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Abstract In this work, we construct rational and
double-soliton rational solutions of the KdV–Sawada–
Kotera–Ramani equation with variable coefficients by
using the unified method and its generalized form. We
employ these methods to obtain soliton rational solu-
tions, periodic rational solutions, elliptic rational solu-
tions, and two-soliton rational solutions.Here,we study
the nonlinear interactions between these solutions and
the collision between the long surface water waves.
Also, we discuss the dynamical behavior of the travel-
ing wave solutions and their structures.

Keywords The KdV–Sawada–Kotera–Ramani
equation · The unified method · The generalized
unified method · Variable coefficients ·
Traveling wave solutions

1 Introduction

Seeking the analytical solutions is very important in
properly understanding features of many phenomena
in different fields of natural science. These solutions
can be found by using computer symbolic systems like
MAPLE or Mathematica. Therefore, studying of vari-
ous structures of analytical solutions is imperative for
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mathematics and physics to the complexity and vari-
ety of nonlinear dynamics determined by the nonlinear
evolution equations (NLEEs) [1–10].

Many methods have been used to derive the ana-
lytical solutions for NLEEs such as the Darboux
transformation, bilinearmethod, homogeneous balance
method, and Jacobian elliptic method [11–18].

Here, we introduce the unified method (UM) which
is a simple algorithm to construct and study vari-
ous single traveling wave solutions (TWS) [19–21],
while to get multi-soliton solutions, the generalized
unified method (GUM) is used [22–24]. These two
methods give us the waveguide (which is a structure
that guides waves, such as electromagnetic waves or
sound waves) to visualize the propagation of single
TWSandmulti-soliton solutions under linear refractive
index and transmission by considering the dispersion
and nonlinearity parameters as the functions of time.
We mention that there are other types of the waveg-
uide that can be used in different branches of science
such as optical fibers [25,26], electrodynamics [27],
dust plasma [28], and surface water wave in finite water
depth [29].

In this paper, we study the single TWS and the
double-soliton rational solutions of the KdV–Sawada–
Kotera–Ramani equation with variable coefficients
which is given by:

ut + λ(t)
(
3 u2 + uxx

)
x

+ μ(t)
(
15 u3 + 15 u ux + uxxxx

)
x

= 0, (1)

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11071-017-3586-y&domain=pdf


2284 M. S. Osman

where u = u(x, t) is a real-valued function, x is the
propagation coordinate and t is the retarded time, and
λ(t), μ(t) are arbitrary time-dependent functions. The
KdV–Sawada–Kotera–Ramani equation with variable
coefficients was widely used when λ(t) andμ(t) are
constants [30–32]. When λ(t) = 0 and μ(t) is a con-
stant value, Eq. (1) is reduced to the Sawada–Kotera
equation which belongs to the completely integrable
hierarchy of higher-order KdV equations and has many
sets of conservation laws. Also, Eq. (1) is reduced to
the KdV equation when μ(t) = 0 and λ(t) is a con-
stant value. Thus it is a linear combination of the KdV
equation and the Sawada–Kotera equation.

This paper is organized as follows: In Sect. 2, a
brief description of the unified method (UM) and the
generalized unified method (GUM) is presented. The
application of these methods to the KdV–Sawada–
Kotera–Ramani equation with variable coefficients and
the waveguide of the obtained solutions is given in
Sects. 3 and 4. Finally, conclusions are addressed in
Sect. 5.

2 The description of the unified method (UM) and
its generalized form (GUM)

In this section, we present the outline of the uni-
fied method (UM) and the generalized unified method
(GUM).

Consider the NLEEs equations of the type (q+1)-
dimension

Fi (u j , (u j )t , (u j )x1 , . . . , (u j )xq , (u j )x1 x2 , (u j )x1 x3 , . . .) = 0,

i, j = 1, 2, . . . m, (2)

where u j = u j (t, x1, . . . , xq).

2.1 The unified method (UM)

This method is used to find single traveling wave
solutions of Eq. (2). The obtained solutions by UM
are classified to be the polynomial function solu-
tions or the rational function solutions. Here, we
confine ourselves to find only the rational function
solutions.

The rational function solution
To get the rational function solutions of Eq. (2), the

unified method suggests that

u j = u j (z, t) =
n∑

i=0

pi j (t) φi (z)/

r∑
i=0

qi j (t) φi (z), n ≥ r,

(φ′(z))p =
p k∑
i=0

ci (t) φi (z),

z =
∫

α0(t) dt +
q∑

s=1

αs xs,

j = 1, 2, . . . ,m, p = 1, 2, (3)

where pi j (t), qi j (t) and ci (t) are arbitrary functions to
be determined later. It is worth noticing that n, r and
k are determined from the balance equation by the cri-
teria given in [19–21]. Also, a second condition (the
consistency condition), which asserts that the arbitrary
functions in Eq. (3) could be consistently determined,
is used.

When p = 1, (3) solves to elementary solutions
(explicit or implicit), while when p = 2, it solves to
elliptic solutions.

2.2 The generalized unified method (GUM)

Here,we useGUMtofind only the solutions in the form
of multi-wave rational function solutions [22–24].

The multi-wave rational function solutions
Each physical observable u j in (2) possesses (q+1)

basic traveling wave solutions that satisfy the equation

Hi (Uj , (Uj )z1 , . . . , (Uj )zq , (Uj )z1 z2 , (Uj )z1 z3 , . . .) = 0,

z j =
∫

α j (t) dt +
q∑

s=1

α j,s xs , (4)

where Uj = Uj (z1, . . . , zq+1), α j (t) are arbitrary
functions in t and α j,s are arbitrary constants. To get
the multi-wave rational function solution of Eq. (4),
which is a bilinear transform in a linear or a nonlin-
ear combinations of the auxiliary functions φl(zl), l =
1, 2, . . . , N + q − 1, we introduce the steps of compu-
tations as follows:

Step 1 The GUM asserts the N -wave rational func-
tion solutions of Eq. (4)

Uj (z1, z2, . . . , zN+q−1)

= Pn(φ1(z1), φ2(z2), . . . , φN+q−1(zN+q−1))

Qr (φ1(z1), φ2(z2), . . . , φN+q−1(zN+q−1))
,

n ≥ r, j = 1, 2, . . . ,m, (5)
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where Pn and Qr are polynomials in the auxiliary
functions φl(zl), l = 1, 2, . . . , N + q − 1 which
satisfy the auxiliary equations

(φ′
l j (zl j ))

p =
p k∑
r=0

b j,r (t) φr
l j (zl j ), zl j

=
∫

α j,0(t) dt +
q∑

s=1

α j,s xs,

p = 1, 2, k ≥ 1. (6)

It is worth noticing that n, r and k are determined
from the balance equation by the criteria given in
[22–24]. Also, a second condition (the consistency
condition) is used.
Also, when p = 1, (6) solves to elementary solu-
tions (explicit or implicit), while when p = 2, it
solves to elliptic solutions.
When p = 1 and n = r , then k = 1 and the
solutions of the auxiliary Eq. (6) are called “jet
streams.”
The polynomial in the numerator of the rational
function solutions when n = r, k = 1 takes the
form

Pn(φ1(z1), φ2(z2), . . . , φN+q−1(zN+q−1)) = a0(t)

+
n∑

i1=1

ai1(t) φi1 (zi1 ) +
n∑

i1, i2=1

ai1,i2 (t) φi1 (zi1 ) φi2 (zi2 )

+ · · · +
n∑

i1, i2,...,iN+q−1=1

ai1,i2,...,iN+q−1 (t)

φi1 (zi1 ) φi2 (zi2 ) . . . φiN+q (ziN+q−1 ) + bN (t)

N∏
k=1

φk(zk), n = N + q − 1,

(7)

where i1 < i2 < · · · < iN+q−1, N ≥ 2
and a0(t), ai1(t), ai1,i2(t), . . . , ai1,i2,...,iN+q−1(t),
bN (t) are arbitrary functions to be determined lat-
ter. The polynomial Qr (φ1(z1), φ2(z2), . . . ,
φN+q−1(zN+q−1)) takes a similar form as in (7).
Step 2By inserting (5) together the auxiliary Eq. (6)
into (4), we get an equation which is splitting to a
set of nonlinear algebraic equations, namely “the
principle equations.” They are solved by any com-
puter algebra system.
Step 3 Solving the auxiliary equations.
Step 4 Finding the formal exact solutions which is
given in (5).

For convenience and simplicity, we confine our-
selves to find the solutions for one and double-soliton
solutions in the form of rational functions.

3 Single rational solutions by using UM

In this section, we applyUMdescribed in Sect. 2 to find
single rational solutions of the KdV–Sawada–Kotera–
Ramani equation with variable coefficients given by
Eq. (1).

Let u(x, t) = v(z), z = α x + ∫
β(t) dt , where

α and β(t) are the characteristic wave length and fre-
quency, respectively. Substituting about u(x, t) = v(z)
into Eq. (1) yields

μ(t) α5 v(5)(z)

+ (15α3 μ(t) v(z) + λ(t) α3) v(3)(z)

+ 15α3 μ(t) v′(z) v′′(z)
+ (β(t) + 6α λ(t) v(z) + 45α μ(t) v2(z)) v′(z),

z = α x +
∫

β(t) dt. (8)

3.1 Soliton solutions

To obtain these solutions, we put p = 2 in the auxiliary
equation given by (3). From Eq. (3) when k = 1 and
n = r , we have

v(z) = v1(z, t) = p0(t) + p1(t) φ(z)

q0(t) + q1(t) φ(z)
,

φ′(z) =
√
c0(t) + c1(t) φ(z) + c2(t)φ(z)2. (9)

By substituting from (9) into (8) and by equating the

coefficients of
√
c0(t) + c1(t) φ(z) + c2(t)φ(z)2 and

φ(z) to be zero, we get a set of algebraic equations.
By using any package in symbolic computations (such
as the elimination method or other suitable solvable
method with the aid of Mathematica or MAPLE), we
get

p0(t) = − q1(t) (5α2 μ(t) c2(t) (c1(t)−5 R(t))+λ(t) (c1(t)+R(t)))

30μ(t) c2(t)
,

q0(t) = q1(t) (c1(t) + R(t))

2 c2(t)
,

p1(t) = − q1(t) (λ(t) + 5α2 μ(t) c2(t))

15μ(t)
,

β(t) = −α5 μ(t) c22(t) + α λ2(t)

5μ(t))
, (10)

where R2(t) = c21(t) − 4 c0(t) c2(t), α is an arbi-
trary constant, c2(t), c1(t), c0(t) and q1(t) are arbitrary
functions.
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By solving the auxiliary equations φ′(z) =√
c0(t) + c1(t) φ(z) + c2(t)φ(z)2 and substituting

together with (10) into (8), we get the solution of
Eq. (1), namely

u(x, t) = −λ(t) (R(t) + e
√
c2(t) (α x+ ∫

β(t)dt))2 + 5α2 μ(t) c2(t) e2
√
c2(t) (α x+ ∫

β(t)dt)

15μ(t) (e
√
c2(t) (α x+ ∫

β(t)dt) + R(t))2

+ 50 α2 μ(t) c2(t) R(t) e
√
c2(t) (α x+ ∫

β(t)dt) + R2(t)

15μ(t) (e
√
c2(t) (α x+ ∫

β(t)dt) + R(t))2
, (11)

where β(t) = −α5 μ(t) c22(t) + α λ2(t)

5μ(t))
and c2(t)

> 0.

3.2 Periodic solutions

By using the auxiliary equation φ′(z) =√
c20(t) − c22(t)φ(z)2 and by substituting about v(z)

given by (9) into (8), we get the rational periodic solu-
tions of (1) as

u(x, t) = − λ(t)

15μ(t)

+ α2 c22(t) (−2 + sin(c2(t) (α x + ∫
β(t) dt)))

3 (1 + sin(c2(t) (α x + ∫
β(t) dt)))

,

(12)

where β(t) = −α5 μ(t) c42(t) + α λ2(t)

5μ(t))
, α is an arbi-

trary constant and c2(t), λ(t), μ(t) are arbitrary func-
tions.

3.3 Elliptic solutions

To obtain rational elliptic solutions, we put p = k = 2
in Eq. (3). In this case, the auxiliary equation is given
by φ′(z) = √

c0(t) + c2(t) φ2(z) + c4(t) φ4(z). By

substituting about v(z) given by (9) with the last aux-
iliary equation into (8) and by using the same steps
as we did in the last two cases above, we find that
ci (t), i = 0, 2, 4 are arbitrary functions and c4(t) >

0, c2(t) c0(t) < 0. For particular values of ci (t)we get
different solutions in Jacobi elliptic functions. So we
can take ci (t) = ci = constant.

According to the classification in [33], namely

c4 = 4

m
, c2 = −(m2 + 6m + 1), c0

= m4 + 2m3 + m2, (13)

the auxiliary function takes the form φ(z) =
m dn(z,m) cn(z,m)

m (sn2(z,m) − 1)
and the solution of Eq. (1) will

be in the form

u(x, t) = − (4 cn(z,m) dn(z,m) + 2(m + 1)
√
m (−1 + sn2(z,m))) λ(t)

15 (4 cn(z,m) + 2 (1 + m)
√
m (−1 + sn2(z,m))) μ(t)

−5α2 (4 (5+6m+5m2) cn(z,m) dn(z,m)−2
√
m(1+m) (m2−18m+1)((−1+sn2(z,m))))μ(t)

15 (4 cn(z,m) + 2 (1 + m)
√
m (−1 + sn2(z,m))) μ(t)

,

(14)

where z = α x + ∫
β(t) dt , β(t) =

−α (5(1+60m+134m2+60m3+m4) α4 μ2(t)−λ2(t))
5μ(t) and 0 <

m < 1 is called the modulus of the Jacobi elliptic func-
tions. When m → 0, sn(z), cn(z) and dn(z) degen-
erate to sin(z), cos(z) and 1 respectively. While when
m → 1, sn(z), cn(z) and dn(z) degenerate to tanh(z),
sech(z) and sech(z), respectively.

4 Double-soliton rational solutions by using GUM

Here, we use GUM to find two-soliton rational solu-
tions of Eq. (1). To this end, we use a simple transfor-
mation u(x, t) = u1x (x, t) in Eq. (1), and integrating
both sides with respect to x , Eq. (1)) can be written
as
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Fig. 1 a, b 3D plot and the contour plot for u(x, t) when
λ(t) = tanh(t), μ(t) = 2 + sn(t, 0.5). c, d 3D plot
and the contour plot for u(x, t) when λ(t) = 5 e−(t−1)2 +

3 e−(t+1)2 , μ(t) = 2 + sin(3 t). α1 = 0.4, β1 = 0.35, and
c1(t) = 2.4, c2(t) = 2, q2(t) = q3(t) = q0(t) = p0(t) = 1

u1t + λ(t)
(
3 u21x + u1xxx

)
+ μ(t)

(
15 u31x + 15 u1x u1xx + u1xxxxx

)
= 0, (15)

where the constant of integration is considered to be
zero.

From Eqs. (5) and (6) when N = 2, we have

u1(x, y, t) = U (z1, z2)

= p0(t) + p1(t) φ1(z1) + p2(t) φ2(z2) + p12(t) φ1(z1) φ2(z2)

q0(t) + q1(t) φ1(z1) + q2(t) φ2(z2) + q11(t) φ1(z1) φ2(z2)
, (16)

where z1 = α1 x+ ∫
α2(t) dt , z2 = β1 x+ ∫

β2(t) dt ,
α1, β1 are arbitrary constants and α2(t), β2(t), pi (t),
qi (t), ri (t), i = 0, 1, 2, 3 are arbitrary functions. The
auxiliary functions φ j (z j ) satisfy the auxiliary equa-
tions φ′

j (z j ) = c j (t) φ j (z j ), where c j (t) are arbitrary
analytic functions, j = 1, 2.

123
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By substituting from (16) into (15) and by equating
the coefficients of φ j (z j ) to be zero, we get a set of
algebraic equations. By using the same steps as we did
in the last two sections, we obtain two-soliton rational
solutions of Eq. (1), namely

u(x, t) = u1x (x, t), u1(x, t) = U (z1, z2)

= R−(t) p0(t) q0(t) q2(t) + R2(t) R+(t) q0(t) q3(t) (p0(t) + 2α1 c1(t) q0(t)) ec1(t) z1

R−(t) q2(t) q0(t)(q0(t) + q2(t) ec2(t) z2 + q3(t) ec1(t) z1+c2(t) z2) + q20 (t) q3(t) R+(t) ec1(t) z1

+ R−(t) q2(t) (q2(t) (p0(t) + 2 β1 c2(t) q0(t)) ec2(t) z2 + q3(t) (p0(t) + 2 R(t) q0(t)) ec1(t) z1+c2(t) z2)

R−(t) q2(t) q0(t)(q0(t) + q2(t) ec2(t) z2 + q3(t) ec1(t) z1+c2(t) z2) + q20 (t) q3(t) R+(t) ec1(t) z1
,

(17)

where R(t) = α1 c1(t)+ β1 c2(t), R±(t) = (3 λ(t)+
5μ(t) (α2

1 c
2
1(t) ± α1 β1 c1(t) c2(t) + β2

1 c
2
2(t))) (α1

c1(t) ± β1 c2(t))2, z1 = α1 x + ∫
α2(t)dt , z2 =

β1 x + ∫
β2(t)dt and α2(t) = −c21(t) α3

1 (λ(t) +
μ(t) c21(t) α2

1), β2(t) = −c22(t) β3
1 (λ(t) + μ(t) c22(t)

β2
1 ).

The solution in (17) of Eq. (1) is shown in Fig. 1 for
different values of λ(t) and μ(t).

Next, we will investigate the interaction between
two-soliton waves based on the solution in (17).

In such inhomogeneous medium as the shallow
water and lattice, there are always multiple soliton
waves that interact with each other. Figure 1 displays
the interactions between the two-soliton waves. The
two-soliton waves coincide into one wave and gradu-
ally separate into two waves when t tends to positive or
negative infinity, which exhibits the typical properties
of solitons. It can be seen that when λ(t) and β(t) are
being variable the soliton wave with the larger veloc-
ity overtakes the one with the lower velocity, and both
of them propagate to the opposite direction after the
interaction.

We bear in mind that the solutions in this later case
(when λ(t) and β(t) are chosen to be periodic or ellip-
tic functions) lead to the formation of rogue waves.
Thus, a mechanism or the construction of these waves
is due to the interaction between solitons and periodic
waves. Also, the position or widths of the solitonic
waves change periodically.

5 Conclusion

Here,wehave analytically investigated singleTWSand
multi-soliton rational solutions of the KdV–Sawada–

Kotera–Ramani equation with variable coefficients by
using the unified method and the generalized unified
method, respectively. The methods which we have pro-
posed in this work are standard, direct and computer-
ized methods, which allow us to do complicated and

tedious algebraic calculation. Various solutions such
as soliton rational solutions, periodic rational solutions,
elliptic rational solutions, and two-soliton rational solu-
tions have been obtained. Moreover, the waveguide
properties of the characterizing two-soliton waves are
shown to be a graded index with reflection component
and transmission with periodic distributions in long-
distance communication.
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