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Abstract This work is the second one in a two-part
series devoted to the analysis of complex nonlinear
mechanism of energy channeling emerging in a locally
resonant three-dimensional, unit-cell model, and the
current paper considers unidirectional energy chan-
neling. The considered system comprises an external
mass subjected to a symmetric three-dimensional lin-
ear local potential with an internal spherical rotator.
The present study specifically focuses on the analysis
of three-dimensional, dissipative mechanism of irre-
versible (unidirectional) energy transport across mutu-
ally orthogonal directions realized in the limit of low-
energy excitations. In particular, this study unveils the
special transient regimes of three-dimensional partial
and complete transformation of in-plane vibrations of
the external element to out-of-plane vibrations. Simi-
lar to the results reported in the first part of the series,
this three-dimensional energy flow is fully governed
by the motion of the internal spherical rotator coupled
to the external mass. Analysis of this peculiar response
regime is based on regular multi-scale asymptotic anal-
ysis resulting in a reduced order dissipative slow-flow
model. Results of the analysis are substantiated by the
numerical simulations of the full model.
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1 Introduction

Passive vibration absorption and isolation in mechani-
cal structures remains one of the most extensively stud-
ied areas of theoretical and applied mechanics. The
well-known engineering solutions providing efficient
vibration suppression are based on the linear tuned
mass dampers (TMD) attached to the externally loaded
system. These simple absorption devices turn out to be
rather efficient in attenuating unwanted vibrations over
a relatively narrow bandwidth (mainly in the vicinity
of fundamental resonance). Since the pioneering works
of Frahm [1] and Den Hartog [2], the TMDs have been
extensively applied in quite diverse areas [3–5].

Alternative approach providing a broader bandwidth
of efficient vibration suppression is based on the non-
linear attachments appended to the primary structure.
In some recent studies [6–9] it was shown that a prop-
erly tuned, essentially nonlinear attachment commonly
referred to as nonlinear energy sink (NES) demon-
strates tremendous capability of unidirectional energy
pumping from the externally excited primary structure.
This phenomenon of unidirectional energy transport
from the primary excited structure to the internal, non-
linear substructure is usually referred to as a targeted
energy transfer (TET). It is important to emphasize that
in contrast to the linear TMDs, their essentially nonlin-
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ear counterparts (i.e., properly tuned NESs) are capa-
ble of suppressing unwanted vibrations developed in
the externally loaded primary structure over a wide
frequency band. Till date, several configurations of
NESs have been proposed. These include the nonlin-
ear absorber attached through purely nonlinear spring,
vibro-impact absorbers [10–12], and internal rotators
[13–15].

Of late, the concept of unidirectional energy trans-
fer has been extended to two-dimensional structures.
Thus, the new phenomena of bidirectional and uni-
directional energy (and wave) channeling have been
reported in [16–19] for a locally resonant, unit-cell
model subject to the two-dimensional local poten-
tial and incorporating internal rotator. The first two
studies have analyzed the intrinsic mechanisms of the
reversible as well as irreversible energy flow from the
axial to the lateral vibrations of the outer element in the
limit of low and high energy excitations. The analyt-
ical study of the same model [18] has unveiled entire
families of special (non-stationary) response regimes
manifested by unusual synchronization of the exter-
nal energy beats (i.e., energy beating between the axial
and the lateral oscillations of the outer element) with
the angular velocity of the rotator. The latest study
[19] has addressed a more complex phenomenon of
passive (reversible and irreversible), two-dimensional
wave-wave transformations emerging in the quasi-one-
dimensional chain of linearly coupled elements incor-
porating internal rotators.

Recently, the concept of two-dimensional energy
channeling has been extended to the three-dimensional
case where the outer element is subject to a three-
dimensional local potential and incorporates an inter-
nal spherical rotator. This forms the first part of the
two-part series considering three-dimensional regime
of complete energy transport from in-plane vibrations
of the outer element to the out-of-plane vibrations [20].

In this work we primarily focus on the asymptotic
analysis of the transient regimes of three-dimensional,
unidirectional energy flow mechanism emerging in
the limit of low-energy excitations. This phenomenon
is manifested by partial/complete irreversible energy
transport from arbitrarily oriented in-plane vibrations
of the external element to out-of-plane vibrations. As
it will be shown in this paper, this energy exchange is
fully governed by the motion of the internal spherical
rotator. Using a regular multi-time-scale analysis we
derive the slow-flow model depicting the evolution of

amplitudes and phases of the three-dimensional vibra-
tions of the external element as well as the slow dynam-
ics of the internal spherical rotator. Further analysis of
the complex slow-flowmodel enables complete analyt-
ical description of the intrinsic mechanisms governing
the regimes of transient irreversible energy channel-
ing. Numerical simulations of the original system are
found to be in extremely good correspondence with the
analysis.

The current paper is structured as follows. In Sect. 2
we describe the mathematical model considered in the
present study. Numerical evidence of the regimes of
complete as well as the partial unidirectional energy
channeling is presented in Sect. 3. Section 4 is devoted
to the mathematical analysis of the non-stationary
regimes of unidirectional energy channeling. Sec-
tion4.1 considers development of an asymptoticmodel,
and Sect. 4.2 comprehensively dwells on analytical and
numerical study of the derived slow-flow model and
provides comparison with the numerical simulations
of the original mathematical model. We conclude this
exposition discussing the main highlights of this work
in Sect. 5.

2 Mathematical model

Similar to the first part of the paper, we consider a
three-dimensional unit-cell oscillator model compris-
ing the locally resonant external mass (ofmassM) with
an internal rotator (of mass m concentrated at a radius
r ). The external mass oscillates in a three-dimensional
linear local potential. The dynamical description of the
external mass is considered in Cartesian coordinates,
whereas the Euler angles define the orientation of the
internal rotator. The schematic of the systemunder con-
sideration is shown in Fig. 1a, while the coordinate
system considered for the internal rotator is shown in
Fig. 1b. The coordinates of the internal rotator are given
by,

xm(t) = xM (t) + rcos(ψ(t))

ym(t) = yM (t) + rcos(θ(t))sin(ψ(t))

zm(t) = zM (t) + rsin(θ(t))sin(ψ(t)) (1)

where xM , yM and zM (xm, ym and zm) are the general-
ized coordinates of the external mass (internal rotator).

The kinetic energy and the potential energy of the
system under consideration are given by,
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Fig. 1 a Schematic of the system under consideration, b Definition of Euler angles modeling the orientation of the internal rotator
(φ = 0)
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where ki is the linear stiffness coefficient. We consider
velocity-dependent linear damping at the hub of the
internal rotator and the corresponding Rayleigh dissi-
pation function is given by

R = μ̃

2
{(ẋm − ẋM )2 + (ẏm − ẏM )2 + (żm − żM )2}

= μ̃

2
r2{θ̇2 sin2(ψ) + ψ̇2} (2c)

Considering the Euler–Lagrange equations we derive
the equations of motion of the damped 5 degree of free-
dom system under consideration and are correspond-
ingly
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}

+ μ̃r
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= 0 (3e)

where M is the mass of the three-dimensional linear
oscillator (external mass), m is the mass of the internal
spherical rotator, r is the radius of the internal rotator
(see Fig. 1a), k1 = k2 = k3 = k is linear stiffness
coefficient of the elastic springs acting on the exter-
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nal mass in the x-, y-, and z- directions, respectively.
xM , yM , zM denote the displacement of the external
mass along the x-, y-, and z- directions respectively,
whereas θ, ψ - are the nutation and spin angles of the
internal spherical rotator (see Fig. 1b). In order to trans-
form (3) into non-dimensional form we consider regu-
lar system rescaling and non-dimensionalization:

x = xM
r

; y = yM
r

; z = zM
r

τ = t

√
k1

M + m
; ε = m

M + m
;μ = μ̃

√
m + M

m
√
k1

(4)

The mass ratio ε is considered as a small system
parameter (0 < ε � 1) in this study and for subsequent
asymptotic analysis. We consider small order viscous
damping, i.e., μ̃ = εν, where ν = O (1). Correspond-
ingly, the non-dimensional equations of motion read,

ẍ + ε sin(ψ)ψ̈ = −x + ε cos(ψ)ψ̇2; (5a)

ÿ − ε sin(ψ) sin(θ)θ̈ + ε cos(ψ) cos(θ)ψ̈

= −y + ε sin(ψ) cos(θ)(θ̇2 + ψ̇2)

+ 2ε cos(ψ) sin(θ)θ̇ ψ̇; (5b)

z̈ − ε sin(ψ) cos(θ)θ̈ + ε cos(ψ) sin(θ)ψ̈

= −z + ε sin(ψ) sin(θ)(θ̇2 + ψ̇2)

+ 2ε cos(ψ) cos(θ)θ̇ ψ̇; (5c)

− sin(θ)ÿ + cos(θ)z̈ + sin(ψ)θ̈

= −2 cos(ψ)θ̇ψ̇ − εv sin(ψ)θ̇; (5d)

− sin(ψ)ẍ + cos(ψ) cos(θ)ÿ

+ cos(ψ) sin(θ)z̈ + ψ̈

= sin(ψ) cos(ψ)θ̇ − εvψ̇ (5e)

where over-dot denotes derivative with respect to non-
dimensional time τ . It is evident from (5) that ε scales
the magnitude of the nonlinear terms of the elastic
forces applied on the external mass, as well as the cou-
pling strength between the spherical rotator and the
external mass. As we are primarily interested in under-
standing the fundamental (1:1:1) resonant interaction
between themotion of the external mass along the three
orthogonal directions, we consider symmetric springs
(i.e., k1 = k2 = k3 = k).

We are primarily interested in low-energy excita-
tions resulting in low amplitude displacement of the
external mass x, y, z ≈ O (ε) as well as higher ampli-
tude excursions of the internal spherical rotator θ, ψ ≈

O (1). Thus, the external mass oscillates with a fast res-
onant frequency, whereas the internal spherical rotator
executes oscillations at a slower time scale as evidenced
by the numerical simulations and asymptotic analysis
in the following sections. The numerical evidence of
the phenomena of unidirectional energy transport is
presented in the next section.

3 Numerical evidence of the three-dimensional
unidirectional energy transport from ( y − z)
in-plane oscillations to x- direction out-of-plane
oscillations

Before embarking on the asymptotic analysis, it would
be prudent to numerically investigate the peculiar
non-stationary regimes manifested by intense, spatial
energy transport. Accordingly, we present the time his-
tories of the response of the external mass subjected to
in-plane (y − z) initial excitation. The time histories of
the response in x-, y- and z- directions are presented in
Fig. 2. Unless otherwise stated we consider ε = 0.01
all through this exposition. As it can be observed from
the results of Fig. 2, the initial conditions are such that
the response of the external mass is initially localized
in the (y − z) in-plane oscillations, whereas the inter-
nal spherical rotator is initially at rest and is oriented
along an arbitrary direction. As the system evolves,
initial energy imparted to the external mass to oscil-
late in y − z plane gets effectively channeled to the
x direction, i.e., the initial (y − z) in-plane oscilla-
tions of the external mass are completely transformed
to horizontal oscillations (along the x- direction). This
non-stationary regime of energy transport between the
in-plane and the out-of-plane vibrations is unidirec-
tional in the sense that the energy gets entrapped in
the x- direction and does not flow back to the y − z
plane. The considered response regime is governed by
strong resonant interactions between the three general-
ized coordinates of the external mass coupled through
the internalmotion of the spherical rotator.We consider
the transformed equations of motion to circumvent the
singularity whenever ψ = 0 by considering Cartesian
coordinates for both external mass and internal rota-
tor as described in “Appendix 1” of [20]. However,
since the response of the internal rotator is presented in
angular coordinates (instead of Cartesian coordinates)
in Fig. 3d, e, one can observe the singularities in angle θ

(ref. Fig. 3d) whenever ψ = 0. The observed singular-
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Fig. 2 Response corresponding to unidirectional complete
energy channeling for x (0) = 0, y (0) = 0.003, z (0) =
0.0052, θ (0) = π/3, ψ (0) = 0, ν = 0.15. a x displacement,
b y displacement, c z displacement of external mass, d rotator

angle θ , e rotator angle ψ . The response of the internal rotator
in Cartesian coordinates f x̃ displacement, g ỹ displacement, h
z̃ displacement

ity is a numerical artifact owing to Cartesian to Euler
angles coordinate transformation. The corresponding
response of the internal rotator in Cartesian coordinates
is shown in Fig. 3f, g, and h where no singularities are
observable. Alternatively, one can also employ switch-
ing algorithms in the numerical simulations to avoid
these singularities [21,22]. The Lissajous curves cor-
responding to the motion of the external mass exhibit-
ing the three-dimensional channeling regime are pre-
sented in Fig. 3a, b for the initial 1500 time units of the
numerical simulations. As can be observed, the energy
is predominantly localized in the y− z plane and oscil-
lation along the x- direction is sufficiently small. In
contrast, the final 500 time units of the numerical simu-
lation presented inFig. 3c, d exhibit a radically different
behavior. As can be observed, the motion is localized
along the x- direction with sufficiently large amplitude
oscillations, whereas the oscillations in the y − z are
negligibly small. Such a behavior denotes energy lock-
ing/entrapment in the x- direction. In the present study
this regime is termed as complete unidirectional energy

channeling. However, suchmechanism of energy chan-
neling is not generic, but corresponds to a very specific
choice of initial orientation of the internal rotator and
will be considered analytically in Sect. 4.

However, considering an arbitrary orientation of the
internal rotator leads to partial unidirectional energy
exchange between the y− z plane and the x- direction.
Similar to the previous case, we consider initial condi-
tions such that the energy is initially localized in y − z
plane and the internal rotator is stationary and arbitrar-
ily oriented as shown in Fig. 4. As the system evolves,
the energy gets distributed in all the three directions
in the form of oscillations of the external mass and
the motion is delocalized. This process of mild energy
exchange between (y − z) in-plane oscillations to the
x- direction out-of-plane oscillations of the external
mass happens unidirectionally. This behavior is consid-
ered as partial unidirectional energy channeling. The
Lissajous curves corresponding to the motion of the
external mass exhibiting the three-dimensional chan-
neling regime are presented in Fig. 5a, b for the initial
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Fig. 3 Lissajous curves
corresponding to
unidirectional complete
energy channeling for
x (0) = x (0) = 0, y (0) =
0.003, z (0) =
0.0052, θ (0) =
π/3, ψ (0) = 0, ν = 0.15. a
x − y configuration plane b
x − z configuration plane
corresponding to initial
1500 time units of the
simulation c x − y
configuration plane d x − z
configuration plane
corresponding to final 500
time units of the simulation

Fig. 4 Response corresponding to unidirectional partial energy
channeling for x (0) = 0, y (0) = 0.003, z (0) =
0.0052, θ (0) = π/3, ψ (0) = π/6, ν = 0.15 a x displacement,

b y displacement, c z displacement of external mass, d rotator
angle θ , e rotator angle ψ

1500 time units of the numerical simulations. As can
be observed from the results shown in Fig. 5a, b, the
initial energy provided in the y − z plane is delocal-

ized and starts flowing back and forth between y − z
plane and the x- direction. However, from Fig. 5c, d it
can be observed that eventually the energy is locked in
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Fig. 5 Lissajous curves
corresponding to
unidirectional partial energy
channeling for x (0) =
0, y (0) = 0.003, z (0) =
0.0052, θ (0) =
π/3, ψ (0) = π/6, ν =
0.15. a x − y configuration
plane b x − z configuration
plane corresponding to
initial 1500 time units of the
simulation c x − y
configuration plane d x − z
configuration plane
corresponding to final 500
time units of the simulation

both y − z plane and the x- direction and no further
exchange is possible. This can be verified from the fact
that ψ reaches a steady-state stationary value.

In the following section, we consider analytical and
numerical study of intrinsic mechanisms which govern
the non-stationary regimes corresponding to the out-
of-plane, unidirectional energy channeling. Addition-
ally, there exists a similar class of channeling response
regimes restricted solely to the in-plane energy flow
between any two mutually orthogonal directions and
is considered in “Appendix 3” [16]. Before proceeding
with further analysis, it would be prudent to rigorously
define the considered energy channeling mechanisms
in this exposition. Unidirectional energy channel-
ing refers to the nonrecurrent (complete/incomplete)
energy exchange between any two orthogonal orien-
tations of the external mass. The analysis of these
intriguing regimes invoking regular multi-time-scale

asymptotic analysis is considered in Sect. 4.2. With the
application of asymptotic analysis, the global dynamics
of the original dynamical system (5) spanning a ten-
dimensional phase space can be substantially simpli-
fied. We emphasize that the present exposition dwells
only on weak excitations and the resulting regimes of
partial and complete (in-plane and out-of-plane) energy
channeling.

4 Analytical study of the three-dimensional
stationary and non-stationary regimes
(unidirectional energy channeling) exhibited by
the locally resonant unit-cell model

In the present section we consider a comprehensive
analytical study of the intrinsic dynamics of station-
ary andnon-stationary regimes of unidirectional energy
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channeling. We begin Subsect. 4.1 by considering reg-
ular multi-time-scale analysis resulting in a reduced
slow-flowmodel describing the evolution of the ampli-
tudes and phases of the response of the external mass as
well as themotion of the internal spherical rotator. Sub-
sect. 4.2.1 considers the analysis of stationary dynam-
ics,whereas Subsect. 4.2.2 dwells on the non-stationary
dynamics of out-of-plane unidirectional energy chan-
neling.

4.1 Multi-time-scale analysis

It is worthwhile noting once again that the outer ele-
ment of the system under consideration is subject to
a symmetric, three-dimensional potential, such that its
linearized natural frequencies in x-, y- and z- directions
are identical and equal to unity. Therefore, in the unper-
turbed case (ε = 0) the general motion of the outer ele-
ment lies on the resonancemanifold admitting the exact
resonance condition of (1:1:1) between all the three
frequency components. The light-mass internal rotator
inertially couples the oscillations of the latter along the
x-, y- and z- axes. Given the fact that the linearized
natural frequencies of the outer element along the x-,
y- and z- axes satisfy the basic (1:1:1) resonance con-
ditions and its oscillations along these axes are weakly
coupled (ε > 0), we expect the formation of tran-
sient regimes of resonant energy exchanges between
the three components of motion of the outer element.
It is important to emphasize that all the regimes of res-
onant energy transport under consideration are mani-
fested by the resonant interactions between the three
components of the response of the outer element being
off resonance with the motion of internal, spherical
rotator. Thus, considering the 1:1:1 resonant interac-
tion between the motions of the external mass along
the three mutually perpendicular directions, we intro-
duce the complex variables [23] in the following form,

X = ẋ + i x; Y = ẏ + iy; Z = ż + i z (6)

The complex representation of classical equations of
motion of a system of linear oscillators is quite exten-
sively used in the domain of quantum mechanics and
solid-state physics. The representation basically incor-
porates in a single variable both velocity and displace-
ment as the real and imaginary parts, respectively. Fur-
ther, the displacements and velocities of the oscillators
can be visually presented as equal length vectors rotat-
ing in opposite directions. Thus, it would be enough to

find only one complex function for each oscillator and
thereby completely determining both displacement and
velocity. This representation leads to simplified equa-
tions of motion, and the order of differential equations
of motion reduces by one. Accordingly,

Ẋ − i X − ε cos (ψ) ψ̇2 − ε sin (ψ) ψ̈ = 0 (7a)

Ẏ − iY − ε sin (ψ)
{
cos (θ)

(
θ̇2 + ψ̇2) + sin (θ) θ̈

}
+ ε cos (ψ)

{−2 sin (θ) θ̇ ψ̇ + cos (θ) ψ̈
} = 0 (7b)

Ż − i Z + ε sin (ψ)
{− sin (θ)

(
θ̇2 + ψ̇2) + cos (θ) θ̈

}
+ ε cos (ψ)

{
2 cos (θ) θ̇ ψ̇ + sin (θ) ψ̈

} = 0 (7c)

2 cos (ψ) θ̇ψ̇ − sin (θ)

{
Ẏ − i

2

(
Y + Y ∗)}

+ cos (θ)

{
Ż − i

2

(
Z + Z∗)}

+ sin (ψ) θ̈ + εν sin (ψ) θ̇ = 0 (7d)

− sin (ψ)

{
Ẋ − i

2

(
X + X∗)}

+ cos (θ) cos (ψ)

{
Ẏ − i

2

(
Y + Y ∗)}

+ cos (ψ) sin (θ)

{
Ż − i

2

(
Z + Z∗)}

+ ψ̈ − sin (ψ) cos (ψ) θ̇2 + ενψ̇ = 0 (7e)

In order to analyze the dynamics in the limit of low-
energy excitations, we invoke the regular multi-time-
scale procedure (τ0 = τ, τ1 = ετ ) and consider the
regular expansions of the generalized coordinates

X (τ ) = εX0(τ0, τ1) + ε2X1(τ0, τ1) + O(ε3)

Y (τ ) = εY0(τ0, τ1) + ε2Y1(τ0, τ1) + O(ε3)

Z(τ ) = εZ0(τ0, τ1) + ε2Z1(τ0, τ1) + O(ε3)

θ(τ ) = θ0(τ0, τ1) + εθ1(τ0, τ1) + O(ε2)

ψ(τ) = ψ0(τ0, τ1) + εψ1(τ0, τ1) + O(ε2) (8)

Incorporating (8) in (7) and expanding in rational pow-
ers of the small parameter ε considering slow modula-
tion of the angular coordinates and thereby neglecting
the nonlinear components, one obtains the following
equations at the leading order (O(1)),

θ̈0 = 0; ψ̈0 = 0 (9)

Where the over-dots represent derivatives with respect
to fast time-scale τ0 and the solutions of (9) are con-
sidered in the following form,

θ0 = P (τ1) + τ0Q (τ1) ;ψ0 = R (τ1) + τ0S (τ1)

(10)
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where P, Q, R, S are functions of the slow time-scale
τ1. In the scope of the present work we are primarily
interested only in the slow evolution of the amplitudes
and specifically in the limit of low-energy excitations of
the externalmass. Thus, we preclude the fast rotation of
the internal spherical rotator by considering Q (τ1) =
S (τ1) = 0. Thus, the slow evolution of both angular
coordinates takes the form

θ0 = P (τ1) ;ψ0 = R (τ1) (11)

Considering O (ε) approximation, we have

Ẋ0 − i X0 = 0; (12a)

Ẏ0 − iY0 = 0; (12b)

Ż0 − i Z0 = 0; (12c)

sin (ψ0) θ̈1 − sin (θ0)

{
Ẏ0 − i

2

(
Y0 + Y ∗

0

)}

+ cos (θ0)

{
Ż0 − i

2

(
Z0 + Z∗

0

)} = 0; (12d)

ψ̈1 − sin (ψ0)

{
Ẋ0 − i

2

(
X0 + X∗

0

)}

+ cos (θ0) cos (ψ0)

{
Ẏ0 − i

2

(
Y0 + Y ∗

0

)}

+ cos (ψ0) sin (θ0)

{
Ż0 − i

2

(
Z0 + Z∗

0

)} = 0

(12e)

TheO(ε) approximation corresponding to themotion
of the external mass is a decoupled set of oscilla-
tors (12a–c) wherein the external mass (of unit mass)
oscillates with same frequency in all the three direc-
tions.The corresponding solutions are considered in the
form,

X0 = x0 (τ1) e
iτ0; (13a)

Y0 = y0 (τ1) e
iτ0; (13b)

Z0 = z0 (τ1) e
iτ0 (13c)

where the amplitudes x0, y0, and z0 are functions of
slow timevariable τ1. Incorporating these solutions into
(12d, e), one has

sin (ψ0) θ̈1

= i sin (θ0)

{
y0e

iτ0 − 1

2

(
y0e

iτ0 + y∗
0e

−iτ0
)}

− i cos (θ0)

{
z0e

iτ0 − 1

2

(
z0e

iτ0 + z∗0e−iτ0
)}
(13d)

ψ̈1 = i

2
sin (ψ0)

{
x0e

iτ0 − x∗
0e

−iτ0
}

− i

2
cos (θ0) cos (ψ0)

{
y0e

iτ0 − y∗
0e

−iτ0
}

− i

2
cos (ψ0) sin (θ0)

{
z0e

iτ0 − z∗0e−iτ0
}

(13e)

Since the above differential equations are in terms of
fast time-scale τ0, all the slow time-varying terms can
be effectively considered to be constant (at this partic-
ular time scale). Therefore, (13d, e) can be integrated
twice yielding,

θ1 = i

2 sin (ψ0)

[
sin (θ0)

{
−y0e

iτ0 + y∗
0e

−iτ0
}

− cos (θ0)
{
−z0e

iτ0 + z∗0e−iτ0
}]

(14a)

ψ1 = i

2

[
sin (ψ0)

{
−x0e

iτ0 + x∗
0e

−iτ0
}

− cos (θ0) cos (ψ0)
{
−y0e

iτ0 + y∗
0e

−iτ0
}

− cos (ψ0) sin (θ0)
{
−z0e

iτ0 + z∗0e−iτ0
}]

(14b)

Proceeding to the next order of approximation O(ε2)

we have

2i x ′
0 + x0sin

2 (ψ0) − y0 cos (θ0) sin (ψ0) cos (ψ0)

− z0 sin (θ0) sin (ψ0) cos (ψ0) = 0; (15a)

2iy′
0 + y0

{
1 − cos2 (θ0) sin

2 (ψ0)
}

− x0 cos (θ0) cos (ψ0) sin (ψ0)

− z0 cos (θ0) sin (θ0) sin
2 (ψ0) = 0; (15b)

2i z′0 + z0
{
1 − sin2 (ψ0) sin

2 (θ0)
}

− x0 sin (θ0) cos (ψ0) sin (ψ0)

− y0 cos (θ0) sin (θ0) sin
2 (ψ0) = 0; (15c)

sin (ψ0) θ ′′
0 + ν sin (ψ) θ ′

0 + 2 cos (ψ0) θ ′
0ψ

′
0

+1

4
sin (ψ0) sin (2θ0)

{
|y0|2 − |z0|2

}
+1

4
cos (ψ0) sin (θ0)

{
x0y

∗
0 + y0x

∗
0

}
−1

4
sin (ψ0) cos (2θ0)

{
y0z

∗
0 + z0y

∗
0

}
−1

4
cos (ψ0) cos (θ0)

{
z0x

∗
0 + x0z

∗
0

} = 0; (15d)

ψ ′′
0 + νψ ′

0 − 1

2
sin (2ψ0)

(
θ ′
0

)2 + 1

4
sin (2ψ0) |x0|2

+
{
−1

2
sin2 (θ0) cot (ψ0)− 5

16
cos (2θ0) cot (ψ0)

+1

4
cos2 (ψ0) cot (ψ0)
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+ 1

16
cos (2θ0) cos (3ψ0) cosec (ψ0)

}

×|y0|2 +
{
−1

2
cos2 (θ0) cot (ψ0)

+ 5

16
cos (2θ0) cot (ψ0) + 1

4
cos2 (ψ0) cot (ψ0)

− 1

16
cos (2θ0) cos (3ψ0) cosec (ψ0)

}

×|z0|2 − 1

4
cos (2ψ0) cos (θ0)

{
x0y

∗
0 + y0x

∗
0

}
−1

8
sin (2θ0) sin (2ψ0)

{
y0z

∗
0 + z0y

∗
0

}
−1

4
cos (2ψ0) sin (θ0)

{
z0x

∗
0 + x0z

∗
0

} = 0 (15e)

where primes denote derivatives with respect to slow
time-scale τ1. The original system (5) has a ten-
dimensional phase space and so does the slow-flow
model (15). Thus, despite partitioning the slow and fast
dynamics of the system, the dimensionality of the sys-
tem remains unchanged. In order to reduce the dimen-
sionality of the system, we consider a spherical trans-
formation for the translational coordinates of the exter-
nal mass in the form

x0 (τ1) = N sin (ξ (τ1)) cos (η (τ1)) e
iδ1(τ1)

y0 (τ1) = N sin (ξ (τ1)) sin (η (τ1)) e
iδ2(τ1)

z0 (τ1) = N cos (ξ (τ1)) e
iδ3(τ1) (16)

where ξ (τ1) , η (τ1) denote the spherical angular coor-
dinates modeling the slow evolving response of motion
of the external mass along the three orthogonal direc-
tions. Here δi (i = 1, 2, 3) are the corresponding slow
time-varying phases of the response of the external
mass in x-,y- and z- directions, respectively. The con-
sidered transformation inherently supports a conserved
quantity (occupation number) given by,

|x0|2 + |y0|2 + |z0|2 = N 2 (17)

Interestingly, the slow-flow model (15) despite being
dissipative does not preclude the existence of occupa-
tion number as a conserved quantity. This observation
requires additional elaboration. It is true that, in gen-
eral, one cannot expect for this (energy related) quantity
to be conserved due to the presence of the dissipation
in the considered model. However, we recall that the
slow-flow model (15) is in essence the leading order
approximation of the original system response (as it is
clear from themulti-scale analysis). Therefore, the con-
served quantity given in (17) holds true up to this order

of approximation. However, the same quantity might
evolve with respect to a slower (super-slow) time-scale
(τ2). Apparently this decay is not described at this order
of approximation.

In effect, the transformation (17) restricts themotion
of the external mass on to the surface of a sphere of
radius N . Introducing the transformation (16) in (15)
and considering the relative phases δ12 = δ1−δ2, δ23 =
δ2 − δ3, we reduce the dimensionality of the system
to eight. The corresponding reduced slow-flow model
takes the form,

ξ ′ = −1

2
{(A2 cos (η) + B2 sin (η)) cos (ξ) − C2 sin (ξ)}

(18a)

η′ = − 1

2 sin (ξ)
{B2 cos (η) − A2 sin (η)} (18b)

δ′
12 = A1

2 sin (ξ) cos (η)
− B1

2 sin (ξ) sin (η)
(18c)

δ′
23 = B1

2 sin (ξ) sin (η)
− C1

2 cos (ξ)
(18d)

× sin (ψ0) θ ′′
0 + ν sin (ψ) θ ′

0 + 2 cos (ψ0) θ ′
0ψ

′
0

+1

4
N 2 sin (ψ0) sin (2θ0)

× {
cos2 (ξ) − sin2 (ξ) sin2 (η)

}
+1

2
N 2 cos (ψ0)

× sin (θ0)
{
sin2 (ξ) sin (η) cos (η) cos (δ12)

}
−1

2
N 2 sin (ψ0) cos (2θ0)

× {sin (ξ) cos (ξ) sin (η) cos (δ23)}
−1

2
N 2 cos (ψ0) cos (θ0)

× {sin (ξ) cos (ξ) cos (η) cos (δ12 + δ23)} = 0(18e)

×ψ ′′
0 + νψ ′

0 − 1

2
sin (2ψ0)

(
θ ′
0

)2
+1

4
N 2 sin (2ψ0) sin

2 (ξ) cos2 (η)

+N 2
{
−1

2
sin2 (θ0) cot (ψ0)

− 5

16
cos (2θ0) cot (ψ0) + 1

4
cos2 (ψ0) cot (ψ0)

+ 1

16
cos (2θ0) cos (3ψ0) cosec (ψ0)

}

× sin2 (ξ) sin2 (η) + N 2
{
−1

2
cos2 (θ0) cot (ψ0)

+ 5

16
cos (2θ0) cot (ψ0) + 1

4
cos2 (ψ0) cot (ψ0)

− 1

16
cos (2θ0) cos (3ψ0) cosec (ψ0)

}
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× cos2 (ξ) − 1

2
N 2 cos (2ψ0) cos (θ0)

× {
sin2 (ξ) sin (η) cos (η) cos (δ12)

}
−1

4
N 2 sin (2θ0) sin (2ψ0)

× {sin (ξ) cos (ξ) sin (η) cos (δ23)}
−1

2
N 2 cos (2ψ0) sin (θ0)

×{sin (ξ) cos (ξ) cos (η) cos (δ12 + δ23)} = 0

(18f)

where the coefficients Ai , Bi and Ci (i = 1, 2) are
defined in “Appendix 1.” Although, spherical coordi-
nate transformation reduced the dimensionality of the
system, the analysis of a systemwith eight-dimensional
phase space still remains sufficiently complex. The
considered reduced slow-flow system (18) is non-
conservative, non-integrable, and therefore analyti-
cally intractable. But we consider conserved quanti-
ties of the corresponding conservative system which
are slow time-varying quantities for the system consid-
ered herein and find analytical estimates for partial and
complete unidirectional energy channeling.

4.2 Theoretical study

4.2.1 Stationary regimes associated with nonlinear
normal modes (NNMs)

Before venturing into the analysis of non-stationary
regimes of the reduced slow-flow model (18) corre-
sponding to unidirectional energy channeling of the
original system (5), we explore the rich family of equi-
librium points of (18) and investigate their linear sta-
bility. The equilibrium points of the (18) would cor-
respond to periodic motions of the system (5) and
are thereby appropriately denoted as nonlinear normal
modes (NNMs) [23]. In order to find the equilibrium
points of the slow-flow system (18) we require the
nullification of the slow time derivatives (ξ ′ = η′ =
δ′
12 = δ′

23 = ψ ′
0 = ψ ′′

0 = θ ′
0 = θ ′′

0 = 0). In fact, the
straightforward analysis of the system (18) seems diffi-
cult, given its complex structure. However, using some
rather intuitive physical reasoning, the three distinct,
continuous families of the equilibrium points of the
slow-flow system (18) can be obtained. Thus, consid-
ering periodic oscillations of the outer mass in an arbi-
trary orientation in the three-dimensional space, one
can accordingly adjust the orientation of the internal

spherical rotator along the same direction as that of
the oscillations of the external mass. These quite sim-
ple periodic motions constitute the trivial continuous
family of NNMs which can be easily realized in the
three-dimensional configuration under consideration.
The three family ofNNMs realized in this system is pro-
vided in the first part of the paper [20]. To ascertain the
stability of the equilibrium points, we consider small
perturbation about these equilibrium points in the form
ξ = ξ̄ + �ξ, η = η̄ + �η, δ12 = δ̄12 + �δ12, δ23 =
δ̄23+�δ23, θ0 = θ̄0+�θ0, ψ0 = ψ̄0+�ψ0, where ¯(·)
denotes the equilibrium point and�(·) the correspond-
ing perturbation. One can easily obtain a linear varia-
tional equation by introducing the considered perturba-
tions in (18) and the eigenvalues of the corresponding
Jacobian matrix govern the stability of the equilibrium
point. However, it can be easily verified that the eigen-
values corresponding to all these families of equilib-
rium points have negative real parts and the realized
equilibrium points are stable nodes/foci (ν > 0) since
their conservative (ν = 0) counterparts are centers [20].

4.2.2 Non-stationary regimes of the unidirectional
energy channeling

As shown in numerical simulations of Sect. 2, the uni-
directional energy channeling discussed in this work
corresponds to energy channeling from in-plane oscil-
lations in y− z plane to out-of-plane oscillations along
x- direction. Furthermore, it is evident that the orien-
tation plane of the rotator is stationary (θ ′

0 = 0) all
through the energy channeling process as schemati-
cally shown in Fig. 6. Accordingly, one can find the
orientation angle of the rotator plane as

tan (θ0) = cos (ξ)

sin (ξ) sin (η)
(19)

Accordingly, in this section we attempt to analytically
predict the regimes of partial and complete energy
channeling in the framework wherein the orientation
of the plane of rotation of the rotator is stationary.

In what follows we consider the balance of angular
momenta in all the three directions. The averaged com-
ponents (see “Appendix 2”) of the angularmomenta are
as follows,

Lx (τ1) = a1 + a2θ
′
0; (20a)

Ly (τ1) = −b1 − b2θ
′
0 − b3ψ

′
0; (20b)

Lz (τ1) = c1 − c2θ
′
0 + c3ψ

′
0 (20c)
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Fig. 6 Schematic of
out-of-plane energy
exchange mechanism. a
angular coordinates
corresponding to external
mass, b rotational angles
corresponding to the
internal rotator

where the coefficients ai , b j and c j (i = 1, 2 and
j = 1, 2, 3) are given in “Appendix 2.” Imposing the
condition θ ′

0 = 0, we have,

Lx (τ1) = a1; (21a)

Ly (τ1) = −b1 − b3ψ
′
0; (21b)

Lz (τ1) = c1 + c3ψ
′
0 (21c)

Trivial analytical manipulation of (21) leads to

ψ ′
0 = (Lz − c1) cos (θ0) − (

Ly + b1
)
sin (θ0) (22)

Although we have assumed that the angular mo-
menta are slowly varyingwith respect to time, (20) does
not account for the damping. Considering the physical
argument and invoking Newton’s second law, i.e., rate
of change of angular momentum is equal to the total
resisting torque which is generated due to the viscous
damping at the hub. Accordingly, considering the com-
ponents of rate of change of Lx , Ly , and Lz about the
ψ axis, we have, (see “Appendix 2” for the details)

∂Lz

∂τ1
cos (θ0) − ∂Ly

∂τ1
sin (θ0) = −νψ ′

0 (23)

Note that the variation of Lx has no component about
theψ axis. Integrating the above equation once by not-
ing that θ ′

0 = 0,

Lz cos (θ0) − Ly sin (θ0) = −νψ0 + Q (24a)

where Q is the constant of integration. It should how-
ever be noted that, in general, θ ′

0 may not be equal to
zero and the analysis considered herein is a specific case
corresponding to θ ′

0 = 0. Accordingly, the constant of
integration is given by,

Q = Lz (0) cos (θ0) − Ly (0) sin (θ0) + νψ0 (0) (24b)

Inserting (24a) in (22), we have,

ψ ′
0 = {Lz (0) − c1} cos (θ0) − {

Ly (0) + b1
}
sin (θ0)

− ν {ψ0 − ψ0 (0)} (25)

Thus, the dimensionality can be further reduced and
the slow-flow model takes the following form,

ξ ′ = 1

2
{[A2 cos (η) + B2 sin (η)] cos (ξ)

−C2 sin (ξ)} (26a)

η′ = 1

2 sin (ξ)
{B2 cos (η) − A2 sin (η)} (26b)

δ′
12 = A1

2 sin (ξ) cos (η)
− B1

2 sin (ξ) sin (η)
(26c)

δ′
23 = B1

2 sin (ξ) sin (η)
− C1

2 cos (ξ)
(26d)

ψ ′
0 = {Lz (0) − c1} cos (θ0) − {

Ly (0) + b1
}
sin (θ0)

−ν {ψ0 − ψ0 (0)} (26e)

We further restrict the analysis to δ23 = nπ denoting in-
phase or out-of-phase oscillations of the external mass
along y and z directions. Equivalently,wehave δ′

23 = 0.
As presented in Sect. 2, the steady-state response of the
system corresponds to an equilibrium point and equiv-
alently represents a nonlinear normal mode (NNM).
Accordingly, we represent the final state of the sys-
tem as ξ F , ηF , δF12, δ

F
23, θ

F
0 , ψ F

0 and the correspond-
ing initial state ξ (0) = ξ I , η (0) = ηI , δ12 (0) =
δ I12, δ23 (0) = δ I23, θ0 (0) = θ I

0 , ψ0 (0) = ψ I
0 . How-

ever, as described previously, θ ′
0 = 0 and δ′

23 = 0
and accordingly we have θ F

0 = θ I
0 and δF23 = δ I23.

Thus, if one can choose the initial conditions of the
external mass (ξ I , ηI , δ I12, δ

I
23 = nπ ), the orien-

tation plane of the rotator is determined as θ I
0 =

tan−1
(

cos
(
ξ I

)
sin(ξ I ) sin(ηI )

)
. The only parameter govern-

ing the dynamics of the system is ψ I
0 and thus com-

plete/partial energy channeling depends on the initial
position of the internal rotator. At steady state we have
ψ ′
0 = 0, and thus the initial position of the internal
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Fig. 7 Response corresponding to unidirectional near complete
energy channeling (ξ = π/6, η = π/2, N = 0.6) for initial
conditions x (0) = 0, y (0) = 0.003, z (0) = 0.0052, θ (0) =

π/3, ψ (0) = π/256, ν = 0.15. a x displacement, b y displace-
ment, c z displacement of external mass, d rotator angle θ , e
rotator angle ψ

rotator is given by (from 26e),

ψ I
0 = ψ F

0 − {Lz (0) − c1} cos
(
θ I
0

)
ν

+
{
Ly (0) + b1

}
sin

(
θ I
0

)
ν

(27a)

In the absence of initial velocity of the internal rotator
(Lz (0) = Ly (0) = 0), (20a) reduces to

ψ I
0 = ψ F

0 + c1 cos
(
θ I
0

)
ν

+ b1 sin
(
θ I
0

)
ν

(27b)

Finally, the initial conditions of the external mass oscil-
lating in the y−z plane correspond to ξ I is arbitrary, ηI

= (2q + 1) π/2, δ I12 is arbitrary, δ
I
23 = nπ , whereas

those of the internal rotator are θ I
0 =

tan−1
(

cos
(
ξ I

)
sin(ξ I ) sin(ηI )

)
and ψ I

0 is arbitrary. The cor-

responding final (steady) state of the system with
external mass oscillating along x direction and the
internal rotator oriented along the same direction is
ξ F = π

2 , ηF = 0, δF12 is arbitrary, δ
F
23 = nπ, θ F

0 =
tan−1

(
cos

(
ξ F

)
sin(ξ F) sin(ηF)

)
= θ I

0 and ψ F
0 = 0. Accord-

ingly, we have c1 = b1 = 0 and ψ I
0 = ψ F

0 = 0.
This implies, for complete energy channeling, we need
to have ψ I

0 = ψ F
0 = 0. Interestingly, even for partial

energy channeling one can deduce that ψ F
0 → ψ I

0 as
τ0 → ∞.

The final part of this section is primarily devoted to
the comparison of the responses of the original system
(5) and the slow-flow model (18). The simplest sys-
tem response corresponds to the simple time-periodic
motion of the external mass. Such a response would

correspond to an equilibrium point of the slow-flow
model (18). The corresponding time histories of the
response (related to the stable NNM) are illustrated in
[20]. Since the stationarity of the internal rotator is a
prerequisite for the realization of an equilibrium point,
the equilibrium points corresponding to the underlying
conservative system are supported by the dissipative
system too. In fact the equilibrium points which were
centers in the underlying conservative system are stable
nodes/foci (ν > 0) in the considered dissipative case.

The second set of numerical simulations corre-
sponds to a system exhibiting complete unidirectional,
out-of-plane energy exchange (initially localized in the
y − z plane). In Fig. 7 we present the response corre-
sponding to energy localization in the y − z plane with
unidirectional energy exchange with the x- direction.
As can be observed at steady state, the oscillations of
the external mass in the y−z plane are completely sup-
pressed, whereas the energy is locked/entrapped in x-
direction resulting in significant oscillations. This cor-
responds to near complete unidirectional energy chan-
neling and the response of the slow-flowmodelmatches
sufficiently well with the numerical simulations of the
original system (5). In Fig. 8 we present the response
corresponding to partial unidirectional energy chan-
neling. As can be observed, although there is suffi-
cient energy transferred from the y − z plane to the x-
direction, the energy transfer is incomplete. In essence,
at steady state, the external mass oscillates in all the
three directions at the same frequency, but with vary-
ing amplitudes governed by the initial orientation of the
internal rotator. In this case the response of the slow-
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Fig. 8 Response corresponding to unidirectional partial energy
channeling (ξ = π/6, η = π/2, N = 0.6) for initial con-
ditions x (0) = 0, y (0) = 0.003, z (0) = 0.0052, θ (0) =

π/3, ψ (0) = π/6, ν = 0.15. a x displacement, b y displace-
ment, c z displacement of external mass, d rotator angle θ , e
rotator angle ψ

flowmodel matches extremely well with the numerical
simulations of the original system (5).

We conclude this section emphasizing that the
described analysis can be extended further to any other
scenario such as out-of-plane energy channeling from
i) x − y plane to z-direction and ii) x − z plane to y-
direction. The in-plane unidirectional energy channel-
ing mechanism has been considered by Starosvetsky et
al. [16], and a brief exposition has been provided here
in “Appendix 3.” In fact the analysis of these scenar-
ios would closely follow the analysis presented in this
work owing to the inherent symmetry of the considered
system.

5 Conclusions

In the present study we considered the low-energy,
transient response regimes of locally resonant, three-
dimensional linear oscillator comprising an external
mass coupled with an internal spherical rotator. The
external mass is mounted on three-dimensional, (per-
fectly symmetric) linear potential. Using the reg-
ular multi-time-scale analysis in the limit of low-
energy regimes, we have derived the corresponding
slow-flow model. Analysis of the derived slow-flow
model reveals the peculiar regimes of transient irre-
versible energy channeling leading to complete three-
dimensional reorientation of the vibrations of exter-
nal mass. Using the symmetry of the problem under
consideration, we derive the global analytical descrip-
tion of the formation and bifurcation of highly non-
stationary regimes of complete (irreversible) unidirec-

tional energy channeling from the initially in-plane to
the out-of-plane vibrations of the external mass.

Unlike the bidirectional energy channeling mecha-
nism, the unidirectional mechanism is manifested by
permanent energy locking in the stationary vibrations
being orthogonally oriented to the plane of initial exci-
tation. The presented asymptoticmodel and the devised
analytical methodology enables the extension of the
analysis to a more complex study of wave propagation
and redirection in a one- and two-dimensional lattice of
unit-cells considered in this two-part series. Suchmate-
rial systems have applications in constructing seismic
metamaterials and material systems for wave channel-
ing.
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Appendix 1: Coefficients corresponding to the slow-
flow equations of the three translational coordinates

The coefficients corresponding to equation (18) are
given below

A1 = − cos (δ12) cos (θ0) cos (ψ0) sin (ψ0) sin (ξ) sin (η)

− cos (δ12 + δ23) sin (θ0) cos (ψ0) sin (ψ0) cos (ξ)

+ sin (ξ) cos (η) sin2 (ψ0) (A1.1)
A2 = sin (δ12) cos (θ0) cos (ψ0) sin (ψ0) sin (ξ) sin (η)

+ sin (δ12 + δ23) sin (θ0) cos (ψ0) sin (ψ0) cos (ξ)

(A1.2)
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B1 = − cos (δ12) cos (θ0) cos (ψ0) sin (ψ0) sin (ξ) cos (η)

− cos (δ23) cos (θ0) sin (θ0) sin
2 (ψ0) cos (ξ)

+
(
1 − cos2 (θ0) sin

2 (ψ0)
)
sin (ξ) sin (η) (A1.3)

B2 = − sin (δ12) cos (θ0) cos (ψ0) sin (ψ0) sin (ξ) cos (η)

+ sin (δ23) cos (θ0) sin (θ0) sin
2 (ψ0) cos (ξ) (A1.4)

C1 = − cos (δ23) cos (θ0) sin (θ0) sin
2 (ψ0) sin (ξ) sin (η)

− cos (δ12 + δ23) sin (θ0) cos (ψ0) sin (ψ0) sin (ξ) cos (η)

− sin2 (θ0) sin
2 (ψ0) cos (ξ) + cos (ξ) (A1.5)

C2 = − sin (δ23) cos (θ0) sin (θ0) sin
2 (ψ0) sin (ξ) sin (η)

− sin (δ12 + δ23) sin (θ0) cos (ψ0) sin (ψ0) sin (ξ) cos (η)

(A1.6)

Appendix 2: Conservation of angular momentum

The presence of a conserved quantity (integral of
motion) of a dynamical system effectively reduces the
dimensionality of the system. Thus, finding an inte-
gral of motion is imperative when studying higher-
dimensional systems, such as the one considered in this
study. The underlying conservative system (ν = 0) cor-
responding to system (5 or 18) described in Sects. 2 and
4 has three more integrals of motion in addition to the
first integral corresponding to energy. The three con-
served quantities are the angularmomenta (Lx , Ly, Lz)
along the three perpendicular directions. In order to
find the integral of motion, we calculate the angular
momentum in the original coordinates (corresponding
to (5) with ν = 0), complexify the expressions and
then average the expression with respect to the fast
time scale corresponding to the slow-flow model (18).
Accordingly (as per the notation in “Appendix 1”), we
have

˙̃x(τ ) = ẋ(τ ) − ψ̇cos(ψ(τ)) (A2.1)
˙̃y(τ ) = ẏ(τ ) + ψ̇ cos (θ (τ )) cos (ψ (τ))

−θ̇ sin (θ (τ )) cos (ψ (τ)) (A2.2)
˙̃z(τ ) = ż(τ ) + ψ̇sin (θ (τ )) cos (ψ (τ))

+θ̇ cos (θ (τ )) sin (ψ (τ)) (A2.3)

The angular momentums about the three perpendicular
directions are as follows

Cx = ε
{
− ˙̃yz̃ + ỹ ˙̃z

}
+ (1 − ε) {−ẏz + yż} (A2.4)

Cy = ε
{
−˙̃zx̃ + z̃ ˙̃x

}
+ (1 − ε) {−żx + zẋ} (A2.5)

Cz = ε
{
− ˙̃x ỹ + x̃ ˙̃y

}
+ (1 − ε) {−ẋ y + x ẏ} (A2.6)

The averaged equation corresponding to the three angu-
lar momentums (Lx , Ly, Lz) are

Lx = 1

2i

{
y0z

∗
0 − y∗

0 z0
} + sin2 (ψ0) θ ′

0 (A2.7)

Ly = 1

2i

{
z0x

∗
0 − z∗0x0

}
−cos (θ0) sin (2ψ0)

2
θ

′
0 − sin (θ0) ψ ′

0 (A2.8)

Lz = 1

2i

{
x0y

∗
0 − x∗

0 y0
}

− sin (θ0) sin (2ψ0)

2
θ ′
0 + cos (θ0) ψ ′

0 (A2.9)

Using the spherical coordinate transformation we have
in the simplified notation

Lx = a1 + a2θ
′
0 (A2.10)

Ly = −b1 − b2θ
′
0 − b3ψ

′
0 (A2.11)

Lz = c1 − c2θ
′
0 + c3ψ

′
0 (A2.12)

where the coefficients are defined as,

a1 = 1

2
N 2 sin (δ23) sin (η) sin (2ξ) (A2.13)

a2 = sin2 (ψ0) (A2.14)

b1 = 1

2
N 2 sin (δ12 + δ23) cos (η) sin (2ξ) (A2.15)

b2 = cos (θ0) sin (2ψ0)

2
(A2.16)

b3 = sin (θ0) (A2.17)

c1 = 1

2
N 2 sin (δ12) sin (2η) sin2 (ξ) (A2.18)

c2 = sin (θ0) sin (2ψ0)

2
(A2.19)

c3 = cos (θ0) (A2.20)

Appendix 3: In-plane unidirectional energy chan-
neling across two orthogonal directions

As discussed toward the end of Sect. 4.2, the system
under consideration can exhibit both in-plane and out-
of-plane energy channeling regimes. The out-of-plane
energy channeling mechanism has been quite exten-
sively dealt with in Sect. 4.2. The in-plane energy chan-
nelingmechanismhas been considered in [17] for a pla-
nar system. However, the system under consideration
can exhibit such in-plane energy channeling in three
orthogonal planes. For the sake of comprehensiveness
and completeness, we describe all these three mecha-
nisms. Similar to the analysis in Sect. 4.2, considering
the reduced slow-flow model (26), we have,
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(1) For localization in x − y plane we have ξ =
π/2, δ12 = π/2, δ23 = 0, θ0 = 0 and the corre-
sponding reduced order slow-flow equations take
the form

ξ ′ = 0 ψ
′
0 = {Lz(0) − c1} − ν {ψ0 − ψ0(0)}

η′ = 1
4 sin (2ψ0) θ

′
0 = 0

(A3.1)

(2) For localization in x − z plane we have η =
0, δ12 = π/2, δ23 = 0, θ0 = π/2 and the reduced
order slow-flow equations take the form

ξ ′ = − 1
4 sin (2ψ0) ψ

′
0 = − {

Ly (0) + b1
} − ν {ψ0 − ψ0(0)}

η
′ = 0 θ

′
0 = 0

(A3.2)

(3) For localization in y − z plane we have η =
π/2, δ12 = 0, δ23 = π/2, ψ0 = π/2 and the
reduced order slow-flow equations take the form

ξ ′ = − 1
4 sin(2θ0) ψ

′
0 = 0

η′ = 0 a2θ
′
0 = −ν {θ0 − θ0 (0)} + {Lx (0) − a1}

(A3.3)

It is interesting to note that the three cases
described above are similar and therefore analyz-
ing the dynamics corresponding to any one case
is sufficient. The primary objective of the present
section is to ascertain the initial orientation of the
internal rotator resulting in unidirectional energy
channeling. The in-plane energy channelingmech-
anism in x − y plane has been previously explored
in [18]. In the present section we consider the

Fig. 9 Schematic of
in-plane energy exchange
mechanism. a angular
coordinates corresponding
to external mass, b
rotational angles
corresponding to the
internal rotator

Fig. 10 Response corresponding to unidirectional (near) com-
plete energy channeling (η = 0, ξ = 0, N = 0.6) for ini-
tial conditions x (0) = 0, y (0) = 0, z (0) = 0.006, θ (0) =

π/2, ψ (0) = π/256, ν = 0.15. a x displacement, b y displace-
ment, c z displacement of external mass, d rotator angle θ , e
rotator angle ψ
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mechanism of in-plane energy channeling con-
fined to the x−z plane (ref. Fig. 9).Arguing exactly
as in Sect. 4, incorporating θ0 = π/2 in (A3.2), we
have

ψ
′
0 = − {

Ly (0) + b1
} − ν {ψ0 − ψ0(0)} (A3.4)

The initial state of the system can be described as
ξ I is arbitrary, ηI = 0, δ I12 + δ I23 is arbitrary, whereas
those of the internal rotator are θ I

0 = π/2 and
ψ I
0 is arbitrary. The corresponding final state of the

systemwith external mass oscillating along x direction
and the internal rotator oriented along the same direc-
tion is ξ F = π/2, ηF = 0, δF12 + δF23 = nπ, θ F

0 =
π/2 = θ I

0 and ψ F
0 = 0. Accordingly, we have b1 = 0

and at steady state we haveψ
′
0 = 0 andψ I

0 = ψ F
0 = 0.

In essence, for complete energy channeling we need to
have ψ I

0 = ψ F
0 = 0. Interestingly, even for partial

energy channeling one can deduce that ψ F
0 → ψ I

0
as τ0 → ∞. The corresponding numerical simula-
tion response of the original system and the slow-flow
model is presented in Fig. 10. The response shows
extremely good correspondence.

References

1. Frahm, H.: “Device for Damping Vibrations of Bodies”.
USA Patent 989958, (1911)

2. Hartog,D.:MechanicalVibrations.McGrawHill, NewYork
(1956)

3. Pinkaew, T., Lukkunaprasit, P., Chatupote, P.: Seismic effec-
tiveness of tuned mass dampers for damage reduction of
structures. Eng. Struct. 25, 39–46 (2003)

4. Nagarajaiah, S., Varadarajan, N.: Short time Fourier trans-
form algorithm for wind response control of buildings with
variable stiffness TMD. Eng. Struct. 27, 431–441 (2005)

5. Yue, Q., Zhang, L., Zhang, W., Kärnä, T.: Mitigating ice
induced jacket platform vibrations utilizing a TMD system.
Cold Reg. Sci. Technol. 56(2–3), 84–89 (2009)

6. Vakakis, A.F., Gendelman, O., Bergman, L.A., McFarland,
D.M., Kerschen, G., Lee, Y.S.: Nonlinear Targeted Energy
Transfer in Mechanical and Structural Systems I. Springer,
New York (2008)

7. Vakakis, A.F., Gendelman, O., Bergman, L.A., McFarland,
D.M., Kerschen, G., Lee, Y.S.: Nonlinear Targeted Energy
Transfer in Mechanical and Structural Systems II. Springer,
Berlin (2009)

8. McFarland, D.M., Bergman, L.A., Vakakis, A.F.: Experi-
mental study of non-linear energy pumping occurring at a
single fast frequency. Int. J. NonlinearMechan. 40, 891–899
(2005)

9. Gendelman, O.V., Sigalov, G., Manevitch, L.I., Mane, M.,
Vakakis, A.F., Bergman, L.A.: Dynamics of an eccentric
rotational nonlinear energy sink. J. Appl. Mech. 79(1),
011012 (2012)

10. Georgiades, F., Vakakis, A.F., McFarland, D.M., Bergman,
L.A.: Shock isolation through passive energy pumping
caused by non-smooth nonlinearities. Int. J Bifurc. Chaos
15, 1989–2001 (2005)

11. Nucera, F., Vakakis, A.F.,McFarland, D.M., Bergman, L.A.,
Kerschen, G.: Targeted energy transfers in vibroimpact
oscillators for seismic mitigation. Nonlinear Dyn. 50, 651–
677 (2007)

12. Karayannis, I., Vakakis, A.F., Georgiades, F.: Vibro-impact
attachments as shock absorbers. Proc. Inst. Mech. Eng. C:
J. Mech. Eng. Sci. 222(10), 1899–1908 (2008)

13. Al-Shudeifat, M.A.,Wierschem, N., Quinn, D., Vakakis, A.,
Bergman, L.: Numerical and experimental investigation of a
highly effective single-sided vibro-impact nonlinear energy
sink for shock mitigation. Int. J. Nonlinear Mech. 52, 96–
109 (2013)

14. Sigalov, G., Gendelman, O.V., AL-Shudeifat, M.,
Manevitch, L.I., Vakakis, A.F., Bergman, L.A.: Resonance
captures and targeted energy transfers in an inertially-
coupled rotational nonlinear energy sink. Nonlinear Dyn.
69, 1693–1704 (2012)

15. Sigalov, G., Gendelman, O.V., AL-Shudeifat, M.A.,
Manevitch, L.I., Vakakis, A.F., Bergman, L.A.: Alternation
of regular and chaotic dynamics in a simple two-degree-of-
freedom system with nonlinear inertial coupling. Chaos 22,
013118(1-10) (2012)

16. Vorotnikov, K., Starosvetsky, Y.: Nonlinear energy chan-
neling in the two-dimensional, locally resonant, unit-cell
model. I. High energy pulsations and routes to energy local-
ization. Chaos 25, 073106(1-14) (2015)

17. Vorotnikov, K., Starosvetsky, Y.: Nonlinear energy chan-
neling in the two-dimensional, locally resonant, unit-cell
model. II. Low energy excitations and unidirectional energy
transport. Chaos 25, 073107(1-13) (2015)

18. Vorotnikov, K., Starosvetsky, Y.: Bifurcation structure of the
special class of nonstationary regimes emerging in the 2D
inertially coupled, unit-cellmodel: analytical study. J. Sound
Vib. 377(1), 226–242 (2016)

19. Vorotnikov, K., Starosvetsky, Y.: Nonlinear mechanisms of
two-dimensional wave-wave transformations in the iner-
tially coupled acoustic structure, under review

20. Jayaprakash, K.R., Starosvetsky, Y.: Three-dimensional
Energy Channeling in the Unit-cell Model Coupled to a
SphericalRotator I: Bi-directional EnergyChanneling.Non-
linear Dyn. 89(3), 2013–2040 (2017)

21. Singla, P., Mortari, D., Junkins, J.: How to avoid singularity
when using Euler angles? Adv. Astronaut. Sci. 119, 1409–
1426 (2004)

22. Okasha, M., Newman, B.: Switching algorithm to avoid
attitude representation singularity. In: AIAA Atmospheric
Flight Mechanics Conference, Chicago, (2009)

23. Vakakis, A.F., Manevitch, L.I., Mikhlin, Y.V., Pilipchuk,
V.N., Zevin, A.A.: Normal Modes and Localization in Non-
linear Systems. Wiley, New York (1996)

123


	Three-dimensional energy channeling in the unit-cell model coupled to a spherical rotator II: unidirectional energy channeling
	Abstract
	1 Introduction
	2 Mathematical model
	3 Numerical evidence of the three-dimensional unidirectional energy transport from ( y-z) in-plane oscillations to x- direction out-of-plane oscillations
	4 Analytical study of the three-dimensional stationary and non-stationary regimes (unidirectional energy channeling) exhibited by the locally resonant unit-cell model
	4.1 Multi-time-scale analysis
	4.2 Theoretical study
	4.2.1 Stationary regimes associated with nonlinear normal modes (NNMs)
	4.2.2 Non-stationary regimes of the unidirectional energy channeling


	5 Conclusions
	Acknowledgements
	Appendix 1: Coefficients corresponding to the slow-flow equations of the three translational coordinates
	Appendix 2: Conservation of angular momentum
	Appendix 3: In-plane unidirectional energy channeling across two orthogonal directions
	References




