
,

b2(t) =
∫ [a21 p1(t) − a22 p1(t) − 2a1a2 p2(t) + γ1(t)]dt

t
,

q2(t) = −a1[d2(t) + s2(t)] + a2[d1(t) − s1(t)]
+ a21σ(t)[8αp1(t) + 3p2(t) − 4α2 p2(t)],

p1(t) = 2(a2 − a1α)p2(t)

a1
,

γ2(t) = 2(a2 − 2a1α)2σ(t)p2(t) + σ ′(t)
2σ(t)

,

c1(t) = σ(t)[s2(t) − d2(t)](a2 − 2a1α) − σ(t)q1(t),

c2(t) = σ(t)[d1(t) − s1(t)](a2 − 2a1α) − σ(t)q2(t).

Here, a1, a2, b1, b2, k1, and k2 are real-valued func-
tions.

3 Discusses on analytic solution (8)

In the following discussion, we analyze the influences
of the related parameters on solution (8).
Figure 1 shows the propagation of kink waves with
different amplitudes and phases. We find that the phase
is affected by α, and the amplitude is affected by α

Fig. 1 Propagation of kink
waves. The parameters for
analytic solution (8) are
ε = 1, a1 = 1, a2 = 2,
k1 = 2, k2 = 3, s2(x) =
1, γ1(t) = 0.001, γ2(x) =
0.002, s1(t) = 0.5, d1(t) =
0.2, d2(t) = 0.003 with a
α = 0.031, q1(t) = −0.78,
and p2(t) = 0.023;
b α = 0.38, q1(t) = 0.47,
and p2(t) = −0.31

Fig. 2 Interactions between kink waves and period waves.
The parameters for analytic solution (8) are ε = 1, k1 =
2, k2 = 3, s2(x) = 1, γ1(t) = 0.001, γ2(x) = 0.002, s1(t) =
0.5, d1(t) = 0.2, d2(t) = sin(mt) with a m = 1.7, a1 =

0.88, a2 = −1.3, α = −1.5, p2(t) = −2.8, and q1(t) = 0.71;
b m = −1.4, a1 = 1, a2 = −1.3, α = −0.94, p2(t) = 2.8, and
q1(t) = 0.69
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Fig. 3 Interactions between kink waves and period waves.
The parameters for analytic solution (8) are ε = 1, k1 =
2, k2 = 3, s2(x) = 1, γ1(t) = 0.001, γ2(x) = 0.002, s1(t) =
sin(mt), d1(t) = 0.2, d2(t) = 0.003 with a m = −1.7, a1 =

0.094, a2 = −1.3, α = 0.97, p2(t) = −0.47, and q1(t) = 0.97;
b m = −1.2, a1 = −0.19, a2 = −1.8, α = 0.63, p2(t) = 2,
and q1(t) = 0.88

Fig. 4 Interactions between
kink waves and period
waves. The parameters of
the former two are ε =
1, k1 = 2, k2 = 3, s2(x) =
3, γ1(t) = 0.001, γ2(x) =
0.0002, s1(t) = 2, d1(t) =
1, d2(t) = 2, p2(t) =
sin(ct) with a c =
−0.7, a1 = −0.031, a2 =
−1.7, α = 0.1, and
q1(t) = 0.91; b c =
−0.16, a1 = −0.69, a2 =
0.063, α = 1.7, and
q1(t) = 0.83. And the
parameters of the latter two
are ε = 1, k1 = 2, k2 =
3, s2(x) = 3, γ1(t) =
0.001, γ2(x) =
0.0002, s1(t) = 2, d1(t) =
1, d2(t) = 2, p2(t) =
sin(ct), q1(t) = cos(nt)
with c c = 0.16, n =
−0.094, a1 = 1.2, a2 =
−1.4, and α = 2; d
c = −0.16, n = 0.59, a1 =
−0.063, a2 = 1.1, and
α = −1.9

and q1(t). As |α| and q1(t) decrease, the amplitude
decreases. Moreover, the kink wave’s amplitudes are
almost equal when the values of α are ±0.023. And
the propagation velocities of kink waves increase with
decreasing the value of α.

Figure 2 shows the interactions between periodic
waves and kink waves. Such a surprising feature of the

interactions between periodic waves and kink waves is
obtained firstly. And Fig. 2a is different with Fig. 2b
in the amplitude, phase, and period. As α and q1(t)
increase, the amplitudes of them increase. If we set
d2(t) = A sinmt , the amplitude will also increase
when the value of A increases. The phase and velocity
of waves are associated with the values of α and p2(t).
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Fig. 5 Interactions between
kink waves and period
waves. The parameters for
analytic solution (8) are ε =
1, k1 = 2, k2 = 3, s2(x) =
3, γ1(t) = 0.001, γ2(x) =
0.0002, s1(t) = 2, d1(t) =
1, d2(t) = 2, p2(t) =
sin(ct), q1(t) = cos(nt)
with a c = 0.63, n =
−1.3, a1 = 1.9, a2 = −1.4,
and α = −0.31; b
c = 1.1, n = −0.19, a1 =
0.16, a2 = −1.3, and
α = −1.9; c
c = 1.3, n = 0.56, a1 =
0.41, a2 = −1.6, and
α = −1.4; d c = 2.5, n =
0.44, a1 = 0.75, a2 = 0.13,
and α = −0.56

The velocity increases when the value of α decreases
or the value of p2(t) increases. Additionally, the period
of waves will increase if the value of m increases as
d2(t) = sinmt .

Figure 3 shows the parallel transmission of periodic
waves and kink waves. And here we set s1(t) = sinmt .
The amplitude decreases when the values of q1(t)
and a2 increase, or the value of a1 decreases. The
phase is related to the value of a2. In addition, the
forward-direction (or backward-direction) wave shows
the same feature, although the incident angles are
different.

Figure 4a–c is generated by the interactions of kink
waves, while Fig. 4d is the interaction of two period
waves. The number of the interaction kink waves
increases when the value of |c| increases because of
the formula p2(t) = sin ct we set. And the amplitude
decreases when the value of a1 or α decreases. Fig-
ure 4c, d is obtained if we set q1(t) = cos nt and take
n, c, a1, a2, α and q1(t) with different constants in the
same time. The generation of Fig. 4c is the result of
the synergy of two kink waves, while the generation
of Fig. 4d is the result of the synergy of two periodic
waves as c, a1, a2, α, and n take different positive or
negative values. Figure 4c shows the amplitude is also

related to the value of n. Figure 4d shows the smaller
the value of n is, the longer the period is.

Figure 5 shows the synergy of different number of
periodic waves while n, c, a1, a2, and α take different
constants. The amplitude sharply decreases when the
values of a1 and a2 decrease, or the value ofα increases.
The periodic solution is symmetric about t = 0 because
we set q1(t) = cos nt . And the period become shorter
when the value of c increases because p2(t) = sin ct .

4 Conclusion

In this paper, the GCGLE (1) has been investi-
gated. With the modified Hirota bilinear method, ana-
lytic solution (8) has been obtained. The interactions
between periodic waves and kink waves have been
observed firstly. Influences on the interactions between
them have been discussed by selecting the relevant
parameters. The related conclusion is beneficial to the
generation of pulses in fiber lasers.
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