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Abstract In this study, how the synaptic plasticity
influences the collective bursting dynamics in a modu-
lar neuronal network is numerically investigated. The
synaptic plasticity is described by a modified Oja’s
learning rule. The modular network is composed of
some sub-networks, each of them having small-world
characteristic. The result indicates that bursting syn-
chronization can be induced by large coupling strength
between different neurons, which is robust to the local
dynamical parameter of individual neurons. With the
emergence of synaptic plasticity, the bursting dynam-
ics in the modular neuronal network, particularly the
excitability and synchronizability of bursting neurons,
is detected to be changed significantly. In detail, upon
increasing synaptic learning rate, the excitability of
bursting neurons is greatly enhanced; on the contrary,
bursting synchronization between interacted neurons is
a little suppressed by the increase in synaptic learning
rate. The presented findings could be helpful to under-
stand the important role of synaptic plasticity on neural
coding in realistic neuronal network.
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1 Introduction

Synchronization between interacted elements is very
popular in nature and social systems [1–4]. Particu-
larly in the field of neuroscience, the synchronized fir-
ing rhythm, as a form of temporal relationship among
neurons, can underline the formation of brain, which
contributes to encodememory processes and other cog-
nitive functions [5–8]. Note that spiking and bursting
are two basic timescales for neuronal firing activity.
A neuron is thought to be in bursting state when its
firing activity alternates between a rest state and repet-
itive spikes. Synchronous patterns of bursting neurons
are diverse, such as spiking synchronization, bursting
synchronization and complete synchronization.

At present, there has been a growing interest in
bursting synchronization in neuronal network. Sev-
eral ingredients consisting of heterogeneous delays,
noises, autapse and connection topology have beenwit-
nessed by their significance in shaping bursting syn-
chronization. For example, Wang et al. have identified
the mechanisms of synchronous bursts and desynchro-
nized bursts on the neuronal networks in the presence
of time delays [9–11]. Burić et al. [12] have discussed
the influence of white noise on the synchronization
between a pair of electrically coupledHindmarsh–Rose
bursting neurons. Zheng and Lu [13] have found that
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chaotic burst synchronization can be observed if the
link probability and the coupling strength are large
enough. Guo et al. have discussed how the self-back
autaptic transmission tames and modulates neural fir-
ing dynamics [14,15]. Recent experiment has revealed
that connectivity between regions of cerebral cortex in
macaque monkeys and cats possesses a modular struc-
ture [16,17]. Modular neuronal network may be a good
candidate model for numerical simulation of brain neu-
ronal network, which has been believed to understand
the brain’s cognitive function better. Some attention
has been shifted to the collective dynamics of burst-
ing neurons on modular neuronal network [18–20].
For example, Yang and Wang [18] have explored the
development of global burst synchronization in a mod-
ular neuronal network from the mesoscopic viewpoint.
Batista at al. [19] have discussed that how the coupling
strength as well as the probabilities of intra-cluster and
inter-cluster connections influences bursting synchro-
nization in the modular neuronal networks.

On the other hand, there has been a resurgence of
interest in the topic of synaptic plasticity, which is
helpful to describe the property of changed synaptic
weights among coupled neurons. It is shown that for
discrete neural circuits including the hippocampus and
amygdala synaptic plasticity is a popular feature,which
regulates synaptic efficacy as various timescales from
milliseconds to minutes [21,22]. As a matter of fact, in
the growth of neurons together with the learning and
memorizing processes, the weights of synapses among
connected neurons keep updated rather than hold con-
stant [23–27]. Till now, many learning rules regulating
synaptic weights, such as Hebbian rule [28], Oja’s rule
[23,24,29–32] and spike-timing-dependent plasticity
rule [33,34], have been proposed to describe synap-
tic plasticity. Recently, some heuristic firing dynamics
induced by synaptic plasticity have been reported in
neuronal network. For example, Han et al. [23] have
revealed that synaptic plasticity regulated by Oja’s rule
can help synchronization in the electrically coupled
network but impair synchronization in the chemically
coupled one. Zheng et al. [24] have found that there
exists an optimal learning rate which makes the excite-
ment of neuronal network strongest. Kube et al. [33]
have reported that the introduction of spike-timing-
dependent plasticity can modify the weights of synap-
tic connection in such a way that synchronization of
neuronal activity is considerably weakened. Zhang et
al. [35] have investigated the impact of short-term

synaptic plasticity on spike propagation in neuronal
network.

Now how the synaptic plasticity influences the fir-
ing dynamics of neuronal network is becoming a great
concern. However, in most of the researches on neu-
rodynamics in the literature, for the purpose of sim-
plicity and clarity, the synaptic plasticity is ignored
and the weights of synapses among neurons are kept
unchanged. For the objectivity of synaptic plasticity in
neuronal network, exploring the relationship between
synaptic plasticity and the firing dynamics is of great
realistic significance. The focus of this study will be
on the collective bursting dynamics in a modular neu-
ronal networkwith synaptic plasticity. To the best of our
knowledge, there is no attention devoted to this issue
until now. The rest of this study is organized as follows:
Sect. 2 introduces a model of modular neuronal net-
work and quantitative measurements for bursting syn-
chronization. Section 3 illustrates the main numerical
results. The conclusion is presented in Sect. 4.

2 Model presentation and synchronization
measurements

In this section, constructing a modular neuronal net-
work with synaptic plasticity is firstly presented and
then quantitative measurements for bursting synchro-
nization are followed.

2.1 Model presentation

The considered modular network consists of M sub-
networks, each of which is possessed of small-world
property. The sub-network obeys the procedure pro-
posed by Newman and Watts [36], i.e., starting from a
regular ring of N nodes with periodic boundary condi-
tionwhere each node is connected to its k nearest neigh-
bors, and then adding shortcuts between non-nearest
nodes with intra-connection probability pintra. After
generating all the sub-networks, we choose some pairs
of nodes fromdifferent sub-networkswith interconnec-
tion probability pinter and then add links between them.
By doing this, a modular network is constructed. With-
out loss of generality, the parameters of network config-
uration are fixed at M = 2, N = 80, k = 6, pintra1 =
0.1, pintra2 = 0.09, pinter = 0.019 in this study. pintra1
and pintra2 denote the intra-connection probability for
the two sub-networks, respectively.
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When employing the Rulkov map [37] to simulate
the local dynamics of individual neurons, the modu-
lar neuronal network with synaptic plasticity can be
described by the following set of discrete equations:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

xI,i (n + 1) = α/(1 + x2I,i (n)) + yI,i (n)

+ε
∑M

J=1
∑N

j=1 AI,J (i, j)wI,J (i, j, n)H(xJ, j (n) − �)

yI,i (n + 1) = yI,i (n) − βxI,i (n) − γ

�wI,J (i, j) = L ∗ arctan{xI,i (n)[xJ, j (n)

−xI,i (n)wI,J (i, j, n)]}

(1)

in which xI,i (n)(i = 1, 2, . . . , N , I = 1, . . . , M)

represents the membrane potential of neuron i in I th
sub-network and yI,i (n) is the corresponding recovery
variable. The dynamical parameter α directly affects
the spiking-bursting activities of neurons. β and γ

describe the slow time scale. To make the isolated neu-
ron produce chaotic bursting behavior, the parameters
of Rulkov map are chosen as: α ∈ [4.1, 4.4], β = γ =
0.001. ε>0 is the global coupling strength. H(x) ={
0, x ≤ 0
1, x > 0

and the synaptic threshold is selected as

� = 0.0. AI,J(i,j) is a connectivity matrix. In detail,
AI,J(i, j) = AJ,I(j,i) = 1 if neuron i in I th sub-network
is connected with neuron j in J th sub-network, oth-
erwise AI,J(i,j) = AJ,I(j,i) = 0 and AI,I(i,i) = 0.
wI,J(i,j,n) denotes the updated synaptic weights
between neuron i in I th sub-network and neuron j in
J th sub-network. Specifically, wI,J(i,j,n) �= wJ,I(j,i,n)
if there is a connection between neuron i in I th sub-
network and neuron j (i �= j) in J th sub-network,
wI,J(i,j,n) = wJ,I(j,i,n) = 0 otherwise. There is no
self-connection for all neurons, i.e., wI,I(i,i,n) = 0.
�wI,J(i,j) denotes the change in synaptic weight from
neuron i in I th sub-network to neuron j in J th sub-
network. Here a modified Oja’s learning rule is imple-
mented in this modular network through changes in the
strength of synaptic weight between neurons. L repre-
sents the learning rate, which reflects how quickly the
synaptic weights update in response to neuron activa-
tion [21,28].

2.2 Synchronization measurements

To quantitatively describe the degree of bursting syn-
chronization in the modular neuronal network, the
order parameter R is introduced as follows:

R = 1

MN

∣
∣
∣
∣
∣
∣

M∑

J=1

N∑

j=1

eiφJ, j (n)

∣
∣
∣
∣
∣
∣

(2)

where φJ, j (n) indicates the burst phase for neuron j in
the J th sub-network at time n. The burst phase φJ, j (n)

is defined as

φJ, j (n) = 2πk

+ 2π
n − nJ, j,k

n J, j,k+1 − nJ, j,k
(nJ, j,k ≤ n ≤ nJ, j,k+1) (3)

in which nJ, j,k denotes the moment of the kth burst for
neuron j in the J th sub-network. For the synchronized
state, the burst phases nearly coincide; thus, R tends
to unity. In contrast, R ≈ 0 when the burst phases are
weakly correlated. Clearly, larger R implies a higher
degree of bursting synchronization of interacted neu-
rons.

In addition, themeanfield X (n) = 1
MN

∑M
J=1

∑N
j=1

xJ, j (n) can describe the mean membrane potential
of neurons in the modular neuronal network. Higher
degree of bursting synchronization is characterized by
large-amplitude oscillation ofmean field, which results
in larger varianceVar(X)of themeanfield X (n).On the
contrary, small-amplitude fluctuation of the mean field
X (n) as well as the smaller variance Var(X) indicates
lower degree of bursting synchronization. Therefore,
the mean field X (n) together with its variance Var(X)

can be also employed to quantitatively depict the degree
of bursting synchronization.

3 Simulation results

In what follows, how the coupling strength influences
bursting synchronization in the modular neuronal net-
work is firstly investigated when the synaptic weights
among neurons keep constant, then the effect of synap-
tic plasticity on bursting dynamics, particularly the
excitability and synchronizability of bursting neurons,
is discussed. Setting initial conditions of Eq. (1) ran-
domly distributing in the interval of [0,1], numerical
integration of the considered modular neuronal net-
work is carried out by the explicit Euler technique. To
guarantee statistical accuracy, all the following numer-
ical results, except for the spatiotemporal patterns of
the modular network, are obtained by averaging over
20 different realizations.

3.1 Coupling-induced bursting synchronization in the
modular network

Coupling strength can have a dramatic effect on burst-
ing synchronization of interacted neurons. To describe
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Fig. 1 Spatiotemporal
patterns of the modular
network for different values
ε when α = 4.2 and
L = 0.0: a ε = 0.0, b
ε = 0.003, c ε = 0.03, d
ε = 0.07, e ε = 0.1. The
neurons in the modular
neuronal network gradually
burst consistently as the
coupling strength ε is
increased

how the coupling strength affects the neuronal burst-
ing dynamics vividly, Fig. 1 illustrates some typical
spatiotemporal patterns of the modular network when
the synaptic weights among neurons keep constant,
i.e., the learning rate L = 0.0. When neurons are
uncoupled (i.e., ε = 0.0), the spatiotemporal behav-
ior of the modular network, displayed in Fig. 1a,
presents a de-synchronous state for the reason that all
the bursting neurons behave chaotic independently in
the absence of coupling. When the coupling is present
(e.g., ε = 0.003), as shown in Fig. 1b, some neurons
in the modular neuronal network start to burst consis-
tently. With the further increase in coupling strength
(e.g., ε = 0.03, 0.07, 0.1), the spatiotemporal patterns,
displayed in Fig. 1c–e, indicate a near coincidence
between the times when the neurons start bursting and
end bursting, which is a characteristic feature of burst-
ing synchronization.

The qualitative analysis in Fig. 1 implies that cou-
pling strength can induce bursting synchronization in
the modular neuronal network. To account for this phe-
nomenon quantitatively, Fig. 2a depicts the evolution
of order parameter R during the course of coupling
strength ε. From this figure, one can see that R increases
rapidly as ε is increased, and it approaches 1 when ε

exceeds a critical value (ε ≈ 0.03). Meanwhile, the
dependence of variance Var(X) of the mean field X (n)

on coupling strength ε is illustrated in Fig. 2b. As ε is
increased, the increasing trend of Var(X) also verifies
that the coupling is greatly beneficial to induce bursting
synchronization in the modular neuronal network.

The above result is obtained when the local dynam-
ical parameter of Rulkov map is fixed at α = 4.2. Fur-
thermore, Fig. 3 shows the dependence of R andVar(X)

on ε for other values of dynamical parameter such as
α = 4.15, 4.25, 4.3. It is clear that, for various values
of α lying in the interval [4.1, 4.4], the variations of
R and Var(X) with respect to ε are similar to the case
of α = 4.2. That is to say, the coupling strength can
induce bursting synchronization in the modular net-
work, which has certain robustness to the change of
the local dynamical parameter α.

3.2 Effects of synaptic plasticity on excitability and
synchronizability of bursting neurons

Section 3.1 states that coupling strength can make all
the bursting neurons get synchronized when the synap-
tic weights in the modular neuronal network hold con-
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Fig. 2 a The order parameter R and b the variance Var(X) as the function of coupling strength ε when α = 4.2 and L = 0.0. Upon
increasing ε, R and Var(X) increase and R approaches 1 when ε exceeds a critical value
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Fig. 3 a The order parameter R and b the variance Var(X) as the function of coupling strength ε whenα = 4.15, 4.25, 4.3 and L = 0.0.
It is clear that the variations of R and Var(X) with respect to ε are similar to the case of α = 4.2 displayed in Fig. 2

stant. How will the collective bursting dynamics be
changed when the synaptic weights keep updated, i.e.,
the learning rate L �= 0.0? To solve this problem, we
fix the dynamical parameter α = 4.2 and the cou-
pling strength at ε = 0.07, and then illustrate some
typical spatiotemporal patterns together with its corre-
sponding mean field X for different learning rates L .
For comparity, the case for L = 0.0, just as shown
in Figs. 4a and 5a, is also employed. Figures 4b–f
and 5b–f depict the spatiotemporal patterns and the cor-
responding mean fields of the modular neuronal net-

work when the learning rate is L = 0.02, 0.05, 0.08
and 0.1, respectively. A characteristic feature of Figs. 4
and 5 is that more and more bursts appear, and thus the
bursting rhythms of neurons are obviously accelerated
upon increasing learning rate. This result implies the
excitability of bursting neurons is obviously enhanced
by the updated synaptic weights in the modular neu-
ronal network.

Excitability of neurons can reflect how active the
neuronal network is to some extent. In order to
explore the influence of synaptic learning rate on
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Fig. 4 Spatiotemporal
patterns of the modular
network for different
learning rates when
ε = 0.07: a L = 0.0, b
L = 0.02, c L = 0.05, d
L = 0.08, e L = 0.1. As the
L increases, the
spatiotemporal behaviors of
the modular network present
more de-synchronous state
and the bursting rhythms of
neurons are obviously
accelerated

Fig. 5 Mean field of the
modular network for
different learning rates
when ε = 0.07: a L = 0.0,
b L = 0.02, c L = 0.05, d
L = 0.08, e L = 0.1. As L
increases, the amplitude of
mean field gets smaller and
the bursting rhythms of
neurons are obviously
accelerated
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the degree of neuronal excitability in the modu-
lar neuronal network quantitatively, two excitability
indexes, i.e., the average bursting frequency 
 =
1

MN

∑M
J=1

∑N
j=1 [lim

n→∞
(φJ, j (n) − φJ, j (0))/n] and the

average bursting period <I S I> = 1
MN

∑M
J=1

∑N
j=1

TJ, j , are introduced. Here φJ, j (n) and TJ, j denote the
burst phase and the inter-burst interval in the considered
modular neuronal network, respectively.Obviously, the
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Fig. 6 Dependence of a the average bursting rate 
and b the average bursting period <ISI> on the learning rate L when ε = 0.07.
Upon increasing L , 
 increases and <ISI> decreases gradually; moreover, both of them wander at a certain value

larger the average bursting frequency or the smaller
average bursting period, the more excited the neuronal
network is.

Figure 6 depicts the dependence of the two men-
tioned excitability indexes 
 and <ISI> on the learn-
ing rate L with the coupling strength ε being fixed,
respectively. It is clear that alongwith the increase in L ,
the average bursting frequency 
 gradually increases
and then fluctuates around a certain value. Correspond-
ingly, the average bursting period <ISI> gradually
decreases and also wanders at a certain value with
increasing L . It means that the excitability of neu-
ronal can be enhanced by the incorporation of changed
synaptic weights; moreover, the excitability level can
be gradually maintained in a plausible context. The
biological implication of this phenomenon could be
understood as follows. In biological neuronal networks,
the efficacy of synapses is governed by some complex
mechanisms such that it keeps changing in the growth
of neurons together with the learning and memorizing
processes. The modified Oja’s learning rule contained
in Eq. 1 indicates that the change of synaptic weights
in response to neuron activation is dependent on the
synaptic learning rate. During the initial development
period of the brain, the bursting activities of neurons
could be enhanced by the increase in synaptic learning
rate, that is, the updated synaptic weights improve the
excitability of neurons. Meanwhile, the firing activi-
ties of glial neurons regulated by the synaptic learn-
ing rate can suppress excitability of neurons to prevent

over-excitability [23,38]. Thus, the excitability level of
neuronal network can bemaintained in a plausible con-
text under themodulation of changed synaptic weights.
This phenomenon could accord with the brain’s char-
acter and imply that synaptic plasticity is beneficial to
the maturation of brain [23,24,38].

On the other hand, through a careful inspection of
Fig. 4a, one can observe that all bursting neurons are
in a fairly good synchronized state when the synap-
tic plasticity is absent. However, the status of bursting
synchronization is a little depressed with the presence
of synaptic plasticity, as shown in Fig. 4b–e. This phe-
nomenon is also verified by the corresponding mean
field. Compared with the large amplitude of mean field
in the absence of synaptic plasticity, as shown inFig. 5a,
the relative small amplitude of mean field in the case
of different learning rates, as displayed in Fig. 5b–d,
further implies that the updated synaptic weights are a
little disadvantageous to bursting synchronization.

In what follows, the adverse influence of synap-
tic plasticity on bursting synchronization is discussed
detailedly. Figure 7a illustrates the dependence of R
on coupling ε for different learning rates such as L =
0.02, 0.05, 0.08 and 0.1. From these figures, one can
see that the order parameter R in the presence of synap-
tic plasticity is no more than that in the absence of
synaptic plasticity. That is to say, the R–ε curve in the
case of L = 0.0 is not lower than the R–ε curve in
the case of L �= 0.0; moreover, the larger the learning
rate L , the lower the R–ε curve. In order to get a good
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Fig. 7 aTheorder parameter R as a functionof coupling strength
ε for various L . One can see that the larger L , the lower the R–ε
curve. b–d The order parameter R as a function of learning rate

L for fixed coupling strength ε. R is basically decreased with the
increase in L

visual effect, we fix coupling strength (e.g., ε = 0.03)
and depict the relationship of the order parameter R
and the learning rate L in Fig. 7b. Obviously, the order
parameter R is basically decreased with the increase
in learning rate L . As shown in Fig. 7c, d, this phe-
nomenon still appears when the coupling is altered to
other values such as ε = 0.05, 0.07. The above result
indeed implies that the larger learning rate is not favor-
able to bursting synchronization in this modular neu-
ronal network. The less synchronizability of bursting
neuron could be explained as follows. It has been evi-
denced that excitability of bursting neuron is enhanced
by the increase in synaptic learning rate, which might
consume more energy and in turn result in not enough

energy to preserve a fairly good synchronization in the
modular network. In fact, some neurological diseases
such as Parkinson and epilepsy are caused by the patho-
logically strong synchronization of bursting neurons.
Hence, the updated synapticweightmay have great sig-
nificance to modulate such undesirable synchronized
behavior of the neuron population.

4 Conclusion

Note that most of research work on neurodynamics
in the literature has neglected synaptic plasticity and
kept synaptic weights unchanged for simplicity. Thus,
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the issue concerning how the synaptic plasticity influ-
ences the firing dynamics of neuronal network is puz-
zled until now. This study, by constructing a modular
neuronal network with NW small-world sub-networks,
has explored the influence of synaptic plasticity on the
collective bursting dynamics of interacted bursting neu-
rons. The considered synaptic plasticity is described
by a modified Oja’s learning rule. To measure burst-
ing synchronization and firing excitability, we numer-
ically simulate several key indexes such as the order
parameter and the average bursting frequency, and the
results reveal that the learning rate together with the
coupling strength can have remarkable influences on
the bursting dynamics of modular neuronal network.
When the synaptic weights among neurons keep con-
stant, the results evidence that large coupling strength
can induce bursting synchronization in the modular
network, which has certain robustness to the change
of local dynamical parameter. With the incorporation
of synaptic plasticity into the modular neuronal net-
work, i.e., the synaptic weights keep updated, it has
been found that synaptic learning rate can regulate
both excitability and synchronizability of bursting neu-
rons. In detail, the coupling strength induced bursting
synchronization is a little depressed by the addition
of learning rate, i.e., the synchronizability of bursting
neurons is gradually degraded as the learning rate is
increased. Meanwhile, the excitability of neurons is
found to be enhanced by the increase in learning rate;
moreover, the excitability level can be maintained in
a plausible context. The above phenomena indicate
that the emergence of synaptic plasticity can shape
the bursting dynamics in this modular neuronal net-
work significantly. These findings could be expected
to understand the important role of synaptic plasticity
on neural coding in biological neural networks.
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