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Abstract This paper presents a tool for analyzing the
motion of two-link nonholonomic swimmers. We refer
to these systems as Land-sharks, which are a general-
ization of the well known Roller Racers. By exploiting
the symmetry of the system, we are able to reduce the
equations of motion and construct the scaled momen-
tum evolution equation. This unveils a very useful and
intuitive Land-shark motion analysis tool based on the
partitioning of themass and geometry parameter space.
In particular, this partitioning reveals that, as opposed
to the Roller Racer, the Land-shark’s momentum can
be increased and decreased, i.e., the system can be
stopped. This is done through the use of steering, which
is the system’s only input. Furthermore, we explore the
problem of modeling frictional slip by assessing the
applicability of a previously proposed frictionmodel to
the oscillatory locomotion of the Land-shark. Results
show that the proposed friction model is generally
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applicable to two-link nonholonomic mechanical sys-
tems, which is an important step toward establishing
the generality of the friction model for nonholonomic
mechanical systems.

Keywords Geometric mechanics · Nonholonomic
motion planning · Frictional slip · Robotic locomotion

1 Introduction

Locomotion, the act of self-propulsion, is an inherent
ability in animals. Legged animals walk, fish swim,
birds fly and bacteria use their flagella as propellers.
Of the different gaits utilized, the undulatory and oscil-
latory gaits that are observed in snakes and fish, respec-
tively, have distinctly made their way into robotic
locomotion. Using tools from geometric mechanics,
Ostrowski [1] decomposed undulatory locomotion into
two principal components: changes in the internal
shape of a system and changes in position and orien-
tation of the system. This led to the observation that
the relationship between shape changes and locomo-
tion stems from a connection on a trivial principal fiber
bundle.

Several mechanical systems mimicking undulatory
and oscillatory locomotion have been presented in lit-
erature. In [2], Hirose and Morishima designed and
implemented an articulated robot that ‘crawls’ in a
manner similar to snakes. Lewis et al. [3] used cyclic
variations in the base space to produce net displace-
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ment in the fiber space of their famous undulatory loco-
motor, the Snakeboard. More recently, Kelly et al. [4]
demonstrated oscillatory locomotion in the Chaplygin
Beanie, whereby oscillations in the heading generated
longitudinal translation. In 1995, Krishnaprasad and
Tsakiris [5] studied themotion and control of theRoller
Racer. The Roller Racer is a two-link planar mechan-
ical system with passive wheels attached at the center
of mass of each link; it is a single module SE(2)-snake.
This system undergoes oscillatory locomotion through
cyclic variations of the inter-link angle, which gener-
ates forward propulsion. Even though it is the simplest
mobile articulated system, the Roller Racer produces
rich dynamics. Jouffroy [6] and Jouffroy and Jouf-
froy [7] were attracted by this fact and used the racer
as a framework for studying Central Pattern Genera-
tors, which arise in many biological activities such as
digestion and locomotion. Moreover, being a mechan-
ical system with nonholonomic constraints and sym-
metry, Bullo and Zefran [8] and Lewis [9] explored
its controllability through methods of affine connec-
tions and Lie brackets. In [10], a commercial scooter
referred to as the Trikke was modeled as a modified
Roller Racer due to the large resemblance between the
two.

Throughout the literature, every dynamic analysis
of the racer assumes that the mass and linear momen-
tum of one of the links is much smaller than the other
and thus can be ignored. This is evident in the Trikke
and in the prototype built in [5]. In this paper, we
present a generalization of the racer commonly treated
in the literature, by admitting two links with masses
of the same order of magnitude. We refer to this sys-
tem as the Land-shark. The Land-shark closely resem-
bles the Landfish developed in [17], with the differ-
ence that the nonholonomic constraints are imposed
at both ends of the system rather than one, meaning
that the Land-shark is more general. This introduces
a new complexity to the system. This simple modi-
fication reveals that the mass and geometric parame-
ters of the system can give significant insight about the
locomotive capabilities of the system and that for spe-
cific combinations of mass and geometry, changing the
pattern of movement (i.e., gait) being used does not
affect these capabilities. The more important result is
that, for certain mass and geometric parameters, the
derivative of the nonholonomic momentum can some-
times change sign throughout its course. It follows that,
as opposed to the Trikke and Roller Racer, and sub-

ject to certain geometric conditions, starting from rest,
the Land-shark can be accelerated, decelerated and
brought to a complete halt by solely using its single
control input.

Furthermore, this paper extends the motion analysis
to include the effects of frictional slip on the Land-
shark’s locomotive capabilities. To do this, a friction
model proposed by the authors in [11] is used. The
aforementioned friction model was initially proposed
for modeling skidding effects on the nonholonomic
rollingmotion of a unicycle. By applying it to the Land-
shark, we explore its scope of applicability to nonholo-
nomic systems that exhibit oscillatory motion.

Accordingly, the main contributions of the paper are
as follows. We show that the momentum of the Land-
shark can be increased and decreased by merely con-
trolling its only input (the inter-link/steering angle),
which allows for bringing the system to a complete
stop. Furthermore, we develop a tool for analyzing the
motion of two-link nonholonomic swimmers is pre-
sented. This tool is based on the partitioning of the
parameter space of possible masses and geometries
depending on the momentum behavior, which is possi-
ble after reducing the equations of motion. This reveals
that the mass and geometric parameters of the system
can give significant insight about the locomotive capa-
bilities of the system. It can also be used as a prelimi-
nary tool for designing Land-sharks, given the desired
momentumbehavior. In principle, parameter space par-
titioning should be extendable to analyze the motion of
other mobile articulated systems, after reducing their
respective equations of motion. Finally, we explore the
generality and applicability of a previously proposed
model of locomotion in the presence of frictional slip
to the oscillatory locomotion of the Land-Shark. The
advantage of this friction model is that it preserves the
inherent symmetry of the equations of motion, hint-
ing at the ‘possibility’ for their reduction even in the
presence of skidding effects.

The remainder of this paper is organized as follows.
In Sect. 2, we analyze the dynamics and then reduce
the equations of motion. In Sect. 3, we present the par-
titioning of the parameter space and highlight its use-
fulness in designing gaits. In Sect. 4, we investigate the
locomotion of the system in the presence of frictional
slip and we verify a friction model proposed in ear-
lier work. Finally, Sect. 5 discusses the importance of
the proposed friction model and Sect. 6 concludes the
paper and explores the directions of future work.
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Fig. 1 Configuration variables of the Land-shark

2 Dynamics of the Land-shark

In this section, we develop the dynamic model of
the Land-shark by identifying its configuration space,
parameters and the nonholonomic constraints acting
on it. After computing the Euler–Lagrange equations
of motion, we use tools from geometric mechanics to
achieve a reduced set of equations ofmotion. Finally, by
defining the scaled nonholonomic momentum [13], we
further simplify the system and the result is a reduction
in the number and order of the equations ofmotion from
six equations (four second order and two first order) to
four first-order equations.

2.1 Configuration space

The Land-shark comprises two planar links connected
by an actuated revolute joint. A passive wheel set is
attached at the center of mass of each link, with the
wheel axis perpendicular to the line joining the link’s
center of mass to the revolute joint. This gives rise to
nonholonomic constraints that prevent skidding of the
wheel sets.

Figure 1 illustrates the configuration variables of the
Land-shark (the discrepancy between the sizes of the
links is for illustrative purposes only). Let 2L1 and 2L2

denote the lengths of the links,M1 andM2 theirmasses,
and J1 and J2 their moments of inertia about their cen-
ters of mass. The configuration of the Land-shark is
described by the four-dimensional vector of general-
ized coordinates q = (x, y, θ, φ) where (x, y) denotes
the position of the center ofmass of the robot, θ denotes
its orientation, all expressed relative to the fixed inertial
frame {X,Y }, and φ denotes half the inter-link angle.
We consider the orientation of the robot to be aligned
parallel to the bisector of the inter-link angle. As such,
denoting by α and β the angles that the first and second
links make with the horizontal, respectively, then the
inter-link angle is β − α = 2φ and the orientation of
the robot is θ = α + φ. For further clarification of the
choice of generalized coordinates, we have attached the
body frame at the robot’s center of mass in Fig. 1.

2.2 Euler–Lagrange equations

The next step is to use the Lagrangian formulation to
develop the equations of motion. Let p1 and p2 denote
the locations of the centers of mass, with respect to the
fixed inertial frame, and therefore the locations of the
wheel sets, as shown in Fig. 1. Let

p1 = (u, v), (1)

then

p2 = (u + L1 cosα + L2 cosβ, v + L1 sin α + L2 sin β).

(2)

To compute the positions of the centers ofmass in terms
of the configuration variables, qi , we must perform a
change in variables from (u, v, α, β) to (x, y, θ, φ).
Since, (x, y) denotes the center of mass, we have

(x, y) = M1 p1 + M2 p2
M1 + M2

, (3)

One can compute the required change in variables to
be:

u = x − M2

M1 + M2
(L1 cosα + L2 cosβ) (4)

v = y − M2

M1 + M2
(L1 sin α + L2 sin β) (5)

α = θ − φ (6)

β = θ + φ. (7)
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Since the potential energy is zero, the Lagrangian is
equal to the kinetic energy:

L = M1

2
vT1 v1 + M2

2
vT2 v2 + M1L2

1

2
α̇2 + M2L2

2

2
β̇2,

(8)

where vi = ddt
p i

. As mentioned earlier, the passive
wheels attached to each link constrain themotion of the
respective contact point. The wheels are not allowed to
slide sideways, and this kinematic restriction can be
modeled as two nonholonomic constraints, each acting
on one wheel set. Assuming ideal, no-slipping condi-
tions, the constraints are given by

C1 : (− sin α cosα
)
v1 = 0, (9)

C2 : (− sin β cosβ
)
v2 = 0. (10)

Rewriting the above constraints in terms of the config-
uration variables and expressing them in matrix form,
we arrive at

ω(q)q̇ = 0, (11)

where

ω(q) =

⎛

⎜⎜⎜
⎜⎜⎜⎜
⎝

− sin(θ − φ) − sin(θ + φ)

cos(θ − φ) cos(θ + φ)

−L1−cos(2φ)L2
M1
M2

+1

cos(2φ)L1+L2

1+ M2
M1

L1−cos(2φ)L2
M1
M2

+1

L2−cos(2φ)L1

1+ M2
M1

⎞

⎟⎟⎟
⎟⎟⎟⎟
⎠

T

. (12)

These nonholonomic constraints are the essence of the
self-propulsion of the system. When the Land-shark
undergoes oscillatory motion through the actuation of
the inter-link angle, the reaction/constraint forces that
arise to enforce the nonholonomic constraints propel
the system and allow locomotion.

Finally, one can compute the governing equations of
motion by using the Euler–Lagrange equations:

d

dt

∂L(q, q̇)

∂q̇i
− ∂L(q, q̇)

∂qi
+ λ jω

j
i (q) = τi , (13)

whereλ j are theLagrangemultipliers that represent the
reaction forces enforcing the nonholonomic constraints
and τi is the vector of generalized forces given by

τ = (
0 0 0 τφ

)T
, (14)

where τφ is the torque control input of the inter-link
angle, the only actuated degree of freedom.

2.3 Reduced equations of motion

The configuration space of theLand-shark Q has a prin-
cipal fiber bundle structure Q = G × R = SE(2) × S

with fiber coordinates g = (x, y, θ) and base coordi-
nate r = φ. From the literature [19], it is well known
that the Lagrangian and the nonholonomic constraints
are invariant under group action, and this symmetry can
be exploited to reduce the equations of motion. This is
done by expressing the Lagrangian and the constraints
in terms of the body-frame coordinates. The reduced
Lagrangian and constraints are defined as follows:

l(r, ṙ , ξ) = L(g−1g, r, TgLg−1 ġ, ṙ) (15)

ci (r, ṙ , ξ) = Ci (g
−1g, r, TgLg−1 ġ, ṙ), (16)

where ξ is the body velocity, defined as the group veloc-
ity pulled back to the Lie Algebra

ξ = TgLg−1 ġ. (17)

Similarly, one can compute the reduced constraint
matrix, ω̃(r), to arrive at

ω̃(r) =

⎛

⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

sin(φ) − sin(φ)

cos(φ) cos(φ)

−L1−cos(2φ)L2
M1
M2

+1

cos(2φ)L1+L2

1+ M2
M1

L1−cos(2φ)L2
M1
M2

+1

L2−cos(2φ)L1

1+ M2
M1

⎞

⎟⎟⎟⎟
⎟⎟⎟⎟
⎠

T

. (18)

It isworth noting that, due to the invariancewith respect
to the fiber group action, ω̃(r) is independent of any
fiber variable.

Since the fiber space, SE(2), is three-dimensional
and since there are two nonholonomic constraints act-
ing on the system, theremust be a direction alongwhich
the constraints do not act. It is along this direction that
one can define the nonholonomic momentum variable
[19], p, as
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p = N (ω̃(r))
∂l(r, ṙ , ξ)

∂ξ
, (19)

where N (ω̃(r)) is a basis for the null space of ω̃(r).
For the Land-shark, the nonholonomic momentum is
given by

p =
M1M2

2

sin(φ)

((
L2

M1
+ L1

M2

)
cos(2φ) + L1

M1
+ L2

M2

)
ξx

+
M1M2

2

cos(φ)

((
L2

M1
− L1

M2

)
cos(2φ) + L1

M1
− L2

M2

)
ξy

+
m1 + m2 + l0

m0
ξθ + m2 − m1

m0
φ̇, (20)

where l0 = 2L1L2M1M2 cos(2φ), m0 = M1 +
M2, m1 = L2

1M1 (M1 + 2M2) and m2 = L2
2M2

(2M1 + M2). Using this nonholonomic momentum
alongside the reduced nonholonomic constraints, we
can develop the reconstruction equation [1], which
allows us to reconstruct the group trajectory and unfold
the global motion of the system. Following that, using
the first three equations of (13), i.e., the equations of
motion of the Lie group variables, the inverse of the
pull back action in (17) and its derivative, and the recon-
struction equation, one can develop themomentum evo-
lution equation, governing the behavior of ṗ. We omit
the reconstruction and momentum evolution equations
for now since we will present a reduced and much sim-
pler form in the next subsection.

2.4 Scaled momentum

In [13] and [14], Shammas et al. introduced the notion
of the scaled momentum, ρ. By noting that the momen-
tum evolution equation ṗ is first order and it has an
integrating factor, f (r), Shammas defined the scaled
momentum as follows:

ρ = f (r)p (21)

= sin(φ) cos(φ)
√
2L2L1 cos(2φ) + L2

1 + L2
2

p. (22)

This scaled momentum allows for further simplifica-
tion of the reconstruction equation and the momentum
evolution equation. Thus, we have reduced the origi-
nal set of six equations of motion [two first order in
(11) and four second order in (13)] to four first-order
equations, namely the reconstruction equation and the

scaledmomentumevolution equation. These are shown
in (23) and (24).

ξ =

⎛

⎜
⎜⎜⎜
⎜⎜
⎝

2L1L2(L1M1−L2M2) sin(2φ) cos(φ)

m0
(
2L2L1 cos(2φ)+L2

1+L2
2

)

− 2L1L2(L1M1+L2M2) sin(φ) sin(2φ)

m0
(
2L2L1 cos(2φ)+L2

1+L2
2

)

(L1−L2)(L1+L2)

2L2L1 cos(2φ)+L2
1+L2

2

⎞

⎟
⎟⎟⎟
⎟⎟
⎠

φ̇

+

⎛

⎜
⎜⎜⎜⎜
⎜⎜
⎝

2 cos(φ)(L1(cos(2φ)M1+M2)+L2(M1+cos(2φ)M2))√
L2
1+2 cos(2φ)L2L1+L2

2m
2
0

− 2 sin(φ)(L1(cos(2φ)M1−M2)+L2(M1−cos(2φ)M2))√
L2
1+2 cos(2φ)L2L1+L2

2m
2
0

2 sin(2φ)√
L2
1+2 cos(2φ)L2L1+L2

2m0

⎞

⎟
⎟⎟⎟⎟
⎟⎟
⎠

ρ

(23)

ρ̇ = −
(

2L1L2
(
L2L1(M1−M2) cos(2φ)+L2

1M1−L2
2M2

)
(
2L2L1 cos(2φ)+L2

1+L2
2

)
3/2

)
φ̇2.

(24)

3 Parameter space partitioning

Inspecting the scaled momentum evolution equation
(24) one can solve for robot parameters, M1, M2, L1,
and L2, for which the scaled momentum, ρ, has a par-
ticular desired behavior. The sign of the first derivative
of the scaled momentum is indicative of this behavior.
A positive sign indicates that the scaled momentum is
increasing and thus the system is accelerating, whereas
a negative sign indicates that the Land-shark is decel-
erating. On this basis, one may partition the parameter
space into different regions, each representing a char-
acteristic response of the scaled momentum.

3.1 Monotonically increasing momentum

In order for the scaled momentum to be increasing
monotonically, we require that ρ̇ > 0 at all times.
Examining Eq. (24), this condition reduces to
(
L2L1 (M2 − M1) cos(2φ) − L2

1M1 + L2
2M2

)
> 0,

since the denominator is always positive. Rearranging
the inequality, we arrive at

cos(2φ) >
L2
1M1 − L2

2M2

L1L2 (M2 − M1)
for

M2

M1
> 1,

123



2744 S. Bazzi et al.

or

cos(2φ) <
L2
1M1 − L2

2M2

L1L2 (M2 − M1)
for

M2

M1
< 1.

Denoting
L2
1M1−L2

2M2
L1L2(M2−M1)

asΛ, the inequalities derived
above will hold at all times when

Λ < −1 for
M2

M1
> 1,

or

Λ > 1 for
M2

M1
< 1 ,

since −1 < cos(2φ) < 1.

Lemma 1 The scaled momentum will increase mono-
tonically at all times for the following geometric
parameters of the Land-shark: Either (M2

M1
> 1 &

L2
L1

> 1) or (M2
M1

< 1 & M2
M1

> L1
L2

).

The proof of Lemma 1 is given in “Appendix.”

3.2 Monotonically decreasing momentum

To achieve amonotonically decreasingmomentum, the
first derivative of the scaled momentum should remain
negative at all times. Following the same analysis used
in the previous section, this requirement reduces to

cos(2φ) < Λ for
M2

M1
> 1,

or

cos(2φ) > Λ for
M2

M1
< 1.

The inequalities expressed above will be respected at
all times provided that

Λ > 1 for
M2

M1
> 1,

or

Λ < −1 for
M2

M1
< 1.

Lemma 2 The scaled momentum will decrease mono-
tonically at all times for the following geometric

parameters of theLand-shark:Either
(
M2
M1

< 1& L2
L1

< 1
)

or
(
M2
M1

> 1&M2
M1

< L1
L2

)
.

The proof of Lemma 2 is given in “Appendix.”

3.3 Gait-dependent momentum

Throughout the analysis in the previous sections, the
behavior of the scaled momentum was independent of
the gaits, i.e., for any Land-sharkwith parameters satis-
fying Lemmas 1 or 2, themomentumwould increase or
decrease monotonically, regardless of the locomotive
gait employed. We would like to explore the possibil-
ity of finding a region in the parameter space whereby
the behavior of the momentum is not monotonic and
that in fact, it may increase or decrease depending on
the gait being utilized.More formally, in this sectionwe
seek to answer the following question: Is it possible to
find regions in the parameter space of the Land-shark
where the momentum behavior is not monotonic but
rather gait-dependent? (i.e., ρ̇ may switch sign).

Studying the inequalities presented in the previ-
ous sections, one can deduce that this gait-dependent
behavior is attainable when

−1 < Λ < 1.

Lemma 3 A nonmonotonic behavior of the scaled
nonholonomic momentum, whereby it may increase or
decrease depending on the gait, will be observed for
the following geometric parameters of the Land-shark:

Either
(
M2
M1

> 1 &M2
M1

> L1
L2

& L2
L1

< 1
)

or
(
M2
M1

< 1 & M2
M1

< L1
L2

& L2
L1

> 1
)
.

The proof of Lemma 3 is given in “Appendix.”
Lemma 3 is a very important result, and it serves

as the fundamental difference between the Land-shark
and the two-link systems presented in literature. In
[10] and [5], the authors proved for the Trikke and the
Roller Racer, respectively, that these systems cannot
be stopped after motion starting from rest using only
the actuated inter-link angle. However, this is not the
case for the Land-shark.As opposed to theRoller Racer
and Trikke, certain regions exist within the parameter
space of the Land-shark whereby the first derivative
of the scaled nonholonomic momentum changes sign.
This indicates that it is possible to stop the system after
motion starting from rest by solely oscillating the only
actuated degree of freedom, i.e., the inter-link angle.
For these transition regions, the first derivative of the
scaled nonholonomic momentum changes sign when-
ever the state of the following inequality changes from
True to False or from False to True:

cos(2φ) < Λ . (25)
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Fig. 2 Parameter space partitioning based on the sign of ρ̇

We refer to this inequality as the momentum transition
inequality (MTI).

Figure 2 illustrates the results expressed in Lem-
mas 1, 2 and 3 by partitioning the parameter space
depending on the sign of the first derivative of the scaled
nonholonomicmomentum.Four different regions exist,
each with a distinct behavior of the scaled momentum.
The regions labeled by +© and −© depict the param-
eter ratios for which the first derivative of the scaled
momentum is, respectively, either positive or negative
for any arbitrary input. The other two regions labeled as
±© and ∓© denote regions for which the first derivative
of the scaled momentum will change sign from posi-
tive to negative or from negative to positive, for certain
base variable values. The difference between these two
regions is that violating the MTI produces an accelera-
tion in the ±© region and a deceleration in the ∓© region.

Figure 2 serves as an intuitive tool for designing
Land-sharks, depending on the desired momentum
behavior. If one requires that the Land-shark moves
in a manner such that the scaled momentum increases
monotonically and keeps building up, then the only
requirement is that the parameters must belong to the
+© region and any arbitrary gait can be used. The same
analysis applies to the −© region. If one desires that
the Land-shark builds up momentum for some time
and then starts decelerating, then the parameters must
belong to the ±© region and the gait designed must vio-
late the MTI for the first portion of the gait and comply
with it for the second portion of the gait. Or it must
belong to the ∓© region and the gait must violate the
MTI at first and then satisfy it.

3.4 Simulations

For the sake of experimental validation of the partition-
ing presented above, we present four different simula-
tions of the Land-shark, ranging over different regions
of the parameter space. Table 1 displays the parame-
ters and gaits used for simulatingmotion in each region.
Figure 3 presents the results of the simulations by show-
ing the evolution of the system’s velocity in the x-
direction versus time (since all the gaits chosen moved
the Land-shark in the x-direction only).

It is evident from Fig. 3 that the partitioning of the
parameter space presented above is genuine. Indeed,
the Land-shark possessing parameters within the +©
region accelerated endlessly, irrespective of whether
the gait switched or not, whereas the one lying in the
−© region decelerated monotonically. As for the ±©
and ∓© regions, it is evident that the system’s veloc-
ity can increase or decrease by switching the gait as
one desires. It is noteworthy to mention that a change
in the sign of ẋ indicates that the Land-shark has started

Table 1 Simulation
parameters and gaits Region M2

M1

L2
L1

Gait − φ(t) Sign of ρ̇

+© 2 2 0.05 sin(t) ρ̇ > 0

−© 1 0.5 0.1 sin(t) ρ̇ < 0

±© 2.1 0.5 0.1 sin(9.2t), 0 < t < 10π ρ̇ < 0

0.46 sin(2t), 10π < t < 20π ρ̇ > 0

∓© 0.48 2 0.1 sin(9.2t), 0 < t < 10π ρ̇ < 0

0.46 sin(2t), 10π < t < 20π ρ̇ > 0
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Fig. 3 Simulation results for Land-sharks in different regions of
the parameter space

Fig. 4 Reaching a complete stop with a Land-shark from the ±©
region

to move and build up momentum in the opposite direc-
tion.

In order for the system to reach a complete stop
(note that this is only possible in the ±© and ∓© regions),
one has to simply stop actuating the inter-link angle at
the instant when the system’s velocity becomes zero,
and before the Land-shark starts moving and building
momentum in the opposite direction. Figure 4 illus-
trates the motion in the x − y plane of the linkage point
of the ±© Land-shark simulated in Fig. 3. It is clear
that after moving about 1.8 meters, the Land-shark is
merely moving in place and seizing actuation at this
point would keep it in place. If the gait is applied for a
longer time, the Land-shark would proceed to move in
the opposite direction (to the left).

As such, we have successfully demonstrated that
Land-sharks within this region can be stopped using

only the inter-link angle. In [5], this was only achiev-
able by locking the inter-link angle, i.e., φ̇(t) = 0, and
including friction in the model.

4 Locomotion in the presence of frictional slip

In this section, we consider an additional complexity
to the locomotion: frictional slip. In reality, the ideal
nonholonomic constraints imposed by the wheels are
sometimes violated due towheel skidding and slipping,
and this gives rise to nonideal constraints [15,16]. To
exaggerate these frictional effects, we investigate the
locomotion of the Land-shark under conditions of high
wheel slippage, such as roads covered with loose dirt,
ice or oil and/or driving conditions that cause tire defor-
mation. This need arises in many applications such as
search and rescue operations or unmanned missions to
the moon.

In earlier work [11], we devised a novel friction
model and applied it to the nonholonomic rolling
motion of a vertical disk (unicycle). We successfully
demonstrated its validity by comparing it to a dissi-
pative friction model from the literature [12]. For the
scope of this paper, we build upon the results of the pre-
vious work and take things one step further by apply-
ing the methods of this friction model to the oscilla-
tory locomotion of the Land-shark, in order to explore
its scope of applicability and validity. Assessing the
friction model’s validity for two different methods of
nonholonomic locomotion is an important step toward
establishing its generality for nonholonomic mechani-
cal systems in future analysis.

4.1 Friction models

It is well known that there are two types of slipping;
lateral and longitudinal. Lateral slipping is referred to
as skidding. When a wheel skids, it slides in a direction
perpendicular to that toward which it is pointing. Lon-
gitudinal slipping occurs when the wheel slips along its
direction of motion. Since the wheel sets of the Land-
shark are passive and are not actuated,wewill only con-
sider skidding effects. A skidding wheel moves along a
direction different than that toward which it is pointing
(i.e., the wheel heading). In other words, the velocity
vector of the wheel forms an angle δ with its heading
α, which we refer to as the skid angle. Figure 5 clarifies
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Fig. 5 a A wheel undergoing normal motion. b A wheel under-
going lateral slipping

this by comparing the motion of a normal wheel to that
undergoing skidding.

The main characteristic of our friction model is that
the nonholonomic constraints are rotated by an angle δ,
the skid angle. This is done because, as the wheel skids,
the effective direction of zero velocity, i.e., the effective
direction of no skidding, is no longer perpendicular to
α but it is rather perpendicular to α + δ, as shown in
Fig. 5. The new nonholonomic constraints become

C1 : (− sin(α + δ) cos(α + δ)
)
v1 = 0, (26)

C2 : (− sin(β + γ ) cos(β + γ )
)
v2 = 0, (27)

where δ and γ are the skid angles of the first and sec-
ondwheel sets, respectively. Expressing the constraints
in this manner, we preserve their frictionless property
and thus we can now approximate frictional slip effects
without adding dissipative forces to the equations of
motion. This is a significant feature of themodel, which
will prove useful later on. In [11], we hypothesized that

the skid angles are related to the constraint forces act-
ing on the respective wheel, and three different fric-
tion models were developed, each with a distinct rela-
tion. Regarding the Land-shark, we will use the Lin-
ear Lagrange Multipliers friction model. This model
assumes that the relation between the skid angles and
the constraint forces is as follows:

δ(t) = a1λ1(t), (28)

γ (t) = a2λ2(t), (29)

where, as mentioned earlier, λ j are the respective
Lagrange multipliers that enforce the nonholonomic
constraints and the constants a1 and a2 are parameters
that depend on several factors, mainly the road condi-
tions [11].

4.2 Simulations

To explore the validity of this friction model, we simu-
lated it on several Land-sharks fromdifferent parameter
space regions and compared to those simulated under
the Sidek model, a dynamic dissipative friction model
for wheeled mobile robots with lateral slip [12]. Fig-
ure 6 displays the results of four of these simulations,
by showing the evolution of the x coordinate versus
time, since the gaits used caused a net displacement in
the x direction only. The results of the ideal, no-slip
case are also shown for comparison purposes.

It is evident from the simulation results that the pro-
posed Linear model closely follows the Sidek model
and this proves the validity of the model to a great
extent. In fact, we do not expect an exact match
between our proposed model and the Sidek model
for several reasons. The Sidek model is devised for
Wheeled Mobile Robots undergoing typical nonholo-
nomic motion through active wheels. It is not guaran-
teed that such a model can be extended to oscillatory
and undulatory types of locomotion such as those at
hand. Moreover, the Sidek model employs the Pacejka
Magic formula [18] for the skid angle. This formula is
tailored to suit race cars where the wheels are deformed
elastically and the speeds and masses of the cars are
many orders of magnitude larger than those witnessed
in the Land-shark.

Another important observation is the effect of fric-
tional slip on the motion of the Land-shark. As one
can deduce from Fig. 6 by comparing to the ideal no-
slip case, wheel slippage merely affects the magnitude
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Fig. 6 Simulation results for Land-sharks in the presence of frictional slip. a +© Region, b −© Region, c ±© Region, d ±© Region

of the displacement and hence the magnitude of the
momentum, over the period of the simulation. How-
ever, the overall behavior of the system in terms of
increasing or decreasing momentum exactly follows
that of the ideal case. In other words, if the ideal case
shows an increase in velocity, then so does the slipping
case, and the same applies for a decrease in velocity.
This can be inferred from the fact that the shape of the
curve of displacement remains quadratic after includ-
ing slippage effects. In fact, the results are intuitive;
the system behaves in the same manner in the pres-
ence of frictional slip but achieves smaller magnitudes
of acceleration/deceleration due to the dissipation of
energy. The implications of this result will be discussed
shortly. It is noteworthy to mention that Krishnaprasad
and Tsakiris [5] investigated the effects of viscous fric-
tion and concluded that it results in restricting theRoller
Racer to a constant velocity and prevents it from build-
ing upmomentummonotonically. This was manifested
in the linear graph of displacement produced by includ-
ing the viscous friction effects.

4.3 Parameter space partitioning with frictional slip

Now that the correctness of the friction model has been
verified we are ready to tackle problem of partitioning
the parameter space in the presence of frictional slip.
In particular, we would like to determine whether the
nonholonomic momentum of the system will exhibit
an identical behavior in the presence of frictional slip
and thus whether the utilization of this partitioning as a
motion analysis tool remains appropriate in the case of
wheel slippage. The results of the simulations in Fig. 6
can be employed to arrive at a solution to the parameter
space partitioning problem in the presence of slippage
effects. As was deduced earlier, wheel slippage only
affects the magnitudes of the attainable momentum,
yet the overall behavior, whether be it increasing or
decreasing, remains unchanged. This paves the way for
utilizing the parameter space partitioning developed in
Fig. 2 to analyze the motion of the Land-shark even in
the presence of frictional slip. To conclude, the param-
eter space partitioning can be employed as a motion
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analysis tool for Land-sharks in both the ideal, no-slip
case and for the case of slipping.

5 Discussion

It is noteworthy at this point to mention the impor-
tance of the proposed friction model and its desirable
features. The locomotion of nonholonomic mechanical
systems and the reduction in their equations of motion
in the presence of dissipative forces was treated in [20–
23]. However, the dissipative forces considered therein
were simple viscous forces, which were assumed to be
linear in the generalized velocities and derivable from
a Rayleigh dissipation function. The reduction tech-
niques employed in theseworks are therefore not appli-
cable to the problem at hand, where complex, nonlinear
dissipative forces arise due to wheel skidding, such as
the tire forces modeled by Pacejka’s Magic formula
[18]. For the proposed friction model, the aim was to
develop a model that approximates frictional slip but
without the need to add dissipative forces, in order to
preserve any underlying symmetries in the equations
of motion, for the sake of reduction.

The results in Fig. 6 show that the proposed fric-
tion model can accurately capture the effect of wheel
slippage on the motion of the Land-shark, without the
need to add nonlinear dissipative forces to the equa-
tions of motion. We hypothesize that such a model for
frictional slip (eqs. 30–33) will not impede the reduc-
tion in the equations of motion of the system. This is
because the skid angles are a modeled as functions of
the Lagrange multipliers, which are in turn a function
of the base space variables and velocities. This means
that the constraints should in principle remain invariant
under the group action and hence retain their original
symmetry. However, we do not have a formal proof of
this yet, and this will be the focus of future work.

6 Conclusions and future work

In this paper, a generalization of two-link mobile artic-
ulated systems, referred to as the Land-shark, is intro-
duced. It resembles the common Roller Racer with the
slight variation that the mass of one of the links is
not ignored. Through reduction tools commonly used
in geometric mechanics, the equations of motion are
reduced to only four first-order equations: the three-
dimensional reconstruction equation and an equation

describing the evolution of the scaled nonholonomic
momentum. This reduction revealed that the simple
variations in the system parameters have drastic effects
on its dynamics. By partitioning the parameter space
into regions based on the sign of the derivative of the
momentum, two regions are discovered within which
the momentum changes sign depending on whether a
certain inequality involving the base variable is satis-
fied or not. This led to the conclusion that, as opposed
to the Roller Racer, the Land-shark can use its only
actuated degree of freedom to come to a halt.

In addition to that, a frictionmodel developed in ear-
lier work was applied in an effort to gain some insight
about its scope of applicability. The model proved to
be of good accuracy and it displays an advantageous
feature toward solving the motion planning problem in
the presence of frictional slip.

For futurework, we aim to exploit this advantageous
feature of the friction model, namely the symmetry-
preserving property, to reduce the equations of motion
for Land-sharks navigating in the presence of frictional
slip. The authors are also interested in investigating
time-optimal gaits and trajectories for this system.
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Appendix

A Proofs of Lemmas

A.1 Proof of Lemma 1

Proof

For
M2

M1
> 1

L2
1M1 − L2

2M2

L1L2 (M2 − M1)
< −1

L2
1M1 − L2

2M2 < L1L2 (M1 − M2)

L2
1M1 − L1L2M1 < L2

2M2 − L1L2M2(
L2
1 − L1L2

)
M1 <

(
L2
2 − L1L2

)
M2

(
L1

L2
− 1

)
M1 <

(
L2

L1
− 1

)
M2

123



2750 S. Bazzi et al.

If
L2

L1
> 1

�⇒ M2

M1
> − L1

L2

(always holds since masses and lengths are positive).

If
L2

L1
< 1

�⇒ M2

M1
< − L1

L2

(never holds since masses and lengths are positive).

For
M2

M1
< 1

L2
1M1 − L2

2M2

L1L2 (M2 − M1)
> 1

L2
1M1 − L2
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L2
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(
L2
2 + L1L2

)
M2

(
L1

L2
+ 1

)
M1 <

(
L2

L1
+ 1

)
M2

�⇒ M2

M1
>

L1

L2
.
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A.2 Proof of Lemma 2

Proof

For
M2

M1
> 1

L2
1M1 − L2

2M2

L1L2 (M2 − M1)
> 1

L2
1M1 − L2
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L2
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L1
+ 1

)
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�⇒ M2

M1
<

L1

L2
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M2

M1
< 1

L2
1M1 − L2

2M2

L1L2 (M2 − M1)
< −1

L2
1M1 − L2
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L2
1 − L1L2

)
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(
L2
2 − L1L2

)
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− 1

)
M1 >

(
L2

L1
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)
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If
L2

L1
> 1

�⇒ M2

M1
< − L1

L2

(never holds since masses and lengths are positive).

If
L2

L1
< 1

�⇒ M2

M1
> − L1

L2

(always holds since masses and lengths are positive).
��

A.3 Proof of Lemma 3

Proof

For
M2

M1
> 1

L2
1M1 − L2

2M2

L1L2 (M2 − M1)
< 1

L2
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If
L2

L1
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M1
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(always holds since masses and lengths are positive).
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For
M2

M1
< 1
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