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Abstract In this paper, based on a proposed MIMO
hybrid dynamical system of underwater vehicle and its
actuators, a robust composite adaptive fuzzy controller
is presented. The proposed method employs voltage
control effort, which is more efficient than the torque
control strategy. Also it is very simple, efficient and
robust. Based on adaptive fuzzy method and the pre-
diction error between the system states and the serial–
parallel estimation model, a composite adaptive fuzzy
law that uses the modeling error as input is constructed
to adaptively compensate the unknown uncertainties
and disturbances of the system. In addition, the pro-
posed scheme is able to estimate the lumped uncertain-
ties with large amplitude and high frequency. Stability
of the proposed method is shown based on Lyapunov
approach. The proposed control scheme is not limited
only to control of the underwater vehicles, but can be
applied for a class of nonlinear MIMO systems with
square and non-square control gains.
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1 Introduction

Underwater vehicles can be found in many different
designs, dimensions, speeds and special abilities, and
are built for a wide range of applications, e.g., sub-
marines, autonomous underwater vehicles (AUVs) and
remotely operated underwater vehicles (ROVs). Stabi-
lization and tracking control is one of the most essen-
tial parts of an underwater vehicle. They are nonlinear
systems, and due to the uncertainties and disturbances,
their good tracking performance always is an impor-
tant control task. In the past years, several control tech-
niques have been developed for the underwater vehicles
[1–13].

Majority of control methods of underwater vehi-
cles are based on the conventional torque control [1–
3,6,11,13]. In this method, the most important prob-
lem is that the dynamics of actuators for providing the
desired torques are omitted and therefore the control
signals cannot be applied directly to the inputs of actu-
ators for driving the underwater vehicles. To resolve
this problem, voltage/current-based control input has
been presented in this paper, in order to control electri-
cally driven of the underwater vehicles. In fact, since
the underwater vehicles are driven by electrical actu-
ators their actuator thrusters must be controlled. The
electrical inputs of actuated thrusters are controlled by
voltage/current employed on the motor inputs.

Another important issue in the control of the under-
water vehicles is the uncertainties. The uncertainty can
include parametric uncertainty, external disturbance
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forces and un-modeled dynamics. By combining an
adaptive fuzzy scheme and robust control term, in this
study, a novel adaptive fuzzy control scheme is pro-
posed to approximate the uncertainties and also a robust
controller is applied to attenuate the effect of fuzzy
approximation error in tracking control.

In recent years, fuzzy logic system has been applied
in wide application for numerous products and indus-
trial purposes. Wang presented a general analysis of
control scheme for a class of nonlinear systems [14].
Combination of the adaptive arrangement and fuzzy
system is a powerful control method for designing
robust control approach with known/unknown uncer-
tainties and nonlinearities [15].

Two types of adaptive fuzzy controllers are com-
monly researched: indirect and direct adaptive fuzzy
methods. Indirect adaptive fuzzy control scheme is
applied to estimate the unknown dynamic functions of
the system, so indirect fuzzy controllers are designed
by these estimators. Direct adaptive fuzzy controller
directly originates to emulate an ideal controller with-
out determining the model of the unknown dynamic
functions. Recently, numerous adaptive fuzzy meth-
ods have been employed for a class of SISO [14–
19] and also MIMO [20–26] nonlinear uncertain sys-
tems. In the adaptive fuzzy approaches, the control
methods are generally formed of a fuzzy logic sys-
tem for main adjustment and a usual typical com-
pensator, such as sliding mode control [1,2]. In these
cases, in order to decrease the chattering effect of slid-
ing term some techniques are used such as a bound-
ary layer [20], H∞ control [14,15], using a combina-
tion of the two types of sliding mode control and H∞
control [22], robust PI control [19], supervisory con-
trol [17], tangent hyperbolic robust function [10], two-
mode control [16] and fractional-order sliding mode
controller [18]. Also, many adaptive fuzzy methods
have been utilized for underwater vehicles [1,2,10–13].
In this study by combining a composite adaptive fuzzy
(CAF) scheme and a robust control term, a robust con-
troller is suggested for the proposed MHDS of under-
water systems to dispel the uncertainties and distur-
bances.

Robustness and stability of the closed-loop systems
are usually guaranteed by robust compensators. There-
fore based on [14], it is possible that the robust com-
pensator term becomes main controller and plays an
extra role than the adaptive fuzzy controller; hence, the
composite adaptation can be applied to solve this prob-

lem. The basic aim for use this method is a faster and
smoother adaptation technique using both the tracking
and prediction errors.

In Ghavidel and Kalat [14], have presented a CAF
approach that estimates the system uncertainties very
well, also guarantees stability of the closed-loop system
and provides a good tracking performance. In [14,27–
29], a CAF method has been used for a class of SISO
and in [24] for a class of MIMO systems. Also in
[30–32], a composite adaptive back-stepping has been
developed for a class of non-affine MIMO nonlinear
systems.

The adaptive fuzzy control approaches are created
from some fuzzy IF–THEN rules afforded by human
expert knowledge. Then, in the adaptive fuzzy con-
trollers that inputs of fuzzy system are the state vari-
ables, the fuzzy controller may not converge to the
desired function. In [14,15], authors have presented
an adaptive fuzzy system that uses the feedback error
signals instead of the state variables as input in the
adaptive fuzzy controller, which provides a good track-
ing performance. In this paper, a fuzzy logic system is
utilized that uses the dynamics of the modeling error
instead of the state variables as input in the adaptive
fuzzy approximator. Indeed, in order to achieve a good
estimation of uncertainties, to achieve a smaller track-
ing error, and also to decrease the number of fuzzy
sets and rules, as the inputs of fuzzy approximator are
selected the modeling errors instead of the state vari-
ables.

There may be several assumptions in the simplified
models for decoupled single-DOF dynamical systems
[1–3,7,9–12]. In this paper, a more precise MIMO six-
DOF model for an accurate control of the underwa-
ter system is proposed (i.e., a second-order dynamical
model for each DOF). Indeed, by the both underwater
vehicles and actuator models, the voltage control input
is directly available for control.

Note that the torque control efforts cannot be used
directly to the inputs of the actuators for driving the
underwater vehicles (e.g., the voltage inputs of the actu-
ators DC motors). In order to control the underwater
systems, the control signalmust be applied to the actua-
tors. The most important problem of the torque control
method is that the dynamics of actuators for provid-
ing the desired torques are omitted. In the torque con-
trol method, the control problem may become more
complicated, since it consists of two steps: first, torque
control should be designed and then the estimate of
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a control signal for the actuator inputs would be pro-
posed. The control of underwater system by the torque
methods becomes more complicated when the actua-
tors are in the presence of external disturbances and
uncertainties. Furthermore, in order to estimate the
control effort of actuators based on the torque meth-
ods, there may be several assumptions to find a proper
relation between torque and voltage/current inputs,
e.g., the motor viscous friction, motor inductance and
ambient fluid velocity are considered worthless, vehi-
cle is moving at low speed, all rotational mechanical
dynamics and motor electrical dynamics are ignored,
etc. To solve this problem, by the proposed MHDS
of underwater vehicle and its actuators, in this paper
an input control method of actuators can be presented
to control electrically driven of the underwater
vehicles.

Moreover, by applying adaptive fuzzymethod in the
proposed MHDS, if we do not use sensor for the actu-
ator thrusters (e.g., speed sensors for measuring the
propeller speed of electrical thruster), then we have a
sensorless control of the actuator thrusters (e.g., esti-
mation of the vehicle position is independent of the
propeller speed sensors).

Briefly, compared with the existed results, the main
advantages of the proposed control scheme are as fol-
lows:

(1) The proposed control scheme is not limited only
to control of the underwater vehicles, but can be
applied for a class of nonlinear MIMO systems
with square/non-square control gain matrices.

(2) In the proposed control method, the voltage con-
trol input is directly available for control of under-
water vehicle. (Note that voltage control design
based on the torque control method may become
more complicated, since it can consist of two
steps).

(3) By the proposed MHDS, it is possible to reduce
computations complexity, while providing a good
and robust tracking performance. In other words,
the dynamical effects and uncertainties of the both
underwater vehicle and actuators system can be
compensated by the proposed control method.

(4) By the sensorless control of the actuator thrusters,
it seems that the implementation of the proposed
method is simpler and production cost is less.

(5) In order to improve the approximation of uncer-
tainties by adaptive fuzzy algorithm, and also to

reduce the number of fuzzy sets and rules, in this
paper we employ a CAF control method that uses
the modified modeling error signals instead of the
state variables as input in the CAF. Note that the
basic idea of the CAF method for a good estima-
tion of uncertainties is introduced by authors in
[14].

(6) In [20,25], in order to solve the singularity prob-
lem, a complex robust control term is proposed,
while in this paper we propose a very simple and
efficient robust control term.

This paper is organized as follows: In Sect. 2, the
dynamic model of underwater vehicle and its actuators
is expressed. In Sect. 3, the MHDS control strategy
of the underwater system is described. In Sect. 4, the
control system and description of the CAFL scheme
is presented. In Sect. 5, simulation examples are pro-
vided to demonstrate the performance and feasibility
of the proposed scheme. Sect. 6 concludes the main
advantages of the proposed method.

2 Dynamic of underwater vehicle and its actuators

2.1 Underwater dynamic model

In this section, the nonlinear underwater system with
the presence of uncertainties is described. A general
dynamic model for the underwater vehicle is used in
[33,34]. The general motion of the underwater vehicle
can be explained by using a body-fixed frame relative to
an earth-fixed frame. On this basis, this transformation
can be represented by

ẋ = J (x) v (1)

where v = [
vx , vy, vz, vφ, vθ , vψ

]T is the vector of
linear and angular velocities in the body-fixed reference
frame, x = [x, y, z, φ, θ, ψ]T represents the position,
and J (x) is the Jacobian transformation matrix.

The general equation of motion for the underwater
vehicle can be written as

Mv̇ + C (v) v + D (v) v + g (x) + η (t) = τ (2)

where M ∈ �6×6 is the mass inertia matrix including
added mass term and rigid body term, C (v) ∈ �6×6 is
the centripetal and Coriolis matrix, D (v) ∈ �6×6 rep-
resents the hydrodynamic quadratic damping, g (x) ∈
�6 is the gravitational and buoyancy vector, η (t) ∈ �6

is an external disturbance vector and τ ∈ �6 is the
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vector of total thrust input vector consisting of control
forces and moments.

Details on the matrices J (x), M, C (v), D (v) and
g (x) operated for a model of underwater vehicle have
been presented in [34].

It is quite difficult to get all the 36 addedmass param-
eters and inertiamatrixM ∈ �6×6. In this paper,M can
be simplified into M = Mo + �M, where Mo ∈ �6×6

is the nominal matrix and �M ∈ �6×6 is an unknown
matrix. Usually, the damping of the underwater vehi-
cles are nonlinear and coupled in nature. In this paper,
D can be simplified into D (v) = Do + �D, where
Do ∈ �6×6 is the nominal matrix, and �D ∈ �6×6

is an unknown matrix. Also C (v) = Co + �C where
Co ∈ �6×6 is the nominal matrix, and�C ∈ �6×6 is an
unknownmatrix and g (x) = go+�g where go ∈ �6 is
the nominal vector, and�g ∈ �6 is an unknown vector.

Therefore, from the dynamic model (2), the un-
known terms of �Mv̇, �Cv, �Dv and �g are incor-
porated in uncertainty vector � ∈ �6

� = �Mv̇ + �Cv + �Dv + �g. (3)

From (1), it can be directly implied that v = J−1 (x) ẋ
and v̇ = J̇−1ẋ + J−1ẍ, [1], then after some simple
manipulations, we can obtain the equations of motion
for the general Eq. (2) as

MJẍ + JTMoJ̇−1ẋ + CJ (x) ẋ + DJ (x) ẋ + gJ (x)

+ηJ + �J = τJ (4)

where MJ = J−TMoJ−1, CJ = J−TCoJ−1, DJ =
J−TDoJ−1, gJ = J−Tgo, ηJ = J−Tη, �J = J−T�

and τJ = J−Tτ. Therefore, the dynamic model for
underwater vehicles can be written as

MJẍ = fk + τJ (5)

where fk = − (
JTMoJ̇−1ẋ + CJ (x) ẋ + DJ (x) ẋ+

gJ (x) + ηJ + �J
)
. The total thrust input vector can

be conveniently represented by

τ = BT (6)

where T ∈ �N is a vector containing the magnitude of
thrust exerted by each thruster (the effect on the vehicle
through the force produced by each thruster), N is the
number of thrusters andB ∈ �6×N is amappingmatrix
which represents the distribution of the thrust forces on
the vehicle.

Remark 1 Note that, in [1–3,7,9–12] the simplified
models for decoupled single-DOFdynamical equations

of the underwater vehicles are presented. Although it
is not theoretically justified [7], this models are sim-
plified by neglecting off-diagonal entries and coupling
terms, tether dynamics, the off-diagonal elements of
the added mass matrix, the Coriolis and centripetal
kinematics, drag coupling terms, etc. This approxi-
mation relies on the fact that the off-diagonal ele-
ments of the positive definitematrices aremuch smaller
than their diagonal counterparts and the hydrodynamic
damping coupling is negligible at low speeds. In this
paper, we apply the more precise MIMO six-DOF
model (5) for more accurate control of the underwater
system.

2.2 Dynamic model of the actuator thrusters

It is reasonable to assume that the thrust forces are actu-
ated by the actuator inputs. In other words, the thrust
forces vector T ∈ �N can be related to the actuator
input vector U = [u1, . . . , uM ]T by a transformation
of the form T = f (U), where M is the number of actu-
ator inputs. In order to obtain the actuator inputs as the
inputs of underwater system, one possible solution for
solving the problem is to make a reasonable correla-
tion between the actuator inputs and thrust forces. For
example, the transformation from T = f (U) can be
expressed as

T = f (U) = αU + ϕ (7)

where α ∈ �N×M and ϕ ∈ �N , are known/unknown
functions, then the control problem is to obtain an accu-
rate and proper estimate of α and ϕ [for more details,
see dynamic model (16)]. The relationship (7) implies
that the thrust forces are directly proportional to the
actuator inputs. The overall description for this rela-
tionship is depicted in Fig. 1, in which thrust input τ is
produced by the actuator input U.

In this paper, we apply the electrical thrusters as
the actuators. Electric actuators are common choice
for AUVs and ROVs (instead of hydraulic thrusters),
even in large underwater vehicles, also most underwa-
ter vehicles are using propeller type thruster for their
navigation.

The electrical thruster consists of a DC motor con-
nected to a propeller. Since the propeller is attached
onto the motor shaft, the DC motor shaft dynamic has
to be considered. Most full-ocean depth thrusters are
often actuated by the brushless DC (BLDC) electric
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Fig. 1 Underwater vehicle
with both body-fixed and
earth-fixed frames

motors. Based on [8,34,35], the simplified dynamic
model of the BLDC motors are practically similar to
model of the DC motors

I = k−1
t

(
JΩ̇ + k f Ω + Q

)
(8)

V = L İ + RI + ke� (9)

where V , I , L , R, � and Q are the voltage input, the
current input, inductance, resistance, the propeller rota-
tional velocity and the shaft torque, respectively. Also
kt , k f , ke and J are the motor viscous friction constant,
the motor the viscous friction constant, the back emf
constant and the rotor moment of inertia, respectively.

Based on [33–36], we have

Q = cqΩ |Ω| + cqoΩ̇ ≈ cqΩ |Ω| (10)

T = ctΩ |Ω| + ctoΩ̇ ≈ ctΩ |Ω| (11)

Q ≈ ctq T (12)

where T is thrust force and ct , cq and ctq are experi-
mentally determined constants and also cqo and cto are
small constants. A torque control method has been pre-
sented in [1,12], by designing a torque controller. Also
from themodel (11), the rotational velocities have been
estimated for each thruster. But, in this method the pro-
peller rotational velocities are limited, because of the
maximal voltage admitted by the thrusters and a satu-
ration rotational velocity is applied. Thus, it seems to
be very difficult to perform a high-accuracy control by
utilizing this method.

Based on [8], the voltage input of thruster can be
written as T = coV . Based on [9], by neglecting the
motor dynamics, the thrust force can be modeled as
T = cV V |V |. Also based on [7], thrust force can be
modeled as I = cI T , where co, cV and cI are exper-
imentally determined constants. It can be clearly seen
that it is a hard to present a robust reliable controller

for these methods. The dynamic of actuators should be
neglected to perform these schemes.

In fact, applying the torque control effort is a con-
trol problem, because it cannot be used directly to the
actuator inputs for driving the underwater vehicles.

Therefore, in order to obtain the thruster voltages as
the inputs of the underwater system, by substituting (8)
in (9), we have

V = L İ + k1Ω̇ + k2Ω + k3Q + �o (t) (13)

where k1 = R J
Kt

, k2 = R
Kt

(
kt ke

R + ke

)
and k3 = R

Kt
.

Also, for more accuracy of the simplified model, we
assume that �o (t) is an unknown un-modeled term.
By (12), the thruster model (13) can be rewritten as

V = k1Ω̇ + k2Ω + k3ctq T + �L (t) (14)

Because the motor inductance L is a sufficiently small
parameter, we can treat it as a part of unknown un-
modeled term �o, i.e., �L = L İ + �o.

It is very important to notice that based on [36] and
our simulations, models T = coV , T = cV V |V |, and
I = cI T are valid and favorable only in long-period
wave inputs. Several simulations have been carried out
for the dynamic models (8)–(9) and more details are
shown in Fig. 2. In this experiment, V = 10 sin (t) and
V = 10 sin (10t) are applied for long (Vl )- and short
(Vs)-period wave inputs, respectively. Also uncertainty
�L is neglected. However, the control of the thruster
system described by (8)–(9) becomes more compli-
cated when �L �= 0. Figure 2 shows that, for short
period wave inputs we have T �= coV , T �= cV V |V |
and I �= cI T .

In order to overcome these problems, in this paper
the voltage of thruster model (14) can be applied
directly to the inputs of the electrical thrusters for driv-
ing the underwater vehicles.
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Fig. 2 a T versus I , and b T versus V ; for short (Vs ) and long
(Vl ) period wave inputs

Fig. 3 Block diagrams of the thruster dynamic

Therefore, (14) can be rewritten as

αV + �V (t) + ϕ = T (15)

where α = (
k3ctq

)−1, ϕ = −α
(
k1Ω̇ + k2Ω

)
and

�V = −α�L .
The block diagram of the thruster dynamic (14) (the

DCmotor shaft speed and propeller dynamic) is shown
in Fig. 3.

Therefore, based on the proposed technique in (7),
thruster dynamic (15) for N numbers of thrusters can
be expressed as

T = αV + ϕ + � (t) (16)

where T = [T1, . . . , TN ]T, α = diag (α1, . . . , αN ),
ϕ = [ϕ1, . . . , ϕN ]T, � = [

�V1 , . . . ,�VN

]T and j =
1, . . . , N .

3 The MHDS system and control design

3.1 The MHDS of underwater vehicle and its
actuators

In this section, we design a novel underwater dynamic
model via actuator control effort. In order to obtain the
actuator inputs of the system, the MHDS is expressed

by substituting underwater model (5) into thruster
dynamic (16) as follows

ẍ = M−1
J fk + M−1

J J−TB
(
αV + ϕ + �

)

ẍ = F (X,�) + d (t) + G (X)V (17)

where

� = [
Ω1, Ω̇1, . . . ,ΩN , Ω̇N

]T ∈ �2N

F (X,�) = −M−1
J {CJ (x) ẋ + DJ (x) ẋ + gJ (x)}

+M−1
J J−TBϕ ∈ �6

G (X) = M−1
J J−TBα ∈ �6×N

d(t) = [d1, . . . , d6]
T

= M−1
J

{
J−TB� − ηJ − �J − JTMoJ̇−1ẋ

}

Remark 2 Note that because of the presence of term
J̇−1, the vector JTMoJ̇−1ẋ cannot be correctly known;
therefore, JTMoJ̇−1ẋ can be considered as a part of
the lumped uncertainty vector d. Also, according to
the block diagram of the thruster dynamic Fig. 3, the
thruster voltage Vj (for j = 1, . . . , N ) is the control
input, and the thrust force Tj and the propeller speedΩ j

are given as the thruster outputs, for each subsystem.
Therefore, in the proposed scheme if we do not use
speed sensors for measuring the propeller speed Ω j ,
then we have a speed-sensorless control of the thrusters
and in this scheme, estimation of the vehicle position
is independent of the propeller speed Ω j . Hence, we
have F (X) = −M−1

J {CJ (x) ẋ + DJ (x) ẋ + gJ (x)},
and ϕ ∈ �N is an unknown uncertainty vector, then
M−1

J J−TBϕ ∈ �6 can be considered as a part of the
lumped uncertainty vector d. Moreover, it seems that
the implementation of this method is simpler and pro-
duction cost is less.

3.2 The control design for MHDS

In order to propose a novel robust voltage control of the
MHDS, in this section, we apply a robust composite
adaptive fuzzy scheme for control of the thrusters.

If x = [x, y, z, φ, θ, ψ]T = [x1, . . . , x6]T, then the
control problem is to obtain the state xi = [xi , ẋ]T

for tracking a desired state xdi = [xdi , ẋ]T Then, the
tracking error is Ei = xdi − xi = [ei , ė]T. Also, we
have

X =
[
xT1 , . . . , xT6

]T ∈ �12 (18)

E =
[
ET
1 , . . . ,ET

6

]T ∈ �12 (19)
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We can rewrite the underwater system (17) as

Ẋ = AoX + B (F + d (t) + GV) (20)

where Ao = diag (Ao1, . . . ,Ao6) and B = diag (B1,

. . . ,B6). Let denoteAoi = [0 1; 0 0],Bi = [0, 1]T and
Ki = [k1i , k2i ]T is chosen such that each matrix Ai =
Aoi − BiKT

i is Hurwitz for i = 1, . . . , 6. Also, A =
diag (A1, . . . ,A6). Hence, there exist positive definite
matrices Qi and Pi such that

AT
i Pi + PiAi + Qi = 0 (21)

The following assumptions are presented for the con-
trollability of the system.

Assumption 1 The reference signals xdi , ẋdi are as-
sumed to be exist and bounded.

Assumption 2 External disturbance ηJ (t) is a bound-
ed disturbance vector, also �J and � are bounded
uncertainty vectors, then d (t) is a bounded lumped
uncertainty vector.

Definition 1 [37]: Let G+ ∈ �N×6 be the “inverse/
pseudo-inverse” of “square/non-square” matrix G ∈
�6×N, then G+ can be as follows

G+ =

⎧
⎪⎨

⎪⎩

[
GTG

]−1 GT if : N < 6
G−1 if : N = 6

GT
[
GGT]−1

if : N > 6

(22)

Based on the dynamic model (17) and Definition1, we
propose a voltage control law for the inputs of thrusters
as

V = G#
(
−F − d̂ + KTE + ẍd + ur

)
(23)

where ẍd = [ẍd1, . . . , ẍd6]T, d̂ is an estimate vec-
tor of d and ur = [ur1, . . . ur6]T is a robust con-
trol term to compensate the uncertainties. Also K =
diag (K1, . . . ,K6). Moreover, G# can be written as

G# = G+ [
GG+]−1

=
⎧
⎨

⎩G+ [
GG+]−1 if : N < 6

G+ if : N ≥ 6
(24)

Based on definition of “inverse/pseudo-inverse” of
“square/non-square” matrices, we have
⎧
⎨

⎩

GG+ �= I6×6 if : N < 6
GG+ = GG−1 = I6×6 if : N = 6
GG+ = I6×6 if : N > 6

(25)

Therefore, by substituting the proposed voltage control
(23) in (20), we have

Ẋ = AoX + B
(
F + d (t) + GG#

{
−F − d̂

+ KTE + ẍd + ur
})

Ė = AE + B
{(

d̂ − d
)

− ur
}

(26)

For the invertible matrix GG+, we have GG# =
GG+ [

GG+]−1 = I6×6 (for N ≥ 6 and also N < 6).

Definition 2 [20,25]: Let H be a square matrix and
H−1 be the inverse of H. Then, the regularized inverse
of H is defined as H−1 ∼= Hr = HT[δI + HHT]−1,
where δ is a small regularization positive constant.

In this paper, some techniques and assumptions are
applied to overcome the singularity problem of the
dynamic model (17) and the proposed controller (23):

(1) The elements of the Jacobian transformationmatrix
(2) are selected such that the matrix is always non-
singular, e.g., the Jacobian transformation matrix
[34] is undefined for θ = ±90◦. However, in the
vessel operation this problemdoes not exist because
the vehicle is not required to operate at this angle.

(2) MatrixMJ is chosen so that it is always nonsingu-
lar (e.g., we can propose a diagonal approximation
matrix forMo [1,34]. The diagonal approximation
can be quite good for many applications. More-
over, another way can be applying the regularized
inverse).

(3) For resolving the singularity problem of matrix
G# = G+ [

GG+]−1, an useful method can be
applying regularized inverse ofG#. Therefore, from
(24) and Definition2 we have

G# ∼= reg
{
G#

}

=

⎧
⎪⎨

⎪⎩

[
GTG

]r GT ×
[
G

([
GTG

]r GT
)]r

if : N < 6

Gr if : N = 6
GT

[
GGT]r

if : N > 6

(27)

Therefore, if we use Definition2 for the proposed con-
troller (23), then the error dynamic equation (26) can
be rewritten as

Ė = AE + B
{(

d̂ − d
)

− ur + σ
}

(28)

where σ = (
I − G × reg

{
G#

}) {
−F − d̂ + KTE

+ẍd + ur} = [σ1, . . . , σ6]T. Therefore, after some
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simple manipulations, the error dynamic equation for
each subsystem can be written as

Ėi = AiEi + Bi

{(
d̂i − di

)
+ σi − uri

}

(i = 1, . . . , 6) (29)

In practice, the estimations of the lumped uncertainty
di cannot usually be obtained. In order to overcome
the uncertainty, an adaptive fuzzy control scheme is
presented to approximate unknown function di and a
robust control term is proposed to compensate the fuzzy
approximation error.

4 The proposed RCAFc and fuzzy systems

4.1 The series–parallel identification model and
modeling error

The series–parallel identification model for the SISO
systems has been investigated in [14,27–29]. In this
paper, the following series–parallel identificationmodel
is defined for the MHDS (17). We define the plant
dynamic of the MHDS (17) for each subsystem as fol-
lows

ẍi = fi +
N∑

j=1

gi j u j + di (t) (30)

Therefore to achieve the composite adaptation, one
defines the filtered modeling error for each subsystem
as

εi = ˙̂xi − ẋi (31)

where x̂i is the estimation of xi . Then, introduce the
following series–parallel identification model with a
low-pass filter

¨̂xi = −αiεi + fi +
N∑

j=1

gi j u j + d̂i − vi (32)

where d̂i is an estimate of di , the estimated state

x̂i =
[
x̂i , ˙̂xi

]T
is provided by a series–parallel esti-

mation model of the state vector xi = [xi , ẋi ]T, αi

is a positive user-defined filter parameter and vi is a
modeling compensation term and can be given by the
following form

vi = ω̄i sign (εi ) (33)

where ω̄i ≥ |ωi | is an user-defined finite constant.
Using (30) and (32), and ε̇i = ¨̂xi − ẍi , one gets the
modified modeling error dynamic

ε̇i = −αiεi + d̃i + ωi − vi (34)

where, d̃i = d̂i − di .

4.2 Fuzzy logic system and the minimum
approximation error

The fuzzy rule base contains of a collection of fuzzy
IF–THEN rules as follows

Rl : IF x1 is Fl
1 and . . . and xn is Fl

n THEN y = ȳl

(35)

where Fl
i are fuzzy sets, ȳl is a constant, l = 1, . . . , MX

is number of fuzzy rules and X = [x1, . . . , xn]T ∈
Rn and y ∈ R are the input and output of the fuzzy
system, respectively. The above fuzzy system known
as zero-order TSK [14] is constructed with a single-
ton fuzzification, a product inference and a weighted
average. Then, the output of fuzzy logic system can be
written as

y (X) =
∑MX

l=1 ȳl
[∏n

i=1 μFl
i
(xi )

]

∑MX
l=1

[∏n
i=1 μFl

i
(xi )

] = θ
Tξ (X) (36)

θ = (
ȳ1, . . . , ȳMX

)T = [
θ1, . . . , θMX

]T is the single-
ton output fuzzy membership functions and Fl

i is the
fuzzy sets with membership functions μFl

i
. The fuzzy

basis functions are defined as

ξ l (X) =
∏n

j=1 μFl
j
(xi )

∑M
l=1

[∏n
j=1 μFl

j

(
x j

)] (37)

where ξ (X) = (
ξ1, . . . , ξ MX

)T
. Then, the optimal

parameter vectors θ
∗
i can be defined as

θ
∗
i = argminθ i ∈Ω

[
supX∈�n ‖y (X|θi) − y (X) ‖]

(38)

�y is the compact sets defined as �y = {θi : ||θi||
≤ my

}
, where my is the positive constant specified by

the designer. Theminimum approximation error can be
written in terms of the optimal parameter estimates as
ωoi = y

(
X|θ∗

i

) − y (X).
The important purpose of the adaptive fuzzy con-

troller is to track the reference trajectory. In general, the
important drawback of the adaptive fuzzymethods con-
sist in the following question: If d (t) is a full-unknown
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function, how to design the adaptive fuzzy laws for esti-
mation of the disturbances and the uncertainties using
only the state variables? (e.g., estimation of d (t) by

state vector X = [
xT1 , . . . , xT6

]T ∈ �12).
In Ghavidel and Kalat [14,15], proposed an adap-

tive fuzzy algorithm that employs the feedback error
signals instead of the state variables (e.g., for each sub-
system of MHDS, we haveΞi = KT

i Ei ∈ �, whereΞi

is used as input in the adaptive fuzzy approximator).
The proposed scheme provides a very good tracking
performance.

In this paper, a novel adaptive fuzzy logic system
is proposed for uncertainty estimation that the mod-
eling error εi as input of the fuzzy system is used.
It is very important to notice that based on the mod-
ified modeling error dynamics (34), the modeling error

εi = α−1
i

{
−ε̇i + d̃i + ωi − vi

}
is a function of ẍi ,

fi (.), gi (.) and di (t). Therefore, it is a proper input
of fuzzy approximator instead of the state variables X.
The proposed scheme is not limited only for the esti-
mation of lumped uncertainty di (t), but can be applied
for estimation of all unknown functions of the system
(e.g., for fi (.), gi (.) and di (t)).

It is challenging to determine area of the interval
conditions of fuzzy membership functions and also the
number of fuzzy sets and/or rules. Therefore, the per-
formance of the control system depends on selecting
this fuzzy conditions. As a results, the other benefits of
the proposed adaptive fuzzy method are the suggested
fuzzy scheme is able to decrease the number of fuzzy
sets and/or fuzzy IF–THEN rules. Also, in the proposed
method, for the interval conditions of fuzzy member-
ship functions we can choose a small area (since by a
proper controller method, it is expected that the mod-
eling errors εi can be insignificant).

According to abovedescriptions, the fuzzy logic sys-
tem for each subsystem is introducedwith the following
fuzzy IF–THEN rules as

Rl : IF εi is Fl THEN d̂i = ȳl , (l = 1, 2, . . . , Mε)

(39)

and θ = (
ȳ1, . . . , ȳMε

)T
is the output fuzzy mem-

bership function vector and Fl is the fuzzy sets with
membership functions μFl . Then, the optimal param-
eter vectors θ

∗
i for each subsystem can be defined as

θ
∗
i = argminθi ∈�

[
supεi ∈�,X∈�n ‖di (εi |θi ) − di‖

]

(40)

The minimum approximation error can be written in
terms of the optimal parameter estimates as

ωi = d̂i
(
εi |θ∗

i

) − di (41)

4.3 Description of the proposed RCAFc

Note that in this paper we apply the modeling error εi ,
as input in the fuzzy approximator; thus, one problem
of utilizing this method is that the fuzzy approxima-
tion error ωi may be increased. Nevertheless, although
d̂i (εi |θi ) is used to estimate the lumped uncertainty
di (t), the proposed controller is still viable, since a
robust compensator is used to compensate the influ-
ence of the fuzzy approximation error. As a result, high
robustness level of robust term may cause saturation of
control input, higher frequency of chattering and thus
a bad behavior of the whole system. Thus, it is possible
that robust term plays a more important role than the
adaptive fuzzy term, while a low robustness level of
robust term may cause a higher tracking error.

Therefore, to provide a good estimation to the
lumped uncertainty vector d, in [14,24], a CAF con-
trol method is proposed. In this technique, difference
between the measured system output and the identifi-
cation model output is employed on the adaptive fuzzy
laws. In otherwords, the novel adaptive fuzzy estimator
with CAFL scheme is more important and the robust
termafter that, it is themain controller (formore details,
see [14,24]).

Now, the adaptive fuzzy estimator d̂ is as follows

d̂i (εi |θi ) = θ
T
i ξi (εi ) (42)

So the compensation control term uri and the CAFL
for each subsystem are defined as

uri = w̄i sign
(
ET

i PiBi

)
(43)

θ̇i = −γi

(
ET

i PiBi + γεiεi

)
ξi (44)

where w̄i ≥ |ωi + σi | is an user-defined finite constant,
and γi and γεi are positive designing constants which
determine the rate of the convergence of the fuzzy esti-
mator.

Remark 3 In [20,25], to solve the singularity prob-
lem, a complex robust compensator is proposed. In
this paper, the uncertain σi can be considered as a
part of the fuzzy approximate error ωi . Then, the sim-
ple robust control term uri in (43) can be employed,
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and w̄i ≥ |ωi + σi | can be attenuated. The proposed
scheme in this paper is very simple, efficient and robust.

Theorem Consider the MHDS in form of (17); then,
using the compensation control (33) and CAFL (44)
and robust term (43), the tracking error will converge
to zero asymptotically.

Proof Substituting the fuzzy system (42) in the error
dynamic equation (29), then by the minimum approx-
imation error (41), we have

Ėi = AiEi + Bi

{
θ̃
T
i ξ + wi − uri

}
(45)

where wi = ωi + σi . Now, consider the Lyapunov
function as

V̇i = 1

2
ET

i PiEi + γεi

2
ε2i + 1

2γi
θ̃
T
i θ̃i (46)

Then, the derivative of Vi is obtained as

V̇i = 1

2

{
ĖT

i PiEi + ET
i Pi Ėi

}
+ γεiεi ε̇i + 1

γi
θ̃
T
i
˙̃
θi

(47)

Using the error dynamic equation (45) and themodified
modeling error dynamic (34), (47) can be rewritten as

V̇i = 1

2

{[
ET

i A
T
i + ξTi θ̃iBT

i + (wi − uri )
TBT

i

]
PiEi

+ET
i Pi

[
AiEi + Bi θ̃

T
i ξi + Bi (wi − uri )

]}

+ γεiεi

(
−αFiεi + θ̃

T
i ξi + ωi − vi

)
+ 1

γi
θ̃
T
i
˙̃
θi

(48)

Then, (48) can be rewritten as

V̇i = 1

2
ET

i

{
AT

i Pi + PiAi

}
Ei + ET

i PiBi (wi − uri )

+ET
i PiBi θ̃

T
i ξi − γεiαiε

2
Fi + γεiεi θ̃

T
i ξi

+ γεiεi (ωi − vi ) + 1

γi
θ̃
T
i
˙̃
θi (49)

Utilizing Eq. (21), the latter results

V̇i = −1

2
ET

i QiEi + ET
i PiBi (wi − uri )

+ET
i PiBi θ̃

T
i ξi − γεiαiε

2
i + γεiεi θ̃

T
i ξi

+ γεiεi (ωi − vi ) + 1

γi
θ̃
T
i
˙̃
θi (50)

Also, (50) can be expressed as

V̇i = −1

2
ET

i QiEi + V̇1i + V̇2i (51)

where

V̇1i = ET
i PiBi (wi − uri ) (52)

V̇2i = −γεiαiε
2
i + γεiεi θ̃

T
i ξi + γεiεi (ωi − vi )

+ 1

γi
θ̃
T
i
˙̃
θi (53)

Substituting robust control term (43) into (52), we have

V̇1i = ET
i PiBiwi −

∣∣∣ET
i PiBi

∣∣∣ w̄i ≤ 0 (54)

Since
∣
∣ET

i PiBiwi
∣
∣ ≤ ∣

∣ET
i PiBi ||wi

∣
∣ ≤ ∣

∣ET
i PiBi

∣
∣ w̄i

By the fact ˙̃
θ = θ̇ and from the compensation term

(33), the modified modeling error (34) and the CAFL
(44), V̇2i can be rewritten as

V̇2i = −γεiαiε
2
i + γεiεi (ωi − vi )

+ θ̃
T
i

((
ET

i PiBi + γεiεi

)
ξi + 1

γi

˙̃
θi

)
(55)

V̇2i = −γεiαiε
2
i + (γεiωiεi − γεi ω̄i |εi |) (56)

V̇2i ≤ −γεiαiε
2
i (57)

Since |γεiωiεi | ≤ |γεi ||ωi || εi | ≤ γεi |εi | ω̄i , also
−γεiαiε

2
i ≤ 0. From the above results, it follows that

V̇i = −1

2
ET

i QiEi + V̇1i + V̇2i ≤ −1

2
ET

i QiEi ≤ 0

(58)

SinceQi is positive definitematrix, V̇i is negative semi-
definite, i.e., Vi (t) ≤ Vi (0). From (58) we have
∫ T

0
ET

i QiEidt ≤ 2 (Vi (0) − Vi (t)) (59)

Because Vi (0) and Vi (t) are bounded, the following
result is achieved

limt→∞
∫ T

0
ET

i QiEi dt ≤ ∞ (60)

Also, it can be shown that V̈1 is bounded and according
to Barbalat’s lemma [38], the error vector tends to zero
as t → ∞. ��

The block diagram of the underwater system and the
proposed RCAFc (23) is shown in Fig. 4.

The overall design procedure can be summarized in
the following steps:

Step 1: Specify the positive gain ki and feedback gain
vector Ki , such that the characteristic matrices
Aoi −BiKT

i is strictly Hurwitz matrices. Then,
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Fig. 4 Block diagram of
the proposed RCAFc (23)

specify a positive definite matrix Qi and solve
the Lyapunov equation (21), to obtain a positive
definite symmetric matrix Pi .

Step2: Define the series–parallel identification model
for the system, to reduce the modeling error.

Step3: Next, construct the fuzzy system d̂i (εi |θi ), to
estimate the lumped uncertainty, di . The CAFL
will be obtained by using the prediction error
and by the RCAFc scheme, the voltage control
vector V is generated.

Step4: Set the design parameters γi , γεi , also w̄i and
ω̄i . The convergence rate of the tracking error
is determined by the range of the design param-
eters.

Remark 4 In this paper, the modeling error εi is intro-
duced as additional feedback information to construct
the RCAFc, by the CAFL (44). If γεi = 0, we have a
Robust Adaptive Fuzzy control (RAFc), with the fol-
lowing Adaptive Fuzzy Law (AFL) for each subsystem

θ̇i = −γiET
i PiBiξi (61)

In the RAFc, the structure of adaptive fuzzy and stabil-
ity of the controller based on Lyapunov theory is some-
what similar to the proposed RCAFc method. From
(58) and by term −γεiαiε

2
i , we see that the proposed

RCAFc makes the decreasing of the time derivative of
Lyapunov function (i.e., by γεi > 0). Therefore, it is
obvious that the proposed scheme improves V̇i (t)

Remark 5 In many applications, the function sign (·)
in robust terms (33) and (43) are replaced by a smooth
function tanh

(
.
∅
)
where ∅ > 0 is a small positive

design constant in order to remedy the control chat-
tering.

5 Simulation examples

In this section, for highlighting the usefulness of
hybrid combination of the underwater vehicle dynamic
model into the actuator dynamic model, we simu-
late the proposed RCAFc and RAFc, under differ-
ent level of uncertainties. Therefore in this study,
results show the tracking performance for two cases:
γεi > 0 and γεi = 0, respectively. Also, we let
F = −M−1

J {CJ (x) ẋ + DJ (x) ẋ + gJ (x)} if speed-
sensorless scheme is required (in other words,
M−1

J J−TBϕ is added to the lumped uncertainty
M−1

J

{
J−TB� − ηJ − �J − JTMoJ̇−1ẋ

}
); otherwise,

M−1
J J−TBϕ is a well-known function when a speed-

sensor scheme is chosen (in other words,M−1
J J−TBϕ

is added to F). To verify the general control system
pattern for the simulation example, Fig. 5 shows con-
trol system process for the proposed schemes. For all
examples, it is assumed that the lumped uncertain-
ties M−1

J

{
J−TB� − ηJ − �J − JTMoJ̇−1ẋ

}
are pre-

sented in Fig. 7 (i.e., the lumped uncertainties with dot-
ted lines).
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Fig. 5 Control system
process for the proposed
scheme

Also for all examples in this paper, we have three
fuzzymembership functionsμl (εi )which are assumed
in the form of μl (εi ) = exp

[− ((εi + cl) /σl)
2] for

l = 1, . . . , 5, where cl = and σl are constant values.
Also, the initial states and desired positions are x (0) =
[0, 0, 0, 0, 0, 0]T and xd = [2, 3, 4, π/3, π/4, 2π/5]T,
respectively. The control design parameters of the
RCAFc and the RAFc are given in Table 1.

In these simulation examples, it is assumed that the
thrust force vectorT = [T1, . . . , T8]T ∈ �8 implies the
thrust forces that every the thruster DC motor delivers.
Also, mapping matrix B ∈ �6×8 is defined as [9]. Fur-
thermore, the control design parameters of the thruster
DC motors are given in “Appendix.” Note that all the
thruster DC motors T1 to T8 are assumed to be similar.
Also, details on the matrices J (x),M,C (v),D (v) and
g (x) operated for a model of underwater vehicle are
presented in [34].

Remark 6 Several simulations have been carried out
for estimation of the lumped uncertainty vector d (t)
using the state variables, i.e., by d̂i (X|θi ). According
to the simulation results, this method is not able to hold
the system performance in the various uncertainties.
Therefore, the simulation studies are neglected for this
method.

Table 1 Control design parameters

Parameter Controllers Value

w̄i RCAF/ RAF 10

Ki RCAF/ RAF [1, 2]T

Qi RCAF/ RAF 10I2×2

γi RCAF/ RAF 100

∅i RCAF/ RAF 0.5

γεi RCAF 500

αFi RCAF 150

ω̄i RCAF 0.1

5.1 Example 1: the proposed controller with
speed-sensor scheme

In this case, the lumped uncertainty vector is d (t) =
M−1

J

{
J−TB� − ηJ − �J − JTMoJ̇−1ẋ

}
, and M−1

J
J−TBϕ is a well-known function (the lumped uncer-
tainties di (t) are shown in Fig. 7 with dotted line).

The tracking trajectories for theMHDS are shown in
Fig. 6. The tracking performances of the both proposed
RCAFc and the RAFc are also very good; therefore, it
can be seen that the suggested control design can guar-
antee the systemperformance among uncertainties, and
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Fig. 6 Tracking trajectories xdi (dotted line), state variable
xi by RCAFc (solid line) and by RAFc (dashed line), for
example 1
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Fig. 7 Approximation of lumped uncertainty di (t) (dotted
line), by RCAFc (solid line) and by RAFc (dashed line), for
example 1
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Fig. 8 Robust control term uri , for example 1

for this task, it reduces amount of chattering. We can
see that the tracking errors are uniformly ultimately
bounded and converge to a small region near zero.
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Fig. 9 Control voltage Vj by RCAFc (solid line) and by RAFc
(dashed line), for example 1
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Fig. 10 Tracking trajectories xdi (dotted line), state variable xi
by RCAFc (solid line), for example 2

Figure 7 shows the approximation of lumped uncer-
tainty di (t). Therefore, the proposed method is able to
identify and compensate these lumped uncertainties.
Also robust control signals for the proposed RCAFc
and the RAFc are shown in Fig. 8. The proposed
RCAFc provides a smaller robust term control signal
compare toRAFc. In otherwords, the proposed scheme
achieves a better control performance while less robust
control effort is spent. The control inputs Vj for the
proposed RCAFc and the RAFc are shown in Fig. 9.
The results of the study clearly demonstrate that the
proposed RCAFc can achieve the better approximate
of the lumped uncertainty di (t), and the robust con-
trol signals of the proposed RCAFc method are much
smaller than the RAFc.

5.2 Example 2: the RCAFc with speed-sensorless
scheme

In this case, d (t) = M−1
J

{
J−TB� − ηJ − �J − JT

MoJ̇−1x
}
, so that, we assume thatM−1

J

{
J−TB� − ηJ

−�J − JTMoJ̇−1x
}
is presented in Fig. 7 with dotted

lines, and unknown term M−1
J J−TBϕ can be config-

ured based on the MHDS behavior.
The simulation results of RCAFc for Example 2 are

similar to the Example 1. Figure 10 shows the tracking
trajectories of the RCAFc. The tracking performances
of the proposed method is very good; therefore, it can
be seen that the suggested control design can guaran-
tee systemperformance among uncertainties. Figure 11
indicates the trajectories of the state xi and its esti-
mation x̂i (the series–parallel state), for the proposed
RCAF. From Figs. 10 and 11, we can see that the track-
ing errors and the state estimation errors are uniformly
bounded and small.

Figure 12 shows the approximation of lumped
uncertainties. The control input ui is shown in Fig. 13.
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Fig. 11 Tracking trajectories state variable xi (solid line) and
state estimation x̂i (dashed line) by RCAFc, for example 2

Several simulations have been carried out for the
RAFc. According to simulation results, RAFc method
is able to hold system performance for a high robust-
ness level of robust term (e.g., w̄i is large). Hence,
the robust term is more important and the adaptive
fuzzy scheme after that, it is a main controller (the
adaptive fuzzy estimator term of the RAFc is much
smaller than that of the robust term). It can be seen
that the proposed RCAFc can guarantee system per-
formance with a small or high robustness level of
robust term (for more details, see [14]). Therefore
in Example 2, simulation studies are neglected for
RAFc method. Simulation results and the performance
for the proposed RCAFc method were observed fully
robust to these design parameters and initial condi-
tions.

5.3 The simulation results

Comparing two case results, it can be seen that the
trajectories performance by the RCAFc is improved.
Therefore,we see that the proposedRCAFcmethod can
use the smallest magnitude of the robust term control
signal and the tracking error converges to a small neigh-
borhood of zero. It implies that the proposed RCAFc
can achieve the better approximate of the lumpeduncer-
tainty di (t), with a smaller robust term control signal
compare to RAFc.

Also, the simulation results show clearly that the
tracking error of the proposed RCAFc is less than
RAFc, i.e., the composed adaptive fuzzy estimator is
more important and the robust controller after that the
composed adaptive fuzzy scheme is a main controller.
Thus,we can state that the results explain the usefulness
and effectiveness of the proposed technique together
with the proposed RCAFc, and the ability of maintain-
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Fig. 12 Lumped uncertainty di (t) (dashed line) and estimate d̂i
(solid line) by RCAFc, for example 2

ing the system performance amid the various uncer-
tainties and disturbances which have large amplitude
and also high frequency.
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Fig. 13 Control voltage Vj by RCAFc, for example 2
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Table 2 Comparison of the control performance for the RCAFC and theRAFC, in the presence of large and sudden lumped uncertainties

RCAFc RAFc

By d̂i (εi |θi ) By d̂i (X|θi ) By d̂i (εi |θi ) By d̂i (X|θi )

The CAFL scheme Yes Yes No No

Fuzzy input with εi Yes No Yes No

Number of fuzzy sets/rules Few Numerous Few Numerous

Steady state error ei Very small Exist/favorable Exist/favorable Exist

Chattering phenomena Very small Small/meddle Small/meddle Serious/meddle

Estimation of uncertainties Excellent Fair Fair Poor

Robust control signals uri Small Small/meddle Large/meddle Large

Trajectories of x̂i and ˙̂xi Very good Favorable Favorable Unavailable

Robustness Very good Fair Fair Poor/fair

In short, the improved performance of the proposed
RCAFc over the RAFc is due to its ability to iden-
tify and compensate the lumped uncertainty di (t), and
therefore, utilizing this scheme, the robust control term
of the proposedRCAFc ismuch smaller than theRAFc,
whereas in the RAFc, supervisory control signal plays
more important role than the adaptive fuzzy controller.
Hence, it diminishes the original purpose of using adap-
tive fuzzy scheme.

Furthermore, the fuzzy approximator with the mod-
eling error εi as input in the fuzzy adaptive controller
is able to improve the sensitivity of ui to the tracking
errors, while the number of fuzzy term sets and also
fuzzy IF–THEN rules are decreased. In other words,
d̂i (εi |θi ) represents disturbance and uncertainties as
functions of the modeling errors εi .

The proposed method is computationally simple,
effective, robust and well behaved with fast response.
Simulation results have shown the usefulness of the
proposed method. Moreover, using this scheme, the
chattering phenomenon in the proposed controller is
alleviated. The reason is that the proposed approach
is based on combining the advantages of fuzzy sys-
tem, adaptive method, the series–parallel estimation
and robust control with simple and accurate estima-
tion of the large and sudden lumped uncertainty vector
d (t)which obtains important benefits, because a novel
adaptive fuzzy logic system is proposed for uncer-
tainty estimation that the modeling error εi as input
is used and also, in order to improve the approxima-
tion of lumped uncertainty di , we employed a mod-
ified modeling error in the adaptive fuzzy estimator
d̂i (εi |θi ).

Remark 7 Several simulations were carried out for the
control of theMHDS by the RCAFc and the RAFcwith
uncertainty estimator d̂i (εi |θi ), and also by the RCAFc
and the RAFc with uncertainty estimator d̂i (X|θi ). It
can be seen that performance of the proposed method
is fully robust to these design parameters and initial
conditions. Briefly, from Table 2 we can see the track-
ing performances of these methods in the presence of
large and sudden lumped uncertainties. (Also several
simulations have been carried out for control of vari-
ous nonlinear systems, e.g., forMIMOmagnetic levita-
tion system [39], and SISO inverted pendulum system
[16]. Simulation studies display the usefulness and effi-
ciency of the proposed technique).

6 Conclusion

In this paper, a novel control method is applied based
on a MHDS (the combination of actuators and under-
water vehicle) and by the robust composite adaptive
fuzzy controller (RCAFc). The proposed scheme can
be a speed-sensorless method for the actuator system;
thus, it does not need an accurate mathematical model
of the system actuator. Moreover, it seems that imple-
mentation of thismethod is simpler and production cost
is less. Therefore, these control laws can be used for the
systems that the actuator models are unknown. Using
the modeling error between the proposed MHDS sys-
tem model and the series–parallel identification model
with a low-pass filter, the composite adaptation is com-
bined into the RAFc scheme to estimate and compen-
sate the large and sudden uncertainties, i.e., the adap-
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tive fuzzy estimator with the CAFL is more impor-
tant and the robust controller after that, it is a main
controller. The RCAFc is superior to the RAFc in the
face of sudden changes in uncertainty. Furthermore,
the fuzzy approximator with the modeling error εi as
input indicates which is able to improve the system per-
formance, while number of fuzzy sets and also fuzzy
IF–THEN rules are decreased. The proposed method is
robust, simple, accurate, with less computing. The sim-
ulation results indicate clearly that the tracking errors
of the proposed scheme are very small. Furthermore,
the proposed controller is able to maintain system per-
formance among various uncertainties with a consider-
able reduction of chattering. The proposed control tech-
nique is not limited only to the control of the underwater
vehicles, but can be applied for control of a class of non-
linearMHDS.Wewant to develop our designmethod in
the next study, so that it can control an observer-based
non-affine large-scale MHDS.

Appendix

Details of parameters used for the thruster dynamic are
listed in Table 3.

Table 3 Thruster design parameters

Parameter Unit Value

R Ohm 1.2

L Henry 0.01

kt Nm/A 1.27

ke Vs/rad 0.01086

k f Ns 0.06

J Nms2/rad 0.01

ct Ns2/rad2 0.0375

cq Nms2/rad2 0.00232
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