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Abstract Derived from Sine map and an iterative
chaotic map with infinite collapse (ICMIC), a new
high-dimensional hyperchaotic map, sinusoidal feed-
back Sine ICMICmodulation map (SF-SIMM), is pro-
posed. Two-dimensional (2D) model of SF-SIMM is
investigated as an example, and its chaotic perfor-
mances are evaluated. Results show that it has com-
plicated phase space trajectory, infinite equilibrium
points, hyperchaotic behaviors, rather large maximum
Lyapunov exponent, three typical bifurcations andmul-
tiple coexisting attractors with odd symmetry. Fur-
thermore, it has advantages in complexity, distribution
characteristics and zero correlation and can generate
two independent pseudo-random sequences simultane-
ously. Therefore, it has good application prospects in
secure communication.

Keywords Hyperchaotic · Sine map · ICMIC ·
Lyapunov exponents · Permutation entropy

1 Introduction

Existing chaotic maps can be classified into two cate-
gories: one-dimensional (1D) and HD chaotic maps. A
1D chaotic map has a few parameters and one variable,
such as the Logistic, Tent, Chebyshev and Sine maps
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[1]. Due to the advantages of complexity [2,3], imple-
ment efficiency, and simplicity of implementation, they
have been widely applied to cryptography [4–6] and
chaotic spread-spectrum communications [7]. How-
ever, with the development of Internet and cloud com-
puting technology, a 1D chaotic map-based encryption
system with simple orbits and small parameters space
cannot ensure the information security [8–10], because
its trajectories, parameters and initial conditions may
be predicted by chaotic signal estimation technologies
[11,12]. Compared with 1D chaotic map, HD chaotic
map, especially hyperchaotic map, has more compli-
cated structure and better chaotic performance. Exam-
ples include Arnolds [13], Hénon [14] and Folded-
Towel [15] maps, etc. However, their hardware imple-
mentations are more expensive.

In recent years, researchers have proposed some
new or enhanced chaotic maps by methods like mod-
eling [16], system cascading [17], dimension expan-
sion [18–21] and so on [22,23]. Some of them are
derived from 1D chaotic map, while others are based
on some special physicalmodes. For example, Sheng et
al. [16] proposed a tangent-delay ellipse reflecting cav-
ing map system (TD-ERCS) by establishing a physical
model of elliptical reflecting cavity. It has high com-
plexity and zero correlation in total parameter range,
but its structure is rather complex. Wang et al. [17]
proposed Logistic-Logistic (LL), Logistic-Cubic (LC)
and Logistic-Tent (LT) maps and proved that the cas-
cade chaos can increase the LEs values, but their itera-
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tion costs are also increased. Li et al. [18] extended the
1D-Chebyshev into 2D-Chebyshev without any cou-
pling between two equations. Thus, it cannot enhance
the system complexity.Wu et al. [19] extended the clas-
sical 1D-Logistic map into 2D-Logistic by establishing
a closed-loop coupling mechanism, which can further
enhance the system complexity and hold a simple struc-
ture. Based on this method, Hua et al. [20] proposed a
2D Sine Logistic modulation map (2D-SLMM), and
it has hyperchaotic behavior, but its MLE is relatively
small. To address these problems, it is significant to
design a chaotic map to meet the following require-
ments: high system dimension, excellent chaotic per-
formances and a relative low iteration cost.

Complexity measure is an important indicator to
analyze dynamics of a chaotic system. Currently, com-
plexity measure methods include Kolmogorov entropy
(KE) [24], approximate entropy (ApEn) [25], fuzzy
entropy (FuzzyEn) [26] and permutation entropy (PE)
[27], etc. Among them, PE algorithm is a proper choice
to assess complexity of a time series because of its
simplicity, extremely fast calculation, robustness and
invariance to nonlinear monotonous transformations,
and it is applied to measure the complexity of biomed-
ical signals [28].

This paper focuses onhow to construct a chaoticmap
with better performance. Derived from Sine map and
ICMIC [29], SF-SIMM is obtained based on a closed-
loopmodulation coupling pattern. The rest of this paper
is organized as follows. The mode of SF-SIMM is
presented in Sect. 2. In Sect. 3, performances of 2D
SF-SIMM are assessed by means of attractors, equi-
librium points, Lyapunov exponent spectrum, bifurca-
tions, complexity, distribution characteristic and cor-
relation. Finally, we summarize results and indicate
future directions.

2 Model of SF-SIMM

Consider an m-dimensional discrete-time system with
a control parameter ω:

X (n + 1) = A f [xm(n), X (n + 1), ω], (1)

where X (n) = [x1(n), x2(n), . . . , xm(n)]T with order
m ≥ 2, and A is am×m controlmatrix. f [xm(n), X (n+
1), ω] is an uniformly boundednonlinear feedback con-
troller, which is given by

f [xm(n), X (n + 1), ω]

=

⎛
⎜⎜⎜⎜⎜⎝

f1[x1(n + 1), ω]
f2[x2(n + 1), ω]

...

fm−1[xm−1(n + 1), ω]
fm[xm(n), ω]

⎞
⎟⎟⎟⎟⎟⎠

, (2)

where ω = [ω,ω, . . . , ω]T. Here, to hold a simple
structure, f [xm(n), X (n + 1), ω] is chosen to the Sine
map function, i.e.,

fi [xi (n), ω] = sin[ωxi (n)], i = 1, 2, . . . ,m. (3)

Firstly, there are different patterns to establish a cou-
pling mechanism between any two equations in system
(1) for different forms of the control matrix A. Follow-
ing the closed-loop coupling method reported in Ref.
[30], A is chosen as the following form with a control
parameter a:

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0 a
a 0 · · · 0 0

0 a
. . .

...
...

...
... a 0 0

0 0 · · · a 0

⎞
⎟⎟⎟⎟⎟⎟⎠

m×m

. (4)

Secondly, a diagonal matrix B is applied to modu-
late the output of system (1) to enhance its nonlinearity
and randomness. According to the rules above and Eqs.
(1–4), a general form of the abovem-dimensional con-
trolled system is obtained as

X (n + 1) = BA f [xm(n), X (n + 1), ω], (5)

where B = Diag{g[x1(n), c], g[x2(n), c], . . . ,
g[xm(n), c]}.

Finally, to ensure the solution of system (5) to be
bounded uniformly, g(·) is chosen to be the ICMIC
function [29], i.e.,

gi [xi (n), c] = sin[c/xi (n)], i = 1, 2, . . . , m. (6)

It follows from Eqs. (5) and (6) that
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⎛
⎜⎜⎜⎝

x1(n + 1)
x2(n + 1)

...

xm(n + 1)

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

sin[c/x1(n)] 0 · · · 0
0 sin[c/x2(n)] · · · 0
...

...
. . .

...

0 0 · · · sin[c/xm(n)]

⎞
⎟⎟⎟⎠

m×m

×

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0 a
a 0 · · · 0 0

0 a
. . .

...
...

...
... a 0 0

0 0 · · · a 0

⎞
⎟⎟⎟⎟⎟⎟⎠

m×m

⎛
⎜⎜⎜⎜⎜⎝

sin[ωx1(n + 1)]
sin[ωx2(n + 1)]

...

sin[ωxm−1(n + 1)]
sin[ωxm(n)]

⎞
⎟⎟⎟⎟⎟⎠

.

(7)

According to Eq. (7), the state equations of the m-
dimensional controlled system are
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x1(n + 1) = a sin[ωxm(n)] sin[c/x1(n)]
x2(n + 1) = a sin[ωx1(n + 1)] sin[c/x2(n)]

...

xm(n + 1) = a sin[ωxm−1(n + 1)] sin[c/xm(n)]
,

(8)

where a, ω, c are system parameters, and a, ω, c ∈
(0,+∞). The closed-loop modulation coupling model
of system (8) is established as shown in Fig. 1. It shows
that ICMIC Gi+1 is employed to modulate the output
of Sine map Fi by a simple multiplication operation,
i = 1, 2, . . . ,m − 1, and G1 is employed to modulate
the output of Fm . So all equations in system (8) are
coupled in a closed loop. Furthermore, since Sine map
is used in feedback controller, system (8) is named as
SF-SIMM.

3 Performances analysis of 2D SF-SIMM

In this section, performances of SF-SIMM are ana-
lyzed. To simplify research, we focus on the following
2D model (2D-SIMM):

{
x(n + 1) = a sin[ωy(n)] sin[c/x(n)]
y(n + 1) = a sin[ωx(n + 1)] sin[c/y(n)] , (9)

where x, y are the state variables of the system. a is
the amplitude. ω is the frequency. c is the internal per-

Fig. 1 Closed-loop modulation coupling model of SF-SIMM

Fig. 2 Attractor of 2D-SIMM with a = 1, ω = π and c = 3

turbation frequency. It is worth noting that xn, yn �= 0.
Otherwise, system (9) is meaningless. Thus, the initial
condition x0, y0 �= kπ or c/kπ , k ∈ N . In addition,
when a = 1, ω = π and c = 3, the system is hyper-
chaotic as shown in Fig. 2 with Lyapunov exponents
(LEs) (3.8307, 2.7737) and Lyapunov dimension (LD)
8.6044.
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Fig. 3 Attractors of 2D-SIMM with different parameters a a = 2, ω = π , c = 0.5. b a = 2, ω = π , c = 1. c a = 2, ω = π , c = 3. d
a = 2, ω = π , c = 5. e a = 2.5, ω = π , c = 5. f a = 3, ω = π , c = 5

3.1 Attractors

The attractors of 2D-SIMM with different parameters
are shown in Fig. 3. When a = 2, ω = π , and c
varies from 0.5 to 5, the attractor of system distributes
in a larger region, and its density lines decrease as
shown in Fig. 3a, c, which indicates the ergodicity
and randomness of system increase with c increas-
ing. When c = 5, all density lines disappear in the
evolution region. Furthermore, Fig. 3d–f shows that
x, y ∈ [−a, a], and there are two sinusoidal border-
lines differing T/2 phase with amplitude a and angular
frequency ω as follows.

{
Y1 : y = a sin(ωx)
Y2 : y = a sin(ωx + T/2)

, (10)

where T = 2π/ω, and �ϕ = T/2 = π/ω. Here,
we define that the region with Y1 and Y2 as dou-
ble sinusoidal cavities (DSCs). Obviously, there are
4a/T = 2aω/π DSCs within Y1 and Y2 at [−a, a].

3.2 Equilibrium points

The equilibrium points of 2D-SIMM are calculated by

{
x = a sin(ωy) sin(c/x)
y = a sin(ωx) sin(c/y)

, (11)

where x �= 0, y �= 0. Because of the reflexivity
between x and y in Eq. (11), it is equivalent to calculate
the intersection points of the following two lines.

{
Y3 : y = x
Y4 : y = a sin(ωx) sin(c/x)

. (12)

As it is shown in Fig. 4, the red cycles represent the
intersection points of Y3 and Y4 (equilibrium points).
Obviously, when a = 1, ω = 1 and c = 3, the system
has no equilibrium point as shown in Fig. 4a. However,
whenω just increases to 1.01, it has infinite equilibrium
points as shown in Fig. 4b. Furthermore, according to
Fig. 4c, the collapses number of Y4 and equilibrium
points increase with the increase of c.
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Fig. 4 Equilibrium points of 2D-SIMM with different parameters a a = 1, ω = 1, c = 3. b a = 1, ω = 1.01, c = 3. c a = 1,
ω = 1.01, c = 10

Theorem 1 When aω > 1, 2D-SIMM has infinite
equilibrium points Sk = (xk, yk)(k = 1, 2, . . .).

Proof According to Eq. (12), and supposing F(x) =
x − asin(ωx)sin(c/x), the equilibrium point is calcu-
lated by

{
y = x
F(x) = 0

. (13)

When x > 0, and supposing Ak = c/(2kπ), Bk =
c/[π(0.5 + 2k)] < Ak, (k = 1, 2, . . .), then F(Ak) =
Ak > 0, and F(Bk) = Bk − asin(ωBk). To determine
the sign of F(Bk), and assumingG(x) = x−asin(ωx),
then G ′(x) = 1 − aωcos(ωx). It is easy to know that
G(0) = 0 and G ′(0) = 1 − aω < 0. So, ∃ε > 0,
when x ∈ (0, ε), G(x) < 0. Interestingly, there are
countless Ak , Bk ∈ (0, ε) meeting the conditions of
F(Bk) = G(Bk) < 0 and F(Ak)F(Bk) < 0 when
k ≥ C (C is the minimum k meeting the conditions
of Bk < ε). Therefore, there are infinite equilibrium
points where xk = yk ∈ (Bk, Ak) (k = C, C + 1, …)
according to the Zero-point Theorem.

When x < 0, a same conclusion can be obtained. �	

Theorem 2 When aω ≤ 1, 2D-SIMM has no equilib-
rium point.

Proof According to the above analysis, it is equivalent
to prove that Eq. (13) has no solution. When x > 0,
since

F(x) = x − a sin(ωx) sin(c/x)
≥ x − a| sin(ωx)| · | sin(c/x)|
> x(1 − aω) ≥ 0

, (14)

F(x) > 0 is true constantly. SoEq. (13) has no solution.
When x = 0, F(x) is pointless. When x < 0, since

F(x) = x − a sin(ωx) sin(c/x)
≤ x + a| sin(ωx)| · | sin(c/x)|
< x + a|ωx | = x(1 − aω) ≤ 0

, (15)

F(x) < 0 is true constantly. So it has no solution too.
�	

3.3 Lyapunov exponent spectrum and bifurcations

As is well known, Lyapunov exponent spectrum and
bifurcation diagram are the major indicators for dif-
ferent dynamical states, and LEs are employed to
measure the exponential rates of convergence and
divergence of nearby trajectories in state space. By
using the QR decomposition method, two LEs λ1
and λ2 of 2D-SIMM are calculated with following
cases.

1. Amplitude a varies

When ω = π, c = 3, LEs versus a and the cor-
responding bifurcation diagram are shown in Fig. 5,
where the range of amplitude variable is a ∈ (0, 4]
with an increment of �a = 0.01. It shows that 2D-
SIMM is hyperchaotic when a ∈ (0.676, 0.704] ∪
(0.82, 1.684]∪(1.804, 1.932]. However, when a varies
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Fig. 5 LEs and bifurcation
diagram of 2D-SIMM with
ω = π , c = 3 a LEs versus
a ∈ (0, 4]. b Bifurcation
diagram versus a ∈ (0, 4]

Fig. 6 LEs and bifurcation
diagram of 2D-SIMM with
a = 1, c = 3 a LEs versus
ω ∈ (0, 5]. b Bifurcation
diagram versus ω ∈ (0, 5]

from 1 to 4, λ2 decreases, and the corresponding λ1
is stable. So it eventually degenerates into chaos at
a = 1.932. Furthermore, there are several apparent
periodic windows at the ranges a ∈ (0.704, 0.82] ∪
(1.648, 1.804] ∪ (2.636, 2.884].
2. Frequency ω varies

When a = 1, c = 3, LEs versus ω and the cor-
responding bifurcation diagram are shown in Fig. 6,
where the range of frequency variable is ω ∈ (0, 5]
with an increment of �ω = 0.01. It shows that the
system is divergent when ω ∈ (0, 2], and it enters into
hyperchaos when ω > 2.

3. Internal perturbation frequency c varies

When a = 1, ω = π , LEs versus c and the cor-
responding bifurcation diagram are shown in Fig. 7,
where the range of internal perturbation frequency
variable is c ∈ (0, 5] with an increment of �c =
0.01. It shows that the system is chaotic when c ∈
(0.840, 1.076]. After that, it is hyperchaotic in most of
the range c except a periodic window at (3.196, 3.256].
Furthermore, both the values of two LEs become larger
when c is close to 5.

To observe the bifurcation behaviors, a periodic
window is expanded with steps of 0.001 as shown
in Fig. 8. Two sets of asymmetrical initial conditions
(−0.7, −0.7) and (−0.8, −0.8) are selected for visual-
izing the pitchfork bifurcation, and the corresponding
bifurcation diagram is plotted in blue and red in Fig.
8b, respectively. Obviously, three kinds of bifurcations
exist in [0.7, 0.9], including a pitchfork bifurcation at
c ∼= 0.734, a period-doubling bifurcation at c ∼= 0.830,
and a tangent bifurcation at c ∼= 0.836.

Interestingly, multiple coexisting attractors occur
in this system. To study the phenomenon of multiple
attractor bifurcations, the single scalar definition of an
attractor is described as follows [31].

〈
r2x

〉
= lim

N→∞
1

N

N∑
i=1

(xi − xr )
2, (16)

〈
r2y

〉
= lim

N→∞
1

N

N∑
i=1

(yi − yr )
2, (17)

which are the mean square deviations of attractor from
the reference point (xr , yr ) projected onto x, y-axis,
respectively. The computation of Eqs. (16) and (17)
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Fig. 7 LEs and bifurcation
diagram of 2D-SIMM with
a = 1, ω = π a LEs versus
c ∈ (0, 5]. b Bifurcation
diagram versus c ∈ (0, 5]

Fig. 8 LEs and bifurcation
diagram of 2D-SIMM with
a = 1, ω = π a LEs versus
c ∈ [0.7, 0.9]. b Bifurcation
diagram versus c ∈ [0.7,
0.9]

for different realizations of initial conditions gives dif-

ferent values of
〈
r2x

〉
or

〈
r2y

〉
clustering around distinct

values, which indicate the multiple coexisting attrac-
tors. Abrupt change in its slope or value as a param-
eter indicates a discontinuous or continuous bifurca-
tion, respectively. Here, (1, 1) is taken as the refer-
ence point, and initial conditions are chosen from a
normal random distribution with mean 0 and variance
1.

Figure 9 shows multiple coexisting attractors in 2D-
SIMM with a = 1, ω = π , and c = 0.839 and
3.15, respectively. Obviously, there exist two pairs of
odd symmetric attractors 1, 2 and 3, 4 in the system
when c = 0.839, and all attractors are limit cycles
with 2 or 6 periods as shown in Fig. 10, where the ini-
tial conditions are (x0, y0) = (−1, −0.8), (−1, −0.9),
(−1,−0.2) and (−0.8,−1), respectively. Furthermore,
limit cycles and chaotic attractors coexist when c =
3.15.

3.4 Complexity analysis

For the PE calculation algorithm, given a time series x
with a length N , each time series x is mapped into an

Fig. 9 Multiple coexisting attractors in 2D-SIMM with c =
0.839 and c = 3.15

n dimension space, and vectors Xi starting from time
point i are constructed by selecting n equally spaced
samples from x :

Xi = [x(i), x(i + τ), . . . , x(i + (n − 1)τ )]T, (18)

where n is the embedding dimension, and τ is the
time lag. Then Xi are reshaped in an increasing order,
and a new time series Xri with a symbol vector π =

123



2528 W. Liu et al.

Fig. 10 Four coexisting attractors in 2D-SIMMwitha = 1, ω =
π, c = 0.839

[i1, i2, . . . , in]T is obtained as

Xri = [x(i + (i1 − 1)τ ), x(i + (i2 − 1)τ ), . . . ,

x(i + (in − 1)τ )]T, (19)

where π is the time sequence. The frequency of each
possible π occurrence is indicated as P(π), which is
normalized by N − (n − 1)τ . Therefore, PE is defined
by

H(n) = −
n!∑
i=1

P(πi ) log P(πi ), (20)

where n! is the number of the possible permuta-
tions. Theoretically, since H(n) can maximally reach
log(n!), Eq. (20) is generally normalized as

h(n) = H(n)/ log(n!). (21)

In our experiments, PE of 2D-SIMM is calculated
versus a, ω and c with n = 5 and τ = 1. Results are
shown in Fig. 11a–c, respectively. As it is shown, PE
of the system holds a less value in periodic windows,
and it is close to the ideal value 1 for chaos. In addi-
tion, PEs of 2D-SIMM, 2D-SLMM, 2D-Logistic, Sine
and Logistic maps versus their parameters are shown
in Fig. 11d. Obviously, 2D-SIMM has larger PE com-
plexity than that of others in most of the parameter
range.

By using three different initial conditions, PEs of
some typical chaoticmaps are illustrated inTable 1, and
their average values PE are calculated subsequently.
Five ranks are applied to assess the PE complexity of
these systems, including rank 1∼rank 5: [0.9, 1], [0.8,
0.9),…, [0.5, 0.6). Obviously, 2D-SIMM, ICMIC, TD-

Fig. 11 PE distributions of
2D-SIMM with a
ω = π, c = 3, b
a = 1, c = 3, and c
a = 1, ω = π . d PE
distributions of 2D-SIMM
(a), 2D-SLMM (α) and the
2D-Logistic (r − 0.2), Sine
(a0) and Logistic (u/4)
maps
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Table 1 PE of different chaotic maps

Name Parameters PE1 PE2 PE3 PE Rank

2D-SIMM a = 1, ω = π, c = 3 0.986 0.985 0.985 0.985 1

2D-SLMM [20] α = 1 0.721 0.727 0.718 0.722 3

2D-Logistic [19] r = 1.18 0.652 0.644 0.645 0.647 4

ICMIC [29] c0 = 3 0.944 0.944 0.939 0.942 1

Logistic [19] u = 4 0.678 0.680 0.680 0.679 4

Sine [20] a0 = 1, ω0 = π 0.672 0.666 0.669 0.669 4

Hénon [14] a = 1.4, b = 0.3 0.618 0.618 0.612 0.616 4

Folded-Towel [15] a = 3.8, b = 0.2 0.567 0.560 0.565 0.564 5

TD-ERCS [16] u = 0.712,m = 1 0.910 0.904 0.907 0.907 1

LT [17] u = 4, a = 2 0.945 0.941 0.942 0.943 1

Fig. 12 The static η of 2D-SIMM with a ω = π, c = 3, b a = 1, c = 3, and c a = 1, ω = π

ERCS and LT have better PE complexity than that of
other chaotic maps. Furthermore, although they belong
to the same level, PE of 2D-SIMM is up to 0.985,
which is the largest.

3.5 Distribution characteristics

Ergodicity is a remarkable characteristic of chaos.
In the limited number of iterations, chaotic sequence
should distribute as possible as throughout the range
of the variables. Here, the statistics of χ2 test (η) is
used to measure the even distribution characteristic of
2D-SIMM, which is given by

η =
m∑
i=1

mv2i

n
− n, (22)

where n is the number of sampling points. m is the
number of smallest interval and vi is the frequency
in i-th interval. Obviously, the smaller the statistical
result is, the better its probability distribution is. In our
experiments, the test is carried out with m − 1 = 50,
n = 105. Figure 12 shows the statistic η of 2D-SIMM
with different parameter values. As is shown in Fig.
12a, b, the statistic η decreases with the increasing of
parameter a or ω. Considering that we have obtained a
conclusion that the number of DSCs is 2aω/π ∝ aω

in Sect. 3.1, we can conclude that the distribution of
2D-SIMM is more uniform when the number of DSCs
is larger. As is shown in Fig. 12c, the statistic η tends to
stable with the increasing of parameter c, and its value
is less when c is small. Thus, we choose parameters
(a, ω, c) = (4, 5π, 3) to calculate the statistic η of 2D-
SIMM as shown in Table 2, and the parameter values
of other chaotic maps are listed as shown in Table 1.
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Table 2 η of different chaotic maps

2D-SIMM 2D-SIMM 2D-Logistic Logistic Sine

2,655 31,268 11,604 60,614 66,359

Fig. 13 Probability density
curves of 2D-SIMM with a
a = 1, ω = π, c = 3. b
a = 4, ω = 5π, c = 3

Fig. 14 Cross-correlation
coefficient curves of
2D-SIMM with a = 1 and
b = π a R1 curve of
2D-SIMM. b R2 curve of
2D-SIMM

It shows that the statistic η of 2D-SIMM is less over 4
times than that of other maps.

In addition, the probability density curve of 2D-
SIMM with a = 1, ω = π and c = 3 is shown in Fig.
13a. As is shown, the probability distribution of 2D-
SIMM is not very ideal because the probability density
is much large when |x | is close to 0. However, when
parameters (a, ω) are increased to (4, 5π), the prob-
ability density curve tends to uniform distribution as
shown in Fig. 13b, and its value is close to the ideal
value 1/(m − 1) = 0.02.

3.6 Correlation analysis

The sensitivity to initials of chaotic systems is shown
as the zero correlation between two adjacent iterative
evolution sequences. The correlation is measured by
the cross-correlation coefficient (R):

R =

N∑
i=1

(xi − x̄)(yi − ȳ)

√
N∑
i=1

(xi − x̄)2
N∑
i=1

(yi − ȳ)2

(23)

Table 3 R1 and R2 for different chaotic maps

2D-SIMM 2D-SLMM 2D-Logistic Logistic Sine

R1 0.0107 −0.2517 −0.0660 −0.0083 0.0614

R2 -0.0044 −0.1517 0.5243
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where xi and yi represent the i-th pair of adjacent
iterative sequences. x and y represent the average of
sequence x and y, respectively. For 2D-SIMM, R of
x(i) and x(i + 1)(R1) versus parameter c, and the
corresponding R of x(i) and y(i)(R2) are shown in
Fig. 14. The average of R1 and R2 of 2D-SIMM are
6.6059 × 10−4 and −2.1733 × 10−4, respectively,
which are close to the ideal value 0 in total parame-
ter range. The corresponding mean square errors are
1.8242× 10−4 and 2.2423× 10−4, respectively. Thus,
each sequence of 2D-SIMM can be used as separate
keys. In addition, from Table 3, we find that both the
values of R1, R2 of 2D-SIMM are smaller than that of
other chaotic maps with the parameter values as listed
in Table 1.

4 Conclusions

In this paper, a newHDchaoticmap called SF-SIMM is
proposed by employing a closed-loop modulation cou-
pling pattern. It is derived from Sine map and ICMIC.
Taking 2D-SIMM as an example, the basic dynamics
of this map are analyzed by using LEs and bifurcation
diagrams, which demonstrate hyperchaotic behaviors
in the system. With the change of the internal pertur-
bation frequency c, the system exhibits chaos, hyper-
chaos, multiple coexisting attractors and three typical
bifurcations. So it has more complex dynamical behav-
iors than that of the original maps. Furthermore, this
map has high complexity, uniform distribution and zero
correlation in total parameter range. Future works will
include its application in engineering such as pseudo-
random sequence generator and image encryption.
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