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Abstract This paper mainly investigates the finite-
time projective synchronization problem ofmemristor-
based delay fractional-order neural networks
(MDFNNs). By using the definition of finite-time
projective synchronization, combined with the mem-
ristor model, set-valued map and differential inclu-
sion theory, Gronwall–Bellman integral inequality and
Volterra-integral equation, the finite-time projective of
MDFNNs is achieved via the linear feedback controller.
Novel sufficient conditions are obtained to guarantee
the finite-time projective synchronization of the drive-
response MDFNNs. Besides, we also analyze the fea-
sible region of the settling time. Finally, two numerical
examples are given to show the effectiveness of the
proposed results.
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1 Introduction

The memristor is a new basic circuit element between
charge and flux linkage proposed by Chua based on
symmetry theory in 1971 [27]. In 2008, researchers
at the HP laboratories created the memristor for the
first time [43]. The most important difference between
the memristor and the traditional resistance is that the
resistance is dependent on the charge passing through
it; therefore, it constantly changes its properties when
an external signal passes. The memristor has a mem-
ory and can change information encoded by its resis-
tance state. From this sense, the memristor is simi-
lar to the synapse of neurons in the brain. Scientists
believe that thememristor is able to help usmimic a true
neural network because of the freezing memory prop-
erty [47]. So thememristor-based neural networks have
attracted a lot of attention. More and more researchers
build thememristor-based neural networks for a variety
of application research, such as memristor-based neu-
ral networksmodeling [3,22,34,56,57], data clustering
usingmemristor networks [13], real-time encoding and
compression [21], memristor-based associative mem-
ory neural networks [17,23], optimization and mas-
sively parallel computing [37,38], and machine learn-
ing [10].
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Since German mathematician Leibniz discussed the
concept of fractional calculus in 1695, fractional cal-
culus has occupied the great mathematicians’ time and
has been studied for several centuries. The fractional
calculus can be described as an extension of a deriva-
tive operator from integer order to arbitrary order. The
fractional calculus equation is very suitable for char-
acterizing materials and processes with memory and
hereditary properties, and it has become one of the
important tools in the mathematical modeling of the
complexmechanical and physical processes. The study
results show that the fractional-order differential sys-
tems can better model some natural phenomena. In
fact, the chaotic behavior has been found in some
fractional-order dynamical systems, such as fractional-
order Lorenz system [20], fractional-order Rössler sys-
tem [15], fractional-order Chen system [52], and so on.
The above systems show chaotic behavior when the
fractional order is less than 1. The discovery of this
phenomenon makes researchers begin to pay attention
to the synchronization and control of the neural net-
works when the nodes are fractional-order differential
systems. Because of the unique advantages of frac-
tional calculus, it has been widely used in viscoelas-
tic materials [2,42], biology [30], molecular diffusion
theory [26,32], seismic analysis [25,54], image pro-
cessing [19], and control systems [9,29,39,51,59], etc.
For example, Ref. [51] discussed chaos synchroniza-
tion of fractional chaotic maps by applying the frac-
tional difference based on the stability condition, and
find that the chaotic signals studied in this paper are
more sensitive because they are affected by both the ini-
tial values and the varied discretization time. With the
emergence ofmemristor in recent years, thememristor-
based fractional-order neural networks have been paid
more andmore attention, especially the study on stabil-
ity and synchronization [4,14,28,41,48,58]. For exam-
ple, Ma et al. [28] investigated the dynamical behav-
ior composed memristor and improved Rössler oscil-
lator and found both the nonlinear cross-terms and ini-
tial selection and resetting can be effective to control
chaotic systems. This property can enhance the security
of secure communication. Therefore, it is very valuable
and practical to studymemristor-based fractional-order
neural networks.

Because of the limited speed of signal transmis-
sion between the neurons, the viscosity of synapses
triggered by biological neural networks, and the finite
switching speed between different circuit elements in

hardware implementations of neural networks, time
delay is a common phenomenon in neural networks.
There are many types of delays, such as discrete
delay, finite distributed delay, infinite distributed delay,
neutral-type delay, and so on. The emergence of these
delays is often themain reason for the oscillation, insta-
bility, and deteriorated performance of the dynami-
cal systems. Therefore, the dynamic system with time
delay becomes a hot topic in the theoretical and appli-
cation realms.

Since Pecora and Carroll [35] showed that the syn-
chronization of two chaotic systems with different ini-
tial conditions, the synchronization of various dynamic
chaotic systems has become a research hot spot (see
Refs. [8] and [36] for a review). Inspired by this,
Mainieri and Rehacek [31] first proposed the con-
cept of the projective synchronization, which the drive
and response systems synchronize up to scale fac-
tor. Because of its proportional feature, the projec-
tive synchronization can realize faster communication
through extending binary digital toM-nary digital [11].
Besides, the projective synchronization can be viewed
as a general formof complete synchronization and anti-
synchronization. Recently, some scholars have stud-
ied projective synchronization of fractional-order neu-
ral network with or without delay [4,44,49,55]. Wang
et al. [49] investigated hybrid projective synchroniza-
tion of fractional-order chaotic systemswith time delay
and realized the synchronization between two different
structural chaotic systems using nonlinear controller;
Velmurugan et al. [44] studied the hybrid projective
synchronization of a fractional-order memristor-based
neural networks with time delays; Bao et al. [4] investi-
gated the projective synchronization of fractional-order
memristor-based neural networks and derived some
sufficient conditions by defining a Lyapunov function.
However, to the best of our knowledge, there is not
much research about the projective synchronization of
memristor-based fractional-order neural networks.

Furthermore, the finite-time stability first proposed
by Kamenkov [24] depicts a quantitative behavior of
the system state variables in a specified finite-time
interval. A system is said to be finite-time stable if
the norm of its state variables is less than a certain
boundary in a finite time when given any bounded ini-
tial value. Ref. [7] indicates that the finite-time stable
system has faster convergence speed and better robust-
ness. At present, although there are some studies on the
finite-time stability and synchronization of fractional-
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order neural networks [33,41,45,53,58], the finite-time
projective synchronization of MDFNNS has not been
reported to the best of our knowledge.

Motivated by the above discussion, the main objec-
tive of our paper is to investigate the finite-time projec-
tive synchronizationofMDFNNs.With the aid ofmem-
ristor mathematical model, set-valued map, differen-
tial inclusion, Gronwall–Bellman inequality, Volterra-
integral equation, linear feedback controller, and the
definitionoffinite-timeprojective synchronization, two
new sufficient conditions are derived to ensure the
finite-time projective synchronization of memristor-
based fractional-order neural networks with or without
time delay. The main contributions of this paper can be
summarized as follows.

(1) We first investigate the finite-time projective syn-
chronization of MDFNNs based on the proposed
definition of finite-time projective synchroniza-
tion according to the concept of the finite-time
stability. The fractional-order differential equa-
tion is transformed into Volterra-integral equa-
tion, which simplifies our proof process of the
main theorem.

(2) We obtain two sufficient conditions to guarantee
the finite-time projective synchronization of the
model used in this paper. Meanwhile, our results
can be easily extended to the complete synchro-
nization and anti-synchronization. Moreover, we
analyze the feasible region of the settling time
Ts, which can be calculated by solving a simple
inequality condition.
The rest of this paper is organized as follows. The
mathematical model of thememristor and the def-
inition of fractional-order differential are intro-
duced in Sect. 2. In Sect. 3, we describe the drive-
response MDFNNs models, propose the defini-
tion of the finite-time projective synchronization,
and introduce an assumption and two lemmas.
Section 4 presents the main results of this paper,
including two theorems and two corollaries. Two
numerical examples are given to verify the cor-
rectness of main results in Sect. 5. Finally, we
conclude the whole paper in Sect. 6.

Notations We define the norm of the vector as
‖a‖ = ∑n

i=1 |ai |, and the norm of the matrix as
‖A‖ = max j

∑n
i=1 |ai j |, respectively, where ai and

ai j are the component of the vector a and the matrix

A. Z+ are the sets of positive integer numbers, and R

denotes the real set.

2 Preliminaries

In order to present ourmemristor-baseddelay fractional-
order neural networks (MDFNNs), we need to prepare
some knowledge about the mathematical model of the
memristor and the fractional calculus.

2.1 Memristor model

According to the physical model of the HP memristor
(see Fig. 1) [43], we have

v(t) =
(

RON
w(t)

D
+ ROFF

(

1 − w(t)

D

))

i(t),

dw(t)

dt
= μV RON

D
i(t) (1)

where D denotes the semiconductor film thicknesses,
w(t) is the state variable of the memristor, μV is aver-

Fig. 1 Memistor diagram with a simplified equivalent circuit
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Fig. 2 The current–voltage characteristic of the memristor with
a sinusoidal current

age ionmobility, i(t) and v(t) correspond to the current
and voltage, respectively.

From Eq. (1), it yields the following equation for
w(t),

w(t) = μV
RON

D
q(t) (2)

where q(t) denotes the total charge passing through the
memristor. According to Eq. (2), we obtain the calcu-
lation model of charge-controlled memristor

M(q) = v(t)

i(t)
= μV

R2
ON

D2 q(t)

+ ROFF

(

1 − μV RON

D2 q(t)

)

≈ ROFF

(

1 − μV RON

D2 q(t)

)

.

(3)

The current–voltage characteristic of the memristor
has significant pinched hysteresis loop fingerprint (see
Fig. 2).

In order to simplify the mathematical model of the
memristor on the premise of obtaining the pinched hys-
teresis feature, we select a surrogate memristor model
(see Fig. 3) as follows [50]

M(v(t)) =
{
M1(v(t)), |v(t)| ≤ T ;
M2(v(t)), |v(t)| > T .

(4)
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Fig. 3 The current–voltage characteristic of the surrogate mem-
ristor model

2.2 Caputo fractional calculus

Since Leibniz and L’Hospital began to discuss frac-
tional calculus in 1965, many famous mathemati-
cians have given the definitions of fractional calcu-
lus from their different points of view. There are
three well-known definitions of fractional calculus,
which are given by Grünwald–Letnikov, Riemann-
Liouville and Caputo, respectively. In contrast to the
Grünwald–Letnikov andRiemann–Liouville fractional
derivative, the Caputo fractional derivative has the fol-
lowing advantages: (1) it is not necessary to define
the fractional-order initial conditions when solving
fractional-order differential equations using Caputo’s
definition; (2) the derivative of a constant is 0 under
the Caputo’s definition; (3) it is integer-order deriva-
tive in the laplace transform of the fractional derivative
using Caputo’s definition. For these reasons, Caputo’s
definition is more commonly used in engineering and
science. Next, we give the definition of Caputo’s frac-
tional calculus.

Definition 1 [40] The Caputo’s fractional derivative
of order q for a function f (t) ∈ Cn+1([t0,∞],R) is
defined as follows

C
t0D

q
t f (t) = 1

Γ (n − q)

∫ t

t0

f (n)(τ )

(t − τ)q−n+1 dτ. (5)

where n − 1 < q < n, n ∈ Z
+, t > t0, Γ (·) is the

gamma function defined as Γ (q) = ∫ ∞
0 tq−1e−tdt .

123



Finite-time projective synchronization 2645

Cn+1 ([t0,∞],R) denotes the set of all n+1 order con-
tinuous differentiable functions on the interval [t0,∞].

In particular, when 0 < q < 1, we have n = 1 and
Eq. (5) can be rewritten as

C
t0D

q
t f (t) = 1

Γ (1 − q)

∫ t

t0

f ′(τ )

(t − τ)q
dτ. (6)

For the sake of simplicity,weuse the symbol Dq f (t)
to denote the Caputo’s fractional derivative.

2.3 The set-valued map and differential inclusion

For a differential systemwith discontinuous right-hand
sides, Filippov gave a definition of differential inclu-
sion solution, which can overcome the problem that the
discontinuous solution cannot be given in the classical
solution frame. The set-valuedmap theory provides the
necessary basis for the study of differential inclusion
problem.

Definition 2 [1] Let X and Y be two sets, a map F :
X → Y is called set-valued map, if any x ∈ X , there
is always a corresponding set F(x) ⊂ Y . F(x) is said
to the value or image of F at x .

Definition 3 [1] A set-valued map F : X → Y is said
to be upper-semi-continuous at x0 ∈ X , if for every
neighborhood NY of F(x0) ⊂ Y , there exists a neigh-
borhood NX of x0 such that F(NX ) = ⋃

x∈NX
F(x) ⊂

NY . If F is upper-semi-continuous for every x ∈ X ,
then the set-valued map F is upper-semi-continuous
on the set X .

Consider the following differential equation system

{
ẋ(t) = g(x, t),

x0 = x(t0).
(7)

where g(x, t) is discontinuous. And the Filippov solu-
tion of (7) is given as follows.

Definition 4 [18] A vector function x(t) is a solution
of the system (7) on [t0, t1] in Filippov’s sense, if x(t) is
absolutely continuous on any compact interval [t0, t1]
and for almost all t ∈ [t0, t1] such that

ẋ ∈ KF [g](x, t), (8)

where

KF [g](x, t) =
⋂

δ>0

⋂

μ(N )=0

co{g(Bδ(x)/N , t)}. (9)

In Eq. (9), co{·} is the convex closure hull of a set,
Bδ(x) = {y|‖y − x‖ ≤ δ} and μ(N ) denotes the usual
Lebesgue measure of set N .

3 Network models

We consider the drive-response synchronization prob-
lem of a class of memristor-based delay fractional-
order neural networks (MDFNNs) described by the fol-
lowing two differential equations.

The drive system is expressed as follows

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dqxi (t) = −ci xi (t) +
n∑

j=1

a(1)
i j (x j (t)) f j (x j (t))

+
n∑

j=1

b(1)
i j (x j (t − τ))g j (x j (t − τ)) + Ii ,

xi (t) = ψi (t), t ∈ [−τ, 0], i = 1, 2, . . . , n.

(10)

The response system is expressed as follows

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dq yi (t) = −ci yi (t) +
n∑

j=1

a(2)
i j (y j (t)) f j (y j (t))

+
n∑

j=1

b(2)
i j (y j (t − τ))g j (y j (t − τ)) + Ii + ui (t),

yi (t) = φi (t), t ∈ [−τ, 0], i = 1, 2, . . . , n.

(11)

where xi (t) and yi (t) denote the state variable associ-
ated with the i th neuron of drive and response system,
respectively. 0 < q < 1 is the fractional order, and
τ is the time delay. f (·), g(·) are the activation func-
tions without and with time delay, respectively. ci > 0
denotes the self-feedback weight, and Ii is the external
input bias value. ui (t) in the response system (11) is
a linear feedback controller to be designed for mak-
ing the drive-response system reach synchronization.
The norm of the initial conditions of systems (10) and
(11) is, respectively, ‖ψ(t)‖ = sups∈[−τ,0]|ψ(s)|, and
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‖φ(t)‖ = sups∈[−τ,0]|φ(s)|. a(1)
i j (x j (t)), a

(2)
i j (y j (t))

are memristive connection weights without time delay
and b(1)

i j (x j (t−τ)), b(2)
i j (y j (t−τ)) arememristive con-

nection weights with time delay. According to the char-
acteristics of the current–voltage of the memristor, the
connection weights satisfy the following conditions

a(1)
i j (x j (t)) =

{
âi j , |x j (t)| ≤ Tj ,

ǎi j , |x j (t)| > Tj ,

a(2)
i j (y j (t)) =

{
âi j , |y j (t)| ≤ Tj ,

ǎi j , |y j (t)| > Tj ,

b(1)
i j (x j (t − τ)) =

{
b̂i j , |x j (t − τ)| ≤ Tj ,

b̌i j , |x j (t − τ)| > Tj ,

b(2)
i j (y j (t − τ)) =

{
b̂i j , |y j (t − τ)| ≤ Tj ,

b̌i j , |y j (t − τ)| > Tj .

(12)

where the switching jumps Tj > 0, memristive con-
nection weights âi j , ǎi j , b̂i j , b̌i j , i, j = 1, 2, . . . , n are
constants.

From the above description, we can see that mod-
els (10) and (11) are complex switching systems with
discontinuous right-hand side. Through the set-valued
map and differential inclusions theory introduced in
Sect. 2.3, we define the following set-valued maps

K
[
a(1)
i j (x j (t))

]
=

⎧
⎪⎨

⎪⎩

âi j , |x j (t)| < Tj ,

co{âi j , ǎi j }, |x j (t)| = Tj ,

ǎi j , |x j (t)| > Tj ,

K
[
a(2)
i j (y j (t))

]
=

⎧
⎪⎨

⎪⎩

âi j , |y j (t)| < Tj ,

co{âi j , ǎi j }, |y j (t)| = Tj ,

ǎi j , |y j (t)| > Tj ,

K
[
b(1)
i j (x j (t − τ))

]
=

⎧
⎪⎪⎨

⎪⎪⎩

b̂i j , |x j (t − τ)| < Tj ,

co{b̂i j , b̌i j }, |x j (t − τ)| = Tj ,

b̌i j , |x j (t − τ)| > Tj ,

K
[
b(2)
i j (y j (t − τ))

]
=

⎧
⎪⎪⎨

⎪⎪⎩

b̂i j , |y j (t − τ)| < Tj ,

co{b̂i j , b̌i j }, |y j (t − τ)| = Tj ,

b̌i j , |y j (t − τ)| > Tj ,

(13)

where i, j = 1, 2, . . . , n, t > 0.
Next, models (10) and (11) can be rewritten as a

form of differential inclusions

Dqxi (t) ∈ −ci xi (t) +
n∑

j=1

K
[
a(1)
i j (x j (t))

]
f j (x j (t))

+
n∑

j=1

K
[
b(1)
i j (x j (t − τ))

]
g j (x j (t − τ)) + Ii ,

i = 1, 2, . . . , n (14)

Dq yi (t) ∈ −ci yi (t) +
n∑

j=1

K
[
a(2)
i j (y j (t))

]
f j (y j (t))

+
n∑

j=1

K
[
b(2)
i j (y j (t − τ))

]
g j (y j (t − τ)) + Ii ,

i = 1, 2, . . . , n. (15)

Or equivalently, there exist the measurable functions

āi j (t)∈K
[
a(1)
i j (x j (t))

]
, b̄i j (t)∈K

[
b(1)
i j (x j (t − τ))

]
,

ãi j (t) ∈ K
[
a(2)
i j (y j (t))

]
, b̃i j (t) ∈ K

[
b(2)
i j (y j (t − τ))

]

to make drive and response systems meet
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dqxi (t) = −ci xi (t) +
n∑

j=1

āi j (t) f j (x j (t))

+
n∑

j=1

b̄i j (t)g j (x j (t − τ)) + Ii ,

xi (t) = ψi (t), t ∈ [−τ, 0],
i = 1, 2, . . . , n.

(16)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dq yi (t) = −ci yi (t) +
n∑

j=1

ãi j (t) f j (y j (t))

+
n∑

j=1

b̃i j (t)g j (y j (t − τ)) + Ii + ui (t),

yi (t) = φi (t), t ∈ [−τ, 0],
i = 1, 2, . . . , n.

(17)

The error system between the drive system (16) and
the response system (17) is defined as

ei (t) = yi (t) − αxi (t). (18)

where α ∈ R is a real scaling factor. Especially, the
initial condition of the error system is ei (t0) = φi (t)−
αψi (t).

We select the following simple feedback controller

ui (t) = −ki (yi (t) − αxi (t)). (19)

where ki ∈ R
+, i = 1, 2, . . . , n is the control gain.
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Finite-time projective synchronization 2647

Definition 5 Under the controller (19), the drive sys-
tem (16) and the response system (17) is said to be
projective synchronization in finite time, if there exist
positive numbers {t0, J, δ, ε}, δ < ε, if and only if
‖e(t0)‖ < δ implies ‖e(t)‖ < ε,∀t ∈ J = [t0, t0+T ],
i.e., if the error system ‖e(t)‖ is finite-time stable,
the drive system (16) and the response system (17)
can achieve the finite-time projective synchronization.
Additionally, Ts = T is called the finite settling time.

Remark 1 In Definition 5, the parameter ε stands for
the set of all allowable states of the error system, and the
parameter δ stands for the set of all initial states of the
error system. Through Definition 5, we transform the
projective synchronization problem into the stability
problem of the error system.

In order to obtain our main results, we need the fol-
lowing an assumption and two lemmas.

Assumption 1 The activation functions f j (·), g j (·)
are Lipschitz continuous on R, i.e., there exist positive
constants m j , l j ,

| f j (x) − f j (y)| ≤ l j |x − y|,
|g j (x) − g j (y)| ≤ m j |x − y|,
x, y ∈ R, j = 1, 2, . . . , n.

Lemma 1 [12] Under Assumption 1, if f j (±Tj ) =
0, j = 1, 2, . . . , n then

|K [
ai j (x j (t)

]
f j (x j (t)) − K

[
ai j (y j (t)) f j (y j (t))

]

≤ αu
i j l j

∣
∣x j (t) − y j (t)

∣
∣

for i, j = 1, 2, . . . , n, i.e., for any ηi j (x j (t)) ∈
K

[
ai j (x j (t)

]
, ηi j (y j (t)) ∈ K

[
ai j (y j (t)

]
,

∣
∣ηi j (x j (t)) f j (x j (t)) − ηi j (y j (t)) f j (y j (t))

∣
∣

≤ αu
i j l j

∣
∣x j (t) − y j (t)

∣
∣ .

where αu
i j = max{âi j , ǎi j }.

Lemma 2 [5] Let λ(t), β(t), u(t) be real-valued func-
tions defined on an interval I . Assume that β(t), u(t)
are continuous and λ(t) is integrable on I = [t0, t],
t0 < t , we have

(1) If β(t) is nonnegative and u(t) satisfies the integral
inequality

u(t) ≤ λ(t) +
∫ t

a
β(s)u(s)ds,

then

u(t) ≤ λ(t) +
∫ t

a
λ(s)β(s)exp

(∫ t

s
β(r)dr

)

ds,

(2) in addition, if λ(t) is non-decreasing, then

u(t) ≤ λ(t)exp

(∫ t

a
β(s)ds

)

.

4 Main results

In this section, we will derive the sufficient condi-
tions for finite-time projective synchronization of the
drive system (10) and the response system (11) using
the Volterra-integral equation and Gronwall–Bellman
inequality.

Theorem 1 Under Assumption 1 and the linear feed-
back controller (19), the error system (18) of the
drive system (16) and the response system (17) can
achieve finite-time projective synchronization, when
‖e(t0)‖ = ‖�(t) − α
(t)‖ < δ, where �(t) =
(φ1(t), φ2(t), . . . , φn(t))T ,
(t) = (ψ1(t), ψ2(t), . . . ,
ψn(t))T , if the following sufficient condition holds

(

1 + tq − (t − τ)q

Γ (q + 1)

)

× exp

((‖AL − �‖ + ‖BM‖)
Γ (q + 1)

tq
)

<
ε

δ
.

(20)

where A = (ai j )n×n, B = (bi j )n×n, M = diag{m1,

m2, . . . ,mn}, L = diag{l1, l2, . . . , ln}.
Proof According the error system (18), we have

Dqei (t) = Dq yi (t) − Dq (αxi (t))

= −ci yi (t) +
n∑

j=1

āi j (t) f j (y j (t))

+
n∑

j=1

b̄i j (t) f j (y j (t − τ)) + Ii + ui (t)
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−
⎛

⎝−ciαxi (t) +
n∑

j=1

ãi j (t) f j (αx j (t))

+
n∑

j=1

b̃i j (t) f j (αx j (t − τ)) + Ii

⎞

⎠

= −(ci + ki )ei (t) +
n∑

j=1

āi j (t) f j (y j (t))

−
n∑

j=1

ãi j (t) f j (αx j (t)) +
n∑

j=1

b̄i j (t) f j (y j (t − τ))

−
n∑

j=1

b̃i j (t) f j (αx j (t − τ)).

Using Lemma 1, we have

Dqei (t) ≤ −(ci + ki )ei (t) +
n∑

j=1

ai j l j |e j (t)|

+
n∑

j=1

bi jm j |e j (t − τ)|,

where ai j = max{âi j , ǎi j }, bi j = max{b̂i j , b̌i j }.

For simplicity, we rewrite the above inequality into
a vector form

Dqe(t) ≤ −�e(t) +AL|e(t)| + BM|e(t − τ)|, (21)

where e(t) = (e1(t), e2(t), . . . , en(t))T , � = diag
{c1 + k1, c2 + k2, . . . , cn + kn}.

When 0 < q < 1, Eq. (21) is equivalent to the
following Volterra-integral equation

e(t) ≤ e(t0) + 1

Γ (q)

∫ t

0
(t − s)q−1 (−�e(s)

+AL|e(s)| + BM|e(s − τ)|) ds. (22)

Applying norm on both sides of Eq. (22), we can obtain

‖e(t)‖ ≤ ‖e(t0)‖ + 1

Γ (q)

∫ t

0
(t − s)q−1 ×

‖ − �e(s) + AL|e(s)| + BM|e(s − τ)|‖ds
≤ ‖e(t0)‖ + 1

Γ (q)

∫ t

0
(t − s)q−1 ×

(‖AL − �‖‖e(s)‖ + ‖BM‖‖e(s − τ)‖) ds
= ‖e(t0)‖ + ‖AL − �‖

Γ (q)

∫ t

0
(t − s)q−1‖e(s)‖ds

+‖BM‖
Γ (q)

∫ t

0
(t − s)q−1‖e(s − τ)‖ds. (23)

By means of integral transformation and inequality
amplification for Eq. (23), we have

∫ t

0
(t − s)q−1‖e(s − τ)‖ds

z=s−τ������
∫ t−τ

−τ

(t − z − τ)q−1‖e(z)‖dz

=
∫ t−τ

−τ

(t − τ − s)q−1‖e(s)‖ds

≤
∫ t

−τ

(t − τ − s)q−1‖e(s)‖ds

=
∫ 0

−τ

(t − τ − s)α−1‖e(t0)‖ds

+
∫ t

0
(t − s)q−1‖e(s)‖ds

= tα − (t − τ)q

α
‖e(t0)‖

+
∫ t

0
(t − s)q−1‖e(s)‖ds.

(24)

Substituting Eq. (24) into Eq. (23), we get

‖e(t)‖ ≤
(
1 + tq−(t−τ)q

Γ (q+1)

)
‖e(t0)‖

+ 1
Γ (q)

∫ t
0

(‖AL − �‖ + ‖BM‖)

×(t − s)q−1‖e(s)‖ds (25)

Let λ(t) =
(
1 + tq−(t−τ)q

Γ (q+1)

)
‖e(t0)‖, β(t) = 1

Γ (q)(‖AL − �‖ + ‖BM‖)(t − s)q−1. Obviously, λ(t)
is non-decreasing function when t ≥ 0, according to
Lemma 2, we can obtain

‖e(t)‖ ≤ λ(t)exp(
∫ t

0
β(s))ds

=
(

1 + tq − (t − τ)q

Γ (q + 1)

)

‖e(t0)‖

× exp

(∫ t

0

1

Γ (q)

(‖AL − �‖

+‖BM‖)(t − s)q−1]ds
)

=
(

1 + tq − (t − τ)q

Γ (q + 1)

)

‖e(t0)‖

× exp

((‖AL − �‖ + ‖BM‖)
Γ (q + 1)

tq
)

.

(26)

From condition (20), we have ‖e(t)‖ < ε. According
Definition 5, the error system (18) is finite-time stable,
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thus, theMDFNNs (10) and (11) achieve the finite-time
projective synchronization. The proof of Theorem 1 is
completed.

Remark 2 Wecancalculate thefinite settling timeTs by
the condition (20). When the initial conditions and the
fractional order are determined in the drive-response
MDFNNs, and then given a ε, we can always obtain
the settling time Ts by solving the inequality condition
(20). Next, we will draw the feasible region of the set-
tling time Ts. Given the corresponding parameter val-
ues, we plot the curves of the following equations in
the Cartesian coordinates (see Fig. 4).

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

y = f (t) =
(

1 + tq − (t − τ)q

Γ (q + 1)

)

exp

( (
V

)

Γ (q + 1)
tq

)

,

y = ε

δ
,

t = τ.

From Fig. 4, we can see that the settling time Ts is
affected by the initial value δ, delay τ and ε.

Remark 3 The results of Theorem 1 can be easily
extended to the memristor-based fractional-order neu-
ral network without delay as shown below.

0 0.1 0.2 0.3 0.4 0.5 0.6
t

0

200

400

600

800

1000

1200

y

t=τ

y=f(t)

y=  / δ

Ts

Fig. 4 The feasible area of the settling time Ts when the param-
eters are V = 10, δ = 2, τ = 0.4, q = 0.9, ε = 1000, t = 0 :
0.01 : 0.6

The drive system is expressed as follows

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Dqxi (t) = −ci xi (t) +
n∑

j=1

a(1)
i j (x j (t)) f j (x j (t))

+ Ii ,

xi (t) = ψi (t), t ∈ [−τ, 0],
i = 1, 2, . . . , n.

(27)

The response system is expressed as follows

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Dq yi (t) = −ci yi (t) +
n∑

j=1

a(2)
i j (y j (t)) f j (y j (t))

+ Ii + ui (t),

yi (t) = φi (t), t ∈ [−τ, 0]
i = 1, 2, . . . , n.

(28)

Using the same analytical method of Theorem 1, we
have the following result.

Theorem 2 Under Assumption 1 and the linear feed-
back controller (19), the drive system (27) and the
response system (28) can achieve projective synchro-
nization, if the following condition holds

exp

(‖AL − �‖
Γ (q + 1)

tq
)

<
ε

δ
. (29)

Proof The proof process is similar to that of Theorem 1
and is omitted here.

Remark 4 Although some references have studied the
projection synchronization problem of fractional neu-
ral network with or without memristor [4,46,49,55],
almost no one has studied the finite-time projective syn-
chronization problem. Our approach provides a solu-
tion to the study of MDFNNs.

Remark 5 According to the different α values, the pro-
jective synchronization can also be extended to the
investigation of the complete synchronization(α =
1) and anti-synchronization(α = −1) of the drive-
response systems. So, we have the following two corol-
laries.
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Corollary 1 If the scaling factor α = 1 in the error
system (18) and the controller (19), under Assump-
tion 1, the MDFNNs (10) and (11) can achieve the
finite-time complete synchronization if the sufficient
condition (20) holds.

Corollary 2 If the scaling factor α = −1 in the error
system (18) and the controller (19), under Assump-
tion 1, the MDFNNs (10) and (11) can achieve the
finite-time anti-synchronization if the sufficient condi-
tion (20) holds.

5 Simulation examples

In this section, two numerical examples are given to
show the effectiveness of our main results. We use the
Predictor-Corrector method [6] to solve the approxi-
mate numerical solutions of the fractional-order delay
differential equations.

Example 1 Consider the following three-dimensional
memristor-based fractional-order neural networks
without delays as the drive system

Dqxi (t) = −ci xi (t) +
3∑

j=1

ai j (x j (t)) f (x j (t)) + Ii ,

i = 1, 2, 3. (30)

The corresponding response system is given by

Dq yi (t) = −ci yi (t) +
3∑

j=1

ai j (y j (t)) f (y j (t))

+ Ii + ui (t),

i = 1, 2, 3. (31)

All parameters of the drive system (30) and the response
system (31) are selected as follows

q = 0.95,C = diag{[1; 1; 1]}, I = [0; 0; 0],
x(0) = (−0.5, 0.3, 0.4)T , y(0) = (0.5, 0.8,−0.4)T ,

f (x) = g(x) = tanh(x),

a11(x1) =
{

2.0, |x1| ≤ 1

−2.0, |x1| > 1
a12(x1) =

{−1.0, |x1| ≤ 1

1.0, |x1| > 1

a13(x1) =
{

8.3, |x1| ≤ 1

−8.3, |x1| > 1
a21(x2) =

{
6.8, |x2| ≤ 1

−6.8, |x2| > 1

-4
2

-2

1 2

0

x 3(t)

1

2

x2(t)

0

x1(t)

4

0-1 -1
-2 -2

Fig. 5 Limit cycle of system (30) with initial value x0 =
(−0.5, 0.3, 0.4)T

a22(x2) =
{

1.5, |x2| ≤ 1

−1.5, |x2| > 1
a23(x2) =

{−3.0, |x2| ≤ 1

3.0, |x2| > 1

a31(x3) =
{

1.8, |x3| ≤ 1

−1.8, |x3| > 1
a32(x3) =

{ −9.0, |x3| ≤ 1

9.0, |x3| > 1

a33(x3) =
{

1.2, |x3| ≤ 1

−1.2, |x3| > 1.

Note: x1 denotes x1(t) for simplicity.

Figure 5 shows that the drive system (30) has a limit
cycle in the case of the above mentioned parameters.
Taking the control gain k1 = k2 = k3 = 2 in the
controller (19), Lipschitz constants l1 = l2 = l3 = 1,
δ > ‖e(0)‖ = ‖y(0) − αx(0)‖, α is scaling factor
of projective synchronization. Figures 6, 7, 8 show the
state trajectories when α is chosen a different value.
According condition (29), let δ = 1.1 > ‖e(0)‖ =
1, ε = 7.7, we can calculate the settling time Ts =
0.2074 when α = 3.

Remark 6 We can see that the synchronization state
errors do not stabilize to zeros from Fig. 9, but stable
at a point less than ε = 7.7. The reason for this phe-
nomenon is that we define the projective synchroniza-
tion condition defined in Definition 5 is ‖e(t0)‖ < ε.

Obviously, Fig. 9 meets this condition. This proves the
correctness of our results.

Remark 7 The settling time Ts calculated by the the-
ory does not seem to agree with the actual running
time. This is due to the simulation software (MATLAB
R2016a) and the algorithms themselves (predictor-
corrector PECEmethodofAdams–Bashforth–Moulton
type [16]).
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Fig. 6 (Color online) The state trajectories of x(t), y(t) when
α = −1
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Fig. 7 (Color online) The state trajectories of x(t), y(t) when
α = 1

Figure 9 presents the synchronization error curves of
the drive systems (30) and response system (31) when
α = 3.

Example 2 Consider the following two-dimensional
memristor-based delay fractional-order neural net-
works as the drive system
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Fig. 8 (Color online) The state trajectories of x(t), y(t) when
α = 3
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Fig. 9 The synchronization error curves of x(t), y(t)when α =
3

Dqxi (t) = −ci x(t) +
2∑

j=1

ai j (x j (t)) f (x j (t))

2∑

j=1

bi j (x j (t − τ))g(x j (t − τ)) + Ii , i = 1, 2.

(32)
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The corresponding response system is given by

Dq yi (t) = −ci y(t) +
2∑

j=1

ai j (y j (t)) f (y j (t))

+
2∑

j=1

bi j (y j (t − τ))g(y j (t − τ)) + Ii + ui (t),

i = 1, 2. (33)

The parameters of the system (32) and (33) are listed
below

q = 0.95,C = diag{[4; 2]}, I = [0; 0],
x(0) = (1.5,−0.8)T , y(0) = (−1.5, 0.8)T ,

f (x) = g(x) = tanh(x), τ = 0.4,

a11(x1) =
{
2.2, |x1| ≤ 1

1.9, |x1| > 1
a12(x1) =

{ −2.0, |x1| ≤ 1

−3.0, |x1| > 1

a21(x2) =
{ −0.7, |x2| ≤ 1

−0.5, |x2| > 1
a22(x2) =

{
2.5, |x2| ≤ 1

2.8, |x2| > 1

b11(x1) =
{ −4.0, |x1| ≤ 1

−3.5, |x1| > 1
b12(x1) =

{ −2.5, |x1| ≤ 1

−2.8, |x1| > 1

b21(x2) =
{ −1.5, |x2| ≤ 1

−1.8, |x2| > 1
b22(x2) =

{ −3.5, |x2| ≤ 1

−3.8, |x2| > 1.

Note: for simplicity, ai j (x j ) denotes ai j (x j (t)), and
bi j (x j ) denotes bi j (x j (t − τ)), i, j = 1, 2.

Figure 10 illustrates that the drive system (32) has a
limit cycle when taking the parameters above. Taking
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0
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0.3

y 1(t)

Fig. 10 Limit cycle of system (32) with initial value x0 =
(−0.5, 0.3, 0.4)T
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Fig. 11 (Color online) The state trajectories of x(t), y(t) when
α = −1
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Fig. 12 (Color online) The state trajectories of x(t), y(t) when
α = 1
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Fig. 13 (Color online) The state trajectories of x(t), y(t) when
α = 3
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Fig. 14 The synchronization error curves of x(t), y(t) when
α = 3
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Fig. 15 (Color online) The phase diagram of the drive-response
systems (32), (33) when α = −1

the control gain k1 = 4, k2 = 2 in the controller (19),
Lipschitz constants l1 = l2 = 1,m1 = m2 = 1. Thus,
we have δ > ‖e(0)‖ = ‖y(0) − αx(0)‖, α is the scal-
ing factor of projective synchronization. Figures 11,
12, 13 show the state trajectories when α = −1, 1, 3,
respectively. Figure 14 depicts the synchronization
error curves of the drive system (32) and the response
system (33)whenα = 3. According the condition (20),
let δ = 6.1 > ‖e(0)‖ = 6, ε = 3000, we can calculate
the settling time Ts = 0.4186.

Remark 8 In order to make the inequality condition
(20) always holds, besides choosing an appropriate ε,
we also need to ensure t − τ ≥ 0.
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Fig. 16 (Color online) The phase diagram of the drive-response
systems (32), (33) when α = 1
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Fig. 17 (Color online) The phase diagram of the drive-response
systems (32), (33) when α = 3

In this example, we also draw the phase diagrams
of the drive-response systems when α = −1, 1, 3 as
shown in Figs. 15, 16, 17.

6 Conclusions

The finite-time projective synchronization problem
of MDFNNs is studied based on the definition of
finite-time projective synchronization. Using the mem-
ristor model, fractional-order differential, the set-
valued map, differential inclusion theory, Gronwall–
Bellman inequality, and Volterra-integral equation of
the fractional-order error system between the drive
system and the response system, we derive the suf-
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ficient conditions of the projective synchronization
of MDFNNs under a simple linear feedback con-
troller. We analyze the feasible region of the settling
time. Meanwhile, our results can be easily extended
to the cases of complete synchronization and anti-
synchronization. The proof of the main theorem is sim-
ple, and the sufficient conditions are easy to verify.
Moreover, we may calculate the settling time by these
sufficient conditions. Finally, Two numerical examples
have been presented to show the correctness of our
results. The future work mainly includes the following
aspects: (1) how to analyze the projective synchroniza-
tion of more complex fractional-order neural network
model with stochastic perturbation and various time
delays, such as time-varying delays, infinite distributed
delays and neutral-type delays; (2) how to derive the
fixed-time synchronization conditions of MDFNNs.
In summary, the fractional-order neural networks still
have a lot of problems worthy of further study.
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