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Abstract A periodically breather solitary wave and
some lump solutions are obtained via using Hirota’s
bilinear method, homoclinic test approach and param-
eter perturbation technique for the (1 + 1)-dimensional
Benjamin–Ono equation. Spatiotemporal dynamics of
lump solution is investigated and discussed by choice
of some parameters u0, β, and γ . Finally, spatiotem-
poral structure of lump solution is analyzed using the
extreme value theory of multivariable function.

Keywords Benjamin–Ono equation · Lump solution ·
Spatiotemporal structure · Parameter perturbation ·
Hirota’s bilinear method

1 Introduction

In the recent years, seeking exact solution of nonlin-
ear partial differential equations (NLPDEs) is of great
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significance, since the nonlinear complex phenomena
related to the NLPDEs are involved in many physics,
biology, mechanics, chemistry and engineering. There-
fore, the investigation of exact solution for NLPDEs
has become more and more important and attractive.
Lump solution is also called the vortex and anti-vortex
solution, as a specific type of exact solution, and it was
found by Zakharov [1] and later by Craik [2]. In con-
trast to other exact solutions, lump solutions are a kind
of rational function solutions, decayed polynomially in
all directions in the space.Very recently, lump solutions
were presented for many systems [3–11].

Now,weconsider the (1+1)-dimensionalBenjamin–
Ono equation

utt + β(u2)xx + γ uxxxx = 0, (1)

where β is the nonlinear term coefficient and γ is
dispersion coefficient. In mathematics, the Benjamin–
Ono equation is an important nonlinear partial integro-
differential equation that describes one-dimensional
internal waves in deep water. It was introduced by
Benjamin [12] and Ono [13]. Recently, Xu et al. [14]
acquired its periodic solitary wave and doubly periodic
solutions by using the bilinear method and extended
homoclinic test approach. Fu et al. [15] studied its peri-
odicwave solutions byusing the Jacobi elliptic function
expansion method and the F-expansion method. Wang
et al. [16] discussed its traveling wave solutions of sin-
gle variable by using Riccati equation method. Meng
et al. obtained its multi-algebraic solitary wave solu-
tions by applying the bilinearmethod [17], respectively.
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In work [18], Li et al. have applied the homoclinic
(heteroclinic) limit method with a perturbation param-
eter u0 to obtain rational homoclinic wave solution
(rogue wave solution). However, they did not discuss
the influence of the perturbation parameter u0 on the
structure of the exact solution in [18]. In this work,
a periodically breather solitary solution is obtained by
Hirota’s bilinear method, homoclinic test approach and
parameter perturbation technique, and some lump solu-
tions based on periodically breather solitary solution
are studied by using homoclinic breather limit method
(HBLM) [19]. Finally, a special quadratic function
solution (lump solution) is found.What ismore,we also
discuss that the deflection of lump solution depends on
not only the perturbation parameter u0, but also a rela-
tionship with the nonlinear term coefficient β and the
dispersion coefficient γ . By choice of the values of
these parameters (u0, β, γ ), we obtain a lump solution
with two different structures: bright lump structure and
dark lump structure. Some novel and interesting phe-
nomena are revealed.

2 From periodically breather solitary to lump
solution

In this section, a periodically breather solitary solu-
tion and a lump solution for (1 + 1)-dimensional
Benjamin–Ono equation are obtained by using HBLM
and Hirota’s bilinear method. Obviously, an arbitrary
constant u0 is a solution Eq. (1). Therefore, by Painlevé
analysis, we assume that the solution of Eq. (1) as

u(x, t) = u0 + 6γ

β
(ln f )xx , (2)

where f (x, t) is unknown real function. By substitut-
ing Eq. (2) into (1), the following bilinear equation is
obtained(
D2
t + 2u0βD2

x + γ D4
x

)
f · f = 0, (3)

where the D−operator is defined by [20]

Dm
x Dk

y f · g =
(

∂

∂x
− ∂

∂x ′

)m (
∂

∂y
− ∂

∂y ′

)k

f (x, y, t)

·g (
x ′, y′, t ′

) |(x,y,t)=(x ′,y′,t ′). (4)

In work [18], Li et al. have applied the homoclinic (het-
eroclinic) limit method with bilinear form Eq. (3) to
obtain rational homoclinic wave solution (rogue wave
solution) of the (1 + 1)-dimensional Benjamin–Ono

equation. By choosing a special kind of homoclinic test
function, they obtain rational homoclinicwave solution
of Eq. (1) as follows

u(x, t) = u0 +
24γ

(
R − 2

(
x − 2βu0

w2
t
)

(x + w2t)
)

β

((
x − 2βu0

w2
t
)2 + (x + w2t)2 + R

)2 ,

(5)

where R = −6γw2
2

2β2u20+βu0w2
2
. Obviously, this solution Eq.

(5) represents a kind of exact solitary wave solution in
the form of the rational solution; this kind of soliton
solution is actually called lump solution also.

Here, with regard to Eq. (3), by choosing a test func-
tion that is different from [18], using the homoclinic test
technique [21], we seek the test function of the form

f (x, t) = 1 + b1(e
ipx + e−i px )eΩ t+λ + b2e

2(Ω t+λ),

(6)

where p,Ω, λ, b1 and b2 are all real numbers to be
determined below. Substituting Eqs. (6) into (2) yields
the exact solution of Eq. (1)

u(x, t) = u0 − 12γ b1 p2eΩ t+λ

β

·cos(px) + 2b1eΩ t+λ + b2cos(px)e2(Ω t+λ)

(1 + 2b1 cos(px)eΩ t+λ + b2 e2(Ω t+λ))2
.

(7)

Substituting Eqs. (6) into (3) leads to

4b1b2
(
Ω2 − 2u0βp

2 + γ p4
)
cos(px)e2(Ω t+λ)

+ 4b1
(
Ω2 − 2u0βp

2 + γ p4
)
cos(px)

+ 8
(
Ω2b2 − 2u0βb

2
1 p

2 + 4γ b21 p
4
)
eΩ t+λ = 0.

(8)

Equating all coefficients of different powers of cos(px),
cos(px)e2(Ω +λ), eΩ t+λ to zero, we get
{

Ω2 − 2u0βp2 + γ p4 = 0,
Ω2b2 − 2u0βb21 p

2 + 4γ b21 p
4 = 0.

(9)

Solving above system of algebraic Eq. (9) with Maple,
we get

Ω2 = 2βu0 p
2 − λp4, b2 =

(
2βu0 − 4γ p2

)
b21

2βu0 − γ p2
,

(10)
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where p, λ and b1 are real numbers. At the same time,
solution Eq. (7) can be written

u(x, t) = u0 − 6γ b1 p2

β

·
√
b2 cos(px) cosh(Ω t + λ + 1

2 ln b2) + b1(√
b2 cosh(Ω t + λ + 1

2 ln b2) + b1 cos(px)
)2 .

(11)

Substituting Eqs. (10) into (11), we get an exact peri-
odically breather solitary solution of Eq. (1) as follows

u(x, t) = u0

−6γ

β

b1 p2
(√

(2βu0−4γ p2)b21
2βu0−γ p2

cos(px)Θ + b1

)

(√
(2βu0−4γ p2)b21

2βu0−γ p2
Θ + b1 cos(px)

)2 ,

(12)

where

Θ = cosh

(√
2βu0 p2 − λp4t + λ

+ 1

2
ln

(
(2βu0 − 4γ p2)b21

2βu0 − γ p2

))
.

The solution u(x, t) represented by Eq. (12) is a peri-
odically breather solitary solution, i.e., homoclinic
breather-wave solution, which is a homoclinic wave
homoclinic to a fixed point u0 of Eq. (12) when t →
±∞ [22], andmeanwhile is a periodicwavewith period
2π
p along the x axis. FromFig. 1, we can clearly see that
amplitude periodically oscillates with the evolution of
x . At the same time, it is noted that this solution Eq.
(12) contains six free parameters u0, β, γ, p, λ and b1.
The spatiotemporal structure of the solution Eq. (12)
has changed, when these parameters take different val-
ues. Through deep analysis, we know that these three
parameters u0, β, γ play a critical role. The periodi-
cally breather solitary wave is hidden under the plane
wave, when βu0γ > 0 (see Fig. 1b). The periodically
breather solitarywave is exposed above thewave plane,
when βu0γ < 0 (see Fig. 1a). This is a new nonlinear
phenomenon up to now.

Notice Ω → 0 and b2 → b21 in Eq. (10), when
p → 0. Therefore, letting p → 0 and taking λ =
0, b1 = − cos(kp) in Eq. (12), we can get a new lump
solution as follows:

u(x, t) = u0 − 12γ

β

x2 − 2βu0t2 + 3γ
2βu0(

x2 + 2βu0t2 − 3γ
2βu0

)2 , (13)

Fig. 1 Spatiotemporal structure of solution Eq. (12) with a u0 =
−1, β = − 1

32 , γ = −1, p = 1
4 ,Ω = 1, b1 = 1, λ = 0; b

u0 = 1, β = 1
32 , γ = −1, p = 1

4 ,Ω = 1, b1 = 1, λ = 0

where βu0 > 0 and γ
βu0

< 0. Obviously, this solu-
tion Eq. (13) represents a kind of exact solitary wave
solution in the form of the rational solution, this kind
of soliton solution is actually called lump solution and
no longer has periodic feature. From Fig. 2b, we know
that the lump solution has two small upward peak and
a downward deep hole, and the downward deep hole is
hidden below the planewave. Therefore, the lump solu-
tion of this structure is called the dark lump solution.
However, the structure of Fig. 2a is just the opposite; it
is called the bright lump solution [5]. Meanwhile, the
asymptotic behavior of the lump solution Eq. (13) can
be found u(x, t) → u0, either x → ±∞ or t → ±∞.
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Fig. 2 Spatiotemporal structure of solution Eq. (13) with a u0 =
−1, β = − 1

32 , γ = −1, p = 1
4 ,Ω = 1, b1 = 1, λ = 0; b

u0 = 1, β = 1
32 , γ = −1, p = 1

4 ,Ω = 1, b1 = 1, λ = 0

The solution Eq. (13) has three free parameters u0, β
and γ , and when these free parameters take different
values, the spatiotemporal structure of the lump solu-
tion is changed. We get two different forms of lump
structure: bright lump structure and thedark lumpstruc-
ture (see Fig. 2). This lump solution of bright and dark
structures is obtained for the first time to the (1 + 1)-
dimensional Benjamin–Ono equation.

3 Theoretical analysis of spatiotemporal structure
of lump solution

In this section, we discuss why there are different spa-
tiotemporal structure of the lump solution (Fig. 2a, b).

Inspired by the lump solution of Eqs. (5) and (13), we
choose the following quadratic function solution

f (x, t) = a1 + (a2x + a3t + a4)
2

+ (a5x + a6t + a7)
2, (14)

where ai , i = 1, . . . , 7 are some constants to be deter-
mined. Substituting Eq. (14) into bilinear form Eq. (3),
through the long and tedious calculation, we can get
the following relations among the parameters:

a1 = 3γ (a22 + a25)

−2βu0
, a3 = a5

√
2βu0,

a6 = −a2
√
2βu0, (15)

where a2, a4, a5 and a7 are some free real numbers.
Substituting Eqs. (15) with (14) into (2), we have

u(x, t) = u0 + 6γ

β

2a22 + 2a25

ϑ2 + θ2 − 3γ (a22+a25 )
2βu0

− (2ϑa2 + 2θa5)2(
ϑ2 + θ2 − 3γ (a22+a25 )

2βu0

)2 . (16)

where ϑ = a2x + a5
√
2βu0t + a4 and θ = a5x −

a2
√
2βu0t + a7. Similarly, solution Eq. (16) is also a

lump solution, which contains seven free parameters
β, u0, γ, a2, a4, a5 and a7. When the values of these
free parameters are changed, the spatiotemporal struc-
ture of lump solution is changed correspondingly. We
got two different forms of lump structure of the bright
and the dark lump structure (see Fig. 3). Now, we dis-
cuss the reason for structure change in lump solution
Eq. (16) by using the extreme value theory of two ele-
ment function. Consider the critical point of the func-
tion u(x, t). In order to obtain the extremum of the
function Eq. (16), it is needed to calculate the neces-
sary condition{

∂u(x,t)
∂x = 0,

∂u(x,t)
∂t = 0.

(17)

Thus, solving condition Eq. (17) leads to a critical point
p(x, t) = p(− a2a4+a5a7

a22+a25
,

a2a7−a4a5√
2βu0(a22+a25 )

). After calcu-

lating, we can get the extreme value as u(x, t)|p =
−7u0. Furthermore, at the point p, the second-order
derivative can be obtained⎧⎪⎪⎨
⎪⎪⎩

Δ = ∂2

∂x2
u (x, t) = − 32βu20

γ
,

H(u) =
∣∣∣∣∣

∂2

∂t2
u(x, t) ∂2

∂x∂t u(x, t)
∂2

∂t∂x u(x, t) ∂2

∂t2
u(x, t)

∣∣∣∣∣
p

= 2048β3u50
3γ 2 .

(18)
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Fig. 3 Spatiotemporal structure of lump solution Eq. (16) with
a u0 = −1, β = −1, γ = −4, a2 = 1, a4 = 1, a5 = 3, a7 = 1;
b u0 = 1, β = 1, γ = −4, a2 = 1, a4 = 1, a5 = 3, a7 = 1

By using the discriminant method of extremum value
for the two element function, from Eq. (18) we can
obtain the following three possible cases:

(i) Ifβγ > 0 andβu0 > 0, that is,Δ < 0 and H(u) >

0, the critical point p is a local maximum point and
u(x, t)max = −7u0, u(x, t) shows a single bright
lump structure characteristics (see Figs. 2a, 3a).

(ii) If βγ < 0 and βu0 > 0, that is, Δ > 0 and
H(u) > 0, the critical point p is a local minimum
point and u(x, t)min = −7u0, u(x, t) shows dark
lump structure characteristics (see Figs. 2b, 3b).

(iii) If βu0 < 0, that is, H(u) < 0, the critical point p
is not a local extremum point. There is no corre-
sponding lump structure characteristics.

Through the above theoretical analysis, numerical
simulation and three-dimensional image simulation,
the reason for the spatiotemporal structure of lump
solution for the (1 + 1)-dimensional Benjamin–Ono
equation is clearly displayed. The structure of the lump
solution is mainly determined by the value of the per-
turbation parameter u0, nonlinear term coefficient β

and dispersion coefficient γ . According to the dif-
ferent parameters condition, we obtained two differ-
ent spatiotemporal structures of lump solution: bright
lump structure and dark lump structure. Comparing our
results and Lis’ work [18], we extend the result of the
(1 + 1)-dimensional Benjamin–Ono equation.

4 Conclusions

In summary, applying the Hirota’s bilinear method and
homoclinic test technique with a perturbation parame-
ter u0 to the (1 + 1)-dimensional Benjamin–Ono equa-
tion, we obtain a periodically breather solitary and
some lump solutions, which contain some free param-
eters such as u0, γ and β. Some interesting spatiotem-
poral dynamics of lump solution obtained are investi-
gated: Bright and dark lump structure varies with val-
ues of these parameters. In other words, a slight change
with the parameter can lead to change in spatiotempo-
ral structure of the lump solution. These results show
the diversity of the structures of solitary waves in real
dynamic systems. It is hoped that these results will pro-
vide some valuable information for ones in the field of
nonlinear dynamics.
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