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Abstract The railway bogie, the most important
running component, has direct association with the
dynamic performance of thewhole vehicle system. The
bifurcation type of the bogie that is affected by vehicle
parameters will decide the behavior of the vehicle hunt-
ing stability. This paper mainly analyzes the effect of
the yaw damper and wheel tread shape on the stability
and bifurcation type of the railway bogie. The center
manifold theorem is adopted to reduce the dimension of
the bogie dynamical model, and the symbolic expres-
sion for determining the bifurcation type at the critical
speed is obtained by the method of normal form. As a
result, the influence of yaw damper on the bifurcation
type of the bogie is given qualitatively in contrast to
typical wheel profiles with high and low wheel tread
effective conicities. Besides, the discriminant of bifur-
cation type for the wheel tread parameter variation is
given which depicts the variation tendency of dynam-
ics characteristics. Finally, numerical analysis is given
to exhibit corresponding bifurcation diagrams.
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1 Introduction

The hunting stability of the railway bogie determines
the maximum operating speed of the vehicle. The loss
of stability will worsen the vehicle ride performance,
aggravate the wheel and rail interaction or even lead to
the risk of derailment. Therefore, keeping the bogie
hunting motion stable all the time is our pursuing
goal. Relative to the railway bogie, the research on
the nonlinear dynamics mechanism for one wheelset
is more abundant and thorough in recent years. Ahma-
dian and Yang [1] analyzed the Hopf bifurcation based
on asymptotic approximation for a wheelset in the con-
sideration of the nonlinearity from yaw damper which
was assumed to act on the primary suspension system
equivalently. Von Wagner [2] calculated the domains
of attraction for a wheelset at different speeds using
the duffing oscillator. Sedighi [3] analyzed the Hopf
bifurcation behavior of the improved wheelset model
considering the presence of dead zone and obtained
the amplitude of the limit cycle using Bogoliubov–
Mitropolsky averaging method. True [4] studied the
bifurcation phenomenon of a single wheelset consider-
ing the dry friction betweenwheel and rail and revealed
that the chaotic motion is an inherent behavior in the
system, not caused by external disturbances. Mean-
while, central manifold method has gradually attracted
attention in the analysis of vehicle bifurcation charac-
teristics. Yabuno [5] discussed the variation of the non-
linear characteristics experimentally and investigated
the parameter variation in linear spring suspensions in
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the lateral direction by center manifold theory. Further-
more, Zhang [6] carried out bifurcation analysis of a
railwaywheelset by centermanifold theory and verified
the influence of linear suspension parameters and lin-
ear creep coefficients on the bifurcation characteristics
of the model. Moreover, numerical simulation meth-
ods were also adopted in Ref. [7–9] to investigate the
nonlinear hunting behavior of a wheelset or a railway
vehicle system and the dynamic effect of suspension
parameters or wheel/rail contact relation was analyzed.

Nevertheless, the railway bogie, as an indispensable
running component, is closely bound upwith thewhole
vehicle dynamics. As is shown in Fig. 1, the stability
test of a high-speed vehicle on roller test rig shows
that subcritical bifurcation appears owing to a test case
with the air spring deflation. The result shows that
the parameter variation of the secondary suspension
connecting the railway bogie and the car body could
completely lead to different nonlinear dynamic charac-
teristics for the vehicle. Cooperrider [10] first formu-
lated the bogie system on an ideal straight and perfect
track where the effects of flange contact, wheel slip and
coulomb frictionwith nonlinear expressionswere taken
into account, but the nonlinear factors arising from the
secondary suspension parameters were not considered.
Ding [11] established a nonlinear bogie model of a rail-
way freight carwith three degrees of freedomwhere dry

friction and wheel–rail impact were embodied, but the
secondary suspensionwas neglected. The two invariant
circles from Hopf bifurcation are found. Gao et al. [12]
constructed the resultant bifurcation diagrammethod to
study the symmetric/asymmetric bifurcation behaviors
and chaotic motions of a railway bogie running on an
ideal straight track. It was found that there are symmet-
ricmotions at lower speeds, and then, the system passes
to the asymmetric ones at a wide speed range. Kim
and Seok [13] constructed the solutions near the hunt-
ing speed with an asymptotic expansion considering a
small perturbation by themethod ofmultiple scales and
examined the coupling effect of the bogies on the vehi-
cle hunting behavior. Dong [14]made an analysis of the
influence of different linear parameters in a simplified
bogie model on the bifurcation characteristics by nor-
mal form theory. Yang and Shen [15] investigated the
Hopf bifurcation and hunting stability of the bogie with
hysteretic and nonlinear suspensions while the investi-
gation on the dynamic stability of the railway vehicle
using commercial softwares has been being conducted
simultaneously. Polach andKaiser [16]made a compar-
ison of the hunting bifurcation of the vehicle between
brute forcemethod and path-followingmethod and ver-
ified the twomethods are reliable in accessing the vehi-
cle stability. Schupp [17] described a software envi-
ronment based on the principles of path following and

Fig. 1 Stability test of a
high-speed vehicle on roller
test rig

Narmal condition Fault condition
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continuation and applied the algorithms to the realistic
simulation model of a high-speed railway passenger
car. Zhu et al. [18] analyzed the influence of differ-
ent wheel–rail matchings on bifurcation stability, ride
comfort and wheel/rail wear.

Currently, the use of different lateral and longitudi-
nal positioning stiffness, large or small, in the bogie
primary suspension system can all achieve good hunt-
ing stability if the other suspension parameters are
designed properly. This paper intends to approximate
the bogie with very large primary positioning stiffness
as a rigid bogie and discusses the nonlinear dynamic
characteristics arising from the yaw damper and dif-
ferent wheel/rail contact relation related to the rolling
radius and the contact angle. The nonlinear governing
motion equations are discussed and derived in the first
section following by the transformation process of the
Jordan canonical form. Subsequently, central manifold
theorem is adopted to make the dimensionality reduc-
tion for the bogie system. Based on the reduced-form
model, normal form theory is applied to construct rele-
vant symbol formulas as the discriminant of bifurcation
type when the bogie arrives at the linear critical speed,
considering a parametric study of nonlinear damping
characteristics of yaw dampers, contact angle and tread
shape. Finally, a certain type of the yawdamper and two
types of wheel profiles, S1002CN with a high wheel
tread effective conicity and LMA with a low conicity,
are employed to analyze the influence of the parameter
variations on the bifurcation type of the bogie system.

2 Mathematical model of a railway bogie

The whole bogie can be considered only having two
degrees of freedom which are the lateral displacement
yt of the mass center c relative to the track center line
and the yaw angle ψ , depicted in Fig. 2. Components
yw(1∼2) denote lateral displacements of front and rear
wheelsets. Unit components ua and ut represent the
directions parallel and perpendicular to the axle. The
forward speed of the bogie is v.

Longitudinal creep forces FLti, FRti and lateral creep
forces Fai on the left and rightwheel, depicted in Figs. 2
and 3, can be written in the following forms [19,20].
Symbol i = 1 ∼ 2 represents the front and rear
wheelset, respectively.

Fig. 3 Lateral creep force model of the wheelset

Fig. 2 Dynamic model of
the rigid bogie
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FLti = − f11(v cosψ + ψ̇
√
a2 + b2 − rLi� + ẏwi sinψ)

v

FRti = − f11(v cosψ − ψ̇
√
a2 + b2 − rRi� + ẏwi sinψ)

v

Fai = − f22(ẏwi cosψ − v sinψ)

v
(i = 1 ∼ 2)

(2.1)

where f11and f22 are the longitudinal creep coefficient
and the lateral creep coefficient. Angular velocity is
� = v/r0 . The sum of the cosine of wheel/rail contact
angles δLi , δRi of the left and right wheels is approxi-
mate to k [6,19]. Set clockwise and down direction to
be the positive direction. Then, according to the New-
ton Euler method, the differential equations of the rigid
bogie, as is depicted in Fig. 2, are established.

mÿt = (Fa1 + Fa2)k cosψ − N

2
(tan δR1 − tan δL1

+ tan δR2 − tan δL2) cosψ + (FLt1 + FRt1

+FLt2 + FRt2) sinψ − 2cy ẏt − 2ky yt

J ψ̈ = (FLt1 + FLt2 − FRt1 − FRt2)a

+[(Fa1 − Fa2)k + N

2
(tan δR2 − tan δL2

+ tan δL1 − tan δR1)]b − 2kxl
2ψ − 2Fdld .

(2.2)

Wheel rolling radii rLi and rRi of the left and right
wheels at contact points on the track are

rLi = r0 + λ1(−ywi) + λ2(−ywi)
2 + λ3(−ywi)

3 + · · ·
rRi = r0 + λ1ywi + λ2y

2
wi + λ3y

3
wi + · · ·
(i = 1 ∼ 2)

(2.3)

where r0 is the nominal wheel rolling radius; λ1 is the
linear gradient on the wheel tread; λi is the nonlinear
correction factor of the geometry relationship between
wheel and rail.

The relationship between lateral displacements ywi

and yt is

ywi = yt + (−1)i+1b sinψ

ẏwi = ẏt + (−1)i+1bψ̇ cosψ
(i = 1 ∼ 2). (2.4)

Assume that damping force Fd of the yaw damper is
origin symmetric and can be fitted by a smooth poly-
nomial function, as

Fd =
∞∑

i=1

cd(2i−1)v
2i−1
d . (2.5)

Unannotated symbols in Sys (2.2) are defined in
Table 1.

In order to carry out the following nonlinear analy-
sis of the model, Taylor series expansion of Sys (2.2)
is required. Besides, the following prerequisite is also
applied in this paper [6], which is

tanδ2i − tanδ2i−1 =
n∑

s=0

e2s+1ywi
2s+1 (i = 1 ∼ 2)

(2.6)

Table 1 Parameters of the
bogie

Symbol Value Unit Definition

m 5234 kg Mass of bogie

J 8462.6 kg m2 Yaw moment of inertia of bogie

N 1.05 × 105 N Load per wheelset

kx 1.66 × 105 N/m Longitudinal stiffness

ky 1.66 × 105 N/m Lateral stiffness

cy 3 × 104 N s/m Longitudinal damper

r0 0.46 m Nominal wheel rolling radius

a 0.7465 m Half of wheelset contact distance

b 1.25 m Half of wheelbase

ld 1.275 m Half of yaw damper spacing

l 0.95 m Half of spring spacing (lateral)

f11 4 × 106 Longitudinal creep coefficient

f22 4 × 106 Lateral creep coefficient

k 1.994 Coefficient relative to cosine value
of wheel–rail contact angle
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where ei is constant.
Ignoring high-order terms o

∥∥yt , ẏt , ψ, ψ̇
∥∥4, Sys

(2.2) can be simplified as

mÿt = −2 f22k
ẏt (1 − ψ2)

v
+ 2 f22k(ψ − 2ψ3

3
)

−N

2
e1yt (2 − ψ2) − Ne3y

3
t − 3Ne3l

2
1 ytψ

2

−4 f11(−ψ3

2
+ ẏtψ2

v
− λ2(y2t + l21ψ

2)ψ

r0
)

−2cy ẏt − 2ky yt

Jmψψ̈ = −4 f11aλ1

r0
yt − 4 f11aλ3

r0
y3t

−12 f11aλ3l12

r0
ytψ

2 − 4 f11
ψ̇

v
(a2 + l1

2)

−2 f22l1
2k

(1−ψ2)ψ̇

v
−Ne1l1

2
(

ψ− ψ3

6

)

−3Ne3l1
2y2t ψ − Ne3l1

4ψ3

−2kxl
2ψ − 2Fdld . (2.7)

3 Bifurcation analysis

Set x = col(yt , ẏt , ψ, ψ̇). Sys (2.7) can be transformed
into the state space Eq. (3.1). The subscript indicates
the relevantmatrix. Apparently, equilibriumpoint x0 =
col(0, 0, 0, 0) is an ordinary solution.

ẋ =

⎡

⎢⎢⎣

0 1 0 0
−p1 −u1 − p2 p3 0
0 0 0 1

−p4 0 −p5 −u1c − u2

⎤

⎥⎥⎦

A

x

+

⎡

⎢⎢⎣

0
f p(x)
0

fq(x)

⎤

⎥⎥⎦ . (3.1)

Linear symbolic parameters of Sys (3.1) are

p1 = Ne1 + 2ky
m

u1 = 2 f22k

mv
p2 = 2cy

m

p3 = 2 f22k

m
p4 = 4

Jmψ

f11a
λ1

r0

p5 = Ne1l12 + 2kxl2

Jmψ

u2 = 2(cxl2 + cd1l2d)

Jmψ

c = 2 f11(a2 + l12) + f22l12k

Jmψ f22k
m.

The nonlinear functions of Sys (3.1) are

f p(x) = − d1x1
3 + d2x1x3

2 + d3x1
2x3 + d4x2x3

2

+ d5x3
3

fq(x) = − d6x1
3. − d7x1x3

2 − d8x1
2x3 − d9x

3
4+

d10x3
2x4 + d11x3

3

(3.2)

where

d1 = Ne3
m

d2 = (e1 − 6e3l1
2)

N

2m
d3 = 4 f11λ2

mr0

d4 =2 f22k − 4 f11
mv

d5 =
(
2 f11 − 4 f22k

3
+ 4 f11λ2l12

r0

)
/m

d6 =4 f11a
λ3

Jmψr0
d7 = 12 f11a

λ3l12

Jmψr0
d8 = 3Ne3l12

Jmψ

d9 =2cd3l4d
Jmψ

d10 = 2 f22l12k

Jmψv
d11 = Ne1l12

6Jmψ

− Ne3l14

Jmψ

.

3.1 Linear critical speed vc

Characteristic equation for Sys (3.1) is

λ4 + (u1 + u1c + u2 + p2)λ
3 + (p1 + u21c

+ u1u2 + p5 + p2u1c + p2u2)λ
2 + (p1u1c

+ p1u2 + u1 p5 + p2 p5)λ + p1 p5 + p3 p4 = 0.

(3.3)

As a prerequisite for nonlinear analysis of Sys (3.1),
Lienard–Chipart stability criterion [21] is employed to
obtain linear critical speed of the system. Sufficient and
necessary conditions of stability of Linearization part
of (3.1) are

(a) all coefficients of characteristic equation are posi-
tive.

(b) Hurwitz determinants of odd order or even order
are positive, that is, �odd > 0or �even > 0.

Obviously, all coefficients of Eq. (3.3) are positive,
which is in accordance with condition(a). To satisfy
condition(b), the following matrix inequality (3.4) is
considered.
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�3 =
∣∣∣∣∣∣

u1 + u1c + u2 + p2 p1u1c + p1u2 + u1 p5 + p2 p5 0
1 p1 + u21c + u1u2 + p5 + p2u1c + p2u2 p1 p5 + p3 p4
0 u1 + u1c + u2 + p2 p1u1c + p1u2 + u1 p5 + p2 p5

∣∣∣∣∣∣
> 0. (3.4)

Bogie linear critical speed vc could be worked out as
�3 = 0 when the characteristic equation for Sys (3.1)
can be sorted into

(λ2 + w2
1)(λ

2 + m1λ + m0) = 0 (3.5)

here

w2
1 = p1(u1c + u2) + (u1 + p2)p5

u1 + u1c + u2 + p2
m1 = u1 + p2 + u1c + u2

m0 = p1(u1 + p2) + p5(u1c + u2)

u1 + u1c + u2 + p2
+ u21c + u1u2

+ p2u1c + p2u2.

When the running speed v arrives at linear critical speed
vc, Sys (3.1) can be converted into the Jordan canonical
form to facilitate the analysis of the center manifold.
Eigenvector matrix B for system matrix A is

B =

⎡

⎢⎢⎣

1 0 ∗ ∗
0 −w1 ∗ ∗
s1 s2 ∗ ∗

w1s2 −w1s1 ∗ ∗

⎤

⎥⎥⎦

here

s1 = p1 − w2
1

p3
s2 = − (u1 + p2)w1

p3
. (3.6)

Unwritten matrix elements * are not required in the
following center manifold reduction.

Let x = By, y = col(y1, y2, y3, y4).
Then, Sys (3.1) is transformed into

ẏ = Jy + B−1 f (By). (3.7)

Considering two possible types of eigenvalues for Eq.
(3.5), all complex eigenvalues or a combination of pure
imaginary roots and negative real roots, Sys (3.7) can
be converted to

[
ẏ1
ẏ2

]
=

[
0 −w1

w1 0

]

Ar

[
y1
y2

]
+

[
b12 f p(By) + b14 fq (By)

b22 f p(By) + b24 fq (By)

]

F[
ẏ3
ẏ4

]
=

[
λ3 0
0 λ4

]

Br

[
y1
y2

]
+

[
b32 f p(By) + b34 fq (By)

b42 f p(By) + b44 fq (By)

]

G

(3.8)

or

[
ẏ1
ẏ2

]
=

[
0 −w1

w1 0

]

Ar

[
y1
y2

]
+

[
b12 f p(By) + b14 fq (By)
b22 f p(By) + b24 fq (By)

]

F[
ẏ3
ẏ4

]
=

[
α −w2

w2 α

]

Br

[
y3
y4

]
+

[
b32 f p(By) + b34 fq (By)
b42 f p(By) + b44 fq (By)

]

G

.

(3.9)

Parameters b12, b14, b22, b24 are the corresponding ele-
ments of B−1 as Eq. (3.10).

B−1 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

∗ (u1 + p2)(m2
1 − m0 + w2

1) − m1(u21 + p22 + w2
1 + 2u1 p2 − p1)

(λ24 + w2
1)(λ

2
3 + w2

1)
∗

∗ −m2
0 + m0m1(u1 + p2) + m0(p1 − p22 − 2u1 p2 − u21) + (2u1 p2 + p22 + u21 − p1 − m2

1 + m0)w
2
1

(λ24 + w2
1)(λ

2
3 + w2

1)w1
∗

∗ ∗ ∗
∗ ∗ ∗

−p3m1

(λ24 + w2
1)(λ

2
3 + w2

1)

p3(w2
1 − m0)

(λ24 + w2
1)(λ

2
3 + w2

1)w1
∗
∗

⎤

⎥⎥⎥⎥⎥⎥⎦
.

(3.10)
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3.2 Analysis of center manifold and normal form

Eigenvalues of system matrix Ar for Sys (3.8)–Sys
(3.9) have zero real parts, while eigenvalues of Br have
negative real parts. Functions f p and fq are C2 with
f p(0, 0) = 0, fq(0, 0) = 0, ḟ p(0, 0) = 0, ḟq(0, 0) =
0. Then, there exists a center manifold [19]

[
y3
y4

]
=

[
h1(y1, y2)
h2(y1, y2)

]

(‖y1, y2‖ < ε, h1,2(0, 0) = 0, ḣ1,2(0, 0) = 0).

(3.11)

Functions hi (i = 1 ∼ 2) in the neighborhood of the
origin define

(Mhi )(y1, y2) = Dhi [Ar

[
y1
y2

]
+ F(y1, y2, hi )]

− Br

[
h1
h2

]

− G(y1, y2, hi ) = 0, (i = 1 ∼ 2).

(3.12)

According to center manifold theorem [23], let φ

be a C1 mapping of a neighborhood of the origin
with hi (0, 0) = 0 and ḣi (0, 0) = 0 . Suppose that
as (y1, y2) → (0, 0), (Mh)(y1, y2) = o(‖y1, y2‖p)

where p > 1. Then,

hi (y1, y2) = φ(y1, y2) + o(‖x‖p) (3.13)

It is obvious that hi (y1, y2) is not less than 3
corresponding to the nonlinear order of (3.2). Thus,
hi (y1, y2) can be written in the following form.

h1(y1, y2) = k30y
3
1 + k21y

2
1 y2 + k12y1y

2
2 + k03y

3
2

+ o(‖x‖4)
h2(y1, y2) = l30y

3
1 + l21y

2
1 y2 + l12y1y

2
2 + l03y

3
2

+ o(‖x‖4).
(3.14)

Therefore, the stability of the equilibriumpoint y0 =
col(0, 0, 0, 0) for Sys (3.8)–Sys (3.9) is identified with
that of its reduced-form Sys (3.15).

[
ẏ1
ẏ2

]
=

[
0 −w1

w1 0

] [
y1
y2

]
+

[
f1(y1, y2, h1(y1, y2), h2(y1, y2))
f2(y1, y2, h1(y1, y2), h2(y1, y2))

]
.

(3.15)

Substituting hi (y1, y2) into Sys (3.15), the first-
order fine focus with neglecting parts of o(‖y1, y2‖4)
is calculated. Thus, nonlinear functions f(1∼2) are
obtained as

fi = b12(−d1y1
3 + d2y1(s1y1 + s2y2)

2

+ d3y1
2(s1y1 + s2y2) − d4w1y2(s1y1 + s2y2)

2

+ d5(s1y1 + s2y2)
3) + b14(−d6y1

3 − d7y1(s1y1

+ s2y2)
2 − d8y1

2(s1y1 + s2y2) − d9(w1s2y1

− w1s1y2)
3 + d10(s1y1 + s2y2)

2(w1s2y1

− w1s1y2) + d11(s1y1 + s2y2)
3), (i = 1 ∼ 2).

(3.16)

Normal forms theory [22,23] is used to derive the
discriminant of bifurcation type of this system at equi-
librium point y0. However, computation of the norm
form and the cubic coefficient, which determines the
stability, may be a substantial undertaking. Gucken-
heimer and Holmes [23] took a transformation of nor-
mal forms in an easier expression to compute. Consider

f1(0, 0) = f2(0, 0) = ḟ1(0, 0) = ḟ2(0, 0)

= f̈1(0, 0) = f̈2(0, 0) = 0.
(3.17)

Thus, the norm form calculation neatly yields

u23(2π, 0) = 2π

w
a|(0,0) = π

8w
( f1|y1y1y1

+ f1|y1y2 y2 + f2|y1y1y2 + f2|y2 y2y2 )|(0,0)
(3.18)

where

f1|y1y1y1 = 6[b12(−d1 + d2s
2
1 + d3s1 + d5s

3
1)

+ b14(−d6 − d7s
2
1 − d8s1 − d9w

3
1s

3
2

+ d10w1s
2
1s2 + d11s

3
1)]

f1|y1y2y2 = 2[b12(d2s22 − 2d4w1s1s2 + 3d5s1s
2
2 )

+ b14(−d7s
2
2 − 3d9w

3
1s

2
1s2 − 2d10w1s

2
1s2

+ d10w1s
3
2 + 3d11s1s

2
2 ]

f2|y1y1y2 = 2[b22(2d2s1s2 + d3s2 − d4w1s
2
1

+ 3d5s
2
1s2) + b24(−2d7s1s2 − d8s2 + 3d9w

3
1s1s

2
2
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Fig. 4 Relationship between lateral displacement y and rolling
radius rL/rR

− d10w1s
3
1 + 2d10ws1s

2
2 + 3d11s

2
1s2)]

f2|y2 y2y2 = 6[b22(−d4w1s
2
2 + d5s

3
2) + b24(d9w

3s1

− d10ws1s
2
2 + d11s

3
2)]. (3.19)

Sys (3.1) exhibits a Hopf bifurcation at the equi-
librium y0 as v passes through vc, with the following
[24]

(a) if u3(2π, 0) > 0, the Hopf bifurcation is subcriti-
cal;

(b) if u3(2π, 0) < 0, the Hopf bifurcation is super-
critical.

4 Numerical proof and parameter study

Differing from the subcritical bifurcation, the stability
of the running vehicle possessing supercritical bifur-
cation could be well monitored and controlled when
its speed or vibration amplitude arrives at the inse-
curity state. This section mainly studies the dynamic
characteristics of the bogie under the variance of yaw
damper and wheel profiles. Meanwhile, bifurcation
type is obtained corresponding to the parameters vari-
ation.

4.1 Effect of yaw damper on bifurcation type

Wheel profile types of S1002CNandLMAare selected,
respectively, the data of which about the relationship
between thewheel rolling radii rL and rR , tangent value
of wheel–rail contact angles σL and σR with the lateral
displacement yw are shown in Figs. 4 and 5.

Fig. 5 Relationship between lateral displacement yw and
tanδR − tanδL

The rolling radius rRi of the right wheel can be
well approximated by (4.1). The wheel rolling radius
rLi is the even symmetry form of (4.1). The differ-
ence between the tangent of contact angles (tan σRi −
tan σLi ) could be polynomial fitted as (4.2).

rS1002CNRi = 0.46 + 0.2017ywi + 10.23y2wi − 6120y3wi

− 6.435 × 105y4wi + 1.944 × 108y5wi

+ 2.81 × 1010y6wi

rLMA
Ri = 0.46 + 0.03695ywi + 4.799y2wi + 561.3y3wi

(4.1)

(tan σRi − tan σLi )S1002CN = 23.61ywi + 5.43

× 104y3wi − 2.956 × 1010y5wi + 9.776 × 1014y7wi

(tan σRi − tan σLi )LMA = 1.781ywi + 1.695

× 105y3wi − 2.791 × 109y5wi .

(4.2)

The yawdamper, applied in a certain type ofChinese
high-speed railway vehicle, is selected as an example,
the characteristic of which is shown in Fig. 6. The orig-
inal model represents the ideal output force relative to
the velocity vd at both ends of the yaw damper. The
dotted line represents the fitting curve as (4.3).

Fd =

⎧
⎪⎪⎨

⎪⎪⎩

173.8 × 103vd + 2.841 × 109v3d − 4.311 × 1012v5d
(−0.02m/s < vd < 0.02m/s)

2.74 × 104vd − 1.186 × 104 (vd < −0.02m/s)
2.74 × 104vd + 1.186 × 104 (vd > 0.02m/s)

(4.3)
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Fig. 6 Damping force of yaw damper

Fig. 7 Relationship between linear critical velocity vc and cd1

Before the analysis of the bifurcation characteristic
at vc, it is necessary to consider the influence of the
yaw damper coefficient cd1 on the linear critical speed.
Thus, the discussion is carried out in two categories:
the wheel S1002CN with a high wheel tread effective
conicity and the wheel LMAwith a lowwheel conicity.

From Fig. 7, the linear critical speed vc is increased
obviously with the increase in damping coefficient cd1.
And the system with a high wheel tread conicity pos-
sess a little higher critical speed than that with a low
tread conicity. To a certain extent, the proper increase
in damping coefficient in a certain range is beneficial
to the running stability of the vehicle.With the increase
of cd1, the coupling effect between bogie and car body
becomesmore prominent which is not considered here.
In this paper, the dynamic characteristics of bogie sys-
tem are studied with cd1 between 0 and 500kN m/s.

On the basis of (3.17) and (4.1–4.2), the bifurcation
characteristic of various combinations between damp-
ing coefficients cd1 and cd3 is depicted in Figs. 8 and

Fig. 8 Relationship between the coefficients cd1 and cd3 of yaw
damper on S1002CN

Fig. 9 Relationship between the coefficients cd1 and cd3 of yaw
damper on LMA

9. The space is divided into supercritical bifurcation
region and subcritical bifurcation region considering
wheel treads S1002CN and LMA, respectively.

When the third-order coefficient cd3 of the yaw
damper is positive, the bogie system falls in the
supercritical bifurcation region simultaneously for both
wheel tread types. Under the premise of fixing the
parameter cd1, the bogie system with a high wheel
tread conicity enters the subcritical bifurcation region
prior to the system with a low wheel tread conicity . In
other words, as long as the system with the wheel type
of S1002CN maintains in the supercritical bifurcation
region, the system with wheel profile LMA falls in the
same region simultaneously. Conversely, if the system
with LMA experiences supercritical bifurcation, per-
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haps subcritical bifurcation occurs in the system with
S1002CN.

The bifurcation diagram on the lateral motion of
the bogie, taking the yaw damper (4.3) as an exam-
ple, is depicted in the supercritical bifurcation region
in Figs. 8 and 9. Amplitude of the lateral displace-
ment yt of the system with a high wheel conicity is
much smaller than that of the system with a low wheel
conicity along with the increase in running speed v.

4.2 Bifurcation characteristics with different wheel
parameters

In this section, further discussion is expanded on the
bifurcation behavior of the bogie system with the
change of the tread parameters. Since the first-order
equivalent coefficients of the tread vary slightly in a
running mileage cycle, the first-order coefficients λ1
and e1 are assumed as constants. Effects of higher-
order terms on the bifurcation characteristics of the
bogie are conducted. According to (3.18), the relation-
ships among the third coefficient e3 relative to tangent
value of wheel–rail contact angle with second-order
and three-order coefficients of the equivalent wheel
radius λ2 and λ3 are

u23(2π, 0)S1002CN = 1.112λ2 + 6.453λ3 − 0.048e3

− 561522

u23(2π, 0)LMA = 0.664λ2 + 21.678λ3 − 0.172e3

− 12560.17.

(4.4)

Based on Eq. (4.4), a three-dimensional flat plane is
illustrated in Figs. 10 and 11 which divides the space
into a subcritical bifurcation region and a supercritical
bifurcation region.

Taking fitting coefficients of (4.1) and (4.2) into
account, discriminate coefficientsu23(2π, 0)ofS1002CN
and LMA are

u23(2π, 0)S1002CN = −6.01 × 105 < 0
u23(2π, 0)LMA = −2.9543 × 104 < 0

(4.5)

The two kinds of wheel profiles used in the rigid
bogie have all experienced the supercritical bifurca-
tion. As shown in Figs. 10 and 11, either the second-
order λ2, the third-order parameter λ3 of rolling radius

Fig. 10 Third coefficient relative to tangent value of wheel–rail
contact angle with second-order and third-order coefficient of the
equivalent wheel radius (S1002CN)

Fig. 11 Third coefficient relative to tangent value of wheel–rail
contact angle with second-order and third-order coefficient of the
equivalent wheel radius (LMA)

increasing to a certain extent or e3 reducing to a cer-
tain extent will make the bogie system into a subcritical
bifurcation.

5 Conclusions

In this paper, the rigid bogie model is established, and
the linear critical speed vc of the model is calculated
by Lienard–Chipart stability criterion with variation of
the yaw damper parameter. By taking advantage of cen-
ter manifold theorem, a reduced-form bogie model is
established. And combining with the method of nor-
mal form, the relevant symbol formulas related to the
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impact of nonlinear factors on Hopf bifurcation type
at the critical speed are expressed. Furthermore, it is
found that the critical speed vc increaseswith the damp-
ing coefficient cd1. The bogie systemwith a highwheel
tread effective conicity possesses a little higher linear
critical speed than that with a low conicity. From the
point of the transition in the bifurcation type, the vari-
ation of yaw damper parameter cd3 has greater influ-
ence on the bogie system with a high conicity. Besides,
the key factors and the changing trend of the influence
of the tread parameters on the bifurcation type of the
bogie are analyzed. The two kinds of wheel profiles
used in the bogie have all experienced the supercrit-
ical bifurcation. But if parameters λ2, λ3 relevant to
the rolling radius increase or e3 related to the contact
angle reduces, the bogie system has a tendency from
the supercritical bifurcation to the subcritical bifurca-
tion. The methods used in this paper are also suitable
for comparing the effects of other suspension parame-
ters such as the air spring and lateral damper or other
wheel/rail contact parameters on nonlinear hunting sta-
bility of the bogie.
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