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Abstract This paper presents fractional order fixed-
time nonsingular terminal sliding mode control for
stabilization and synchronization of fractional order
chaotic systems with uncertainties and disturbances.
First, a novel fractional order terminal sliding mode
surface is proposed to guarantee the fixed-time conver-
gence of system states along the sliding surface. Sec-
ond, a nonsingular terminal sliding mode controller is
designed to force the system states to reach the slid-
ing surface within fixed-time and remain on it forever.
Furthermore, the fractional Lyapunov stability theory
is used to prove the fixed-time stability and the robust-
ness of the proposed control scheme and estimate the
upper bound of convergence time. Next, the proposed
control scheme is applied to the synchronization of two
nonidentical fractional order Liu chaotic systems and
chaos suppression of fractional order power system.
Simulation results verify the effectiveness of the pro-
posed control scheme. Finally, some application issues
about the proposed scheme are discussed.
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1 Introduction

Fractional calculus, with more than 300years of his-
tory, is a generalization of ordinary differentiation and
integration to arbitrary (noninteger) order. For many
years, fractional calculus is considered as a sole math-
ematical and theoretical sciencewith nearly no applica-
tions [1]. Nevertheless, in recent years, great attention
has been paid to the applications of fractional calcu-
lus in engineering and physical systems. One of the
most striking applications is the fractional order con-
troller. Additionally, it has been found that many prac-
tical systems, including electrical circuit [2,3], DC–
DC converter [4], power system [5], permanent magnet
synchronous motor [6], can be elegantly described and
accuratelymodeledwith the help of fractional calculus.
Furthermore, many fractional order differential sys-
tems, such as fractional order Rossler system [7], frac-
tional order Lorenz system [8], fractional order Duffing
system [9], fractional order Liu system [10], fractional
order Chua circuit [11], exhibit chaotic behavior.

Chaos is a complex dynamical phenomenon, which
has been found in many nonlinear systems. A chaotic
system is a deterministic nonlinear system with sev-
eral special features including sensitiveness to initial
condition, strange attractors, ergodicity, and irregular
motion. Recently, dynamical behaviors of chaos sys-
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tem have been well studied. In [12–14], the ultimate
bound and positively invariant set were investigated
for Lorenz chaotic system using Lyapunov stability
theory combined with comparison principle. In [15],
hyperchaoswas generated fromLorenz system. In [16],
double-scroll and four-scroll strange attractors were
generated from memristor. In [17], the stability the-
ory of fractional order systems was applied to analyze
the condition that ensures a fractional order system is
chaotic and study linear coupling method to achieve
synchronization. On the one hand, chaos is an unde-
sirable phenomenon for many practical systems and
effective control scheme is needed to suppress it. On the
other hand, since Pecora and Carroll [18] proved that
chaotic systems could be synchronized, great efforts
have beenmade to study various chaos synchronization
methods [19–22] and chaos synchronization has found
many engineering applications, such as secure commu-
nication [23], power quality detection [24], fault pro-
tection [25]. Due to the existence of chaos in many
fractional order real systems and many practical appli-
cations in engineering, stabilization and synchroniza-
tion of fractional order chaotic systems have become a
hot topic in recent years. Many control schemes have
been proposed for the stabilization and synchroniza-
tion of fractional order chaotic systems. An active slid-
ing mode control schemewas presented to synchronize
fractional order chaotic systems in [26]. In [27], an
adaptive feedback controller was designed for the syn-
chronization of two coupled fractional order chaotic
systems. In [28] and [29], the ultimate bound and pos-
itively invariant set of chaotic system were used to
determine desired linear feedback gain for global com-
plete chaos synchronization, which shows great poten-
tial to be applied into the synchronization of fractional
order chaotic systems. Lin and Lee [30] addressed time
delay uncertain fractional order chaotic system syn-
chronization problem via adaptive fuzzy sliding mode
control. Chen et al. [31] applied fuzzy control to study
synchronization and anti-synchronization problem for
fractional order chaotic systemswith uncertain stochas-
tic parameters. In [32], a novel adaptive fuzzy control
methodwas proposed to achieve H-inf synchronization
of fractional order chaotic systems. Based on passive
control theory, Wu et al. [33] investigated synchroniza-
tion problem for fractional order hyperchaotic system.
In [34], LMI-based control schemewas proposed to sta-
bilize a class of fractional order chaotic systems. Fuzzy
state feedback [35] and fuzzy output feedback [36]

were proposed to stabilize uncertain fractional order
chaotic systems.

However, all the aforementioned control methods
can only achieve asymptotical synchronization and sta-
bilization, which means that exact convergence can-
not be achieved within finite time. In addition, the
convergence time of these control methods cannot be
estimated in advance. From a practical point of view,
it is more advisable to realize stabilization and syn-
chronization within a prescribed time, especially for
those applications that require exact convergence and
have severe settling time constraint. Finite time con-
trol can achieve high-precision convergence within
finite time. Besides, finite time stability has better dis-
turbance rejection property and stronger robustness
against uncertainties. Therefore, finite time fractional
order chaotic system synchronization and stabilization
have attracted great attention. In [37], nonsingular ter-
minal sliding mode control was introduced to achieve
finite time fractional order chaos synchronization and
control. Aghababa [38] presented a chatter-free termi-
nal sliding mode controller to control uncertain frac-
tional order chaotic system in finite time. Robust finite
time fractional controller was presented in [39] to stabi-
lize uncertain fractional order chaotic systems. Hierar-
chical terminal sliding mode control was proposed for
synchronization and control of fractional order chaotic
systems in [40]. Using frequency distributed model,
Wang et al. [41] investigated robust finite time control
of fractional order chaotic systems. It is worth noting
that the convergence time of finite time control scheme
depends on initial condition. However, for many prac-
tical applications, it is always hard to obtain accurate
information of initial condition, which makes it diffi-
cult to estimate the convergence time. In addition, the
convergence time of finite time control becomes infi-
nite if the initial condition tends to infinity.

Fixed-time control [42] is proposed to overcome the
drawback of finite time control. Different from finite
time control, fixed-time control can guarantee exact
convergence within finite time upper bounded by a
constant independent of initial condition. Due to this
appealing feature, fixed-time control has been applied
to power system stable control [43,44] and multi-agent
system consensus [45–50]. However, to the best of our
knowledge, there is no literature reporting the fractional
order fixed-time control scheme. In fact, fractional cal-
culus provides a new way for the controller design.
In comparison with integer order controller, fractional
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order controller provides greater facilitates to improve
robustness and control performance [51]. Additionally,
fractional order controller can help dynamical systems
gain more stability [52].

Motivated by aforementioned discussion, this paper
presents fractional order fixed-time nonsingular ter-
minal sliding mode control for chaos synchronization
and stabilization. We first propose a novel fractional
order terminal sliding mode surface which can guaran-
tee fixed-time convergence of system states along the
sliding surface. Then, a nonsingular terminal sliding
mode control law is designed to force the system states
to reach the proposed sliding surface within fixed-
time and stay on it forever. The main contributions of
this paper can be summarized as the following three
aspects. First, fixed-time control is first presented to
the synchronization and stabilization of fractional order
chaotic systems. Second, fractional order fixed-time
control scheme is first proposed, which combines the
advantages of fixed-time control and fractional order
control. Third, the proposed terminal slidingmode con-
trol does not include singularity term, thereby eliminat-
ing singularity, while the existing fixed-time nonsin-
gular terminal sliding mode controls [43,46,50] con-
tain singularity term and they used nonlinear function
or saturation function to overcome singularity, which
complicates the controller design and prolongs the con-
vergence time.

The rest of this paper is organized as follows.
Section 2 reviews preliminary knowledge necessary
throughout the paper, and Sect. 3 formulates the prob-
lem. Main results of this paper are presented in Sect. 4,
and simulation results verifying the effectiveness of
proposed controller are given in Sect. 5. Some applica-
tion issues about the proposed scheme are discussed in
Sect. 6. Finally, the conclusion is drawn in Sect. 7.

2 Preliminary

In this section, we first present some basic definitions
of fractional calculus and fixed-time stability and then
introduce some useful lemmas which are necessary for
controller design.

2.1 Fractional calculus

Definition 1 [53] The αth-order Riemann–Liouville
fractional derivative of function f (t) is given by:

t0 Dα
t f (t) = dα f (t)

dtα

= 1

Γ (m − α)

dm

dtm

∫ t

t0

f (τ )

(t − τ)α−m+1 dτ (1)

where m −1 < α ≤ m, m ∈ N and Γ (·) is the Gamma
function.

Definition 2 [53] The definition of the αth-order Rie-
mann–Liouville fractional integration is:

t0 I α
t f (t) = 1

Γ (α)

∫ t

t0

f (τ )

(t − τ)1−α
dτ (2)

where t0 is the initial time.

Definition 3 [53] The αth-order Caputo fractional
derivative of function f (t) is defined as:

t0 Dα
t f (t)

=
{

1
Γ (m−α)

∫ t
t0

f (m)(τ )

(t−τ)α−m+1 dτ, m − 1 < α < m
dm f (t)
dtm , α = m

(3)

where m is the smallest integer number larger than or
equal to α.

Property 1 [53] The following equality holds for
both the Caputo derivative and the Riemann–Liouville
derivative:

RL,C
t0 Dα

t

(
RL,C
t0 D−β

t f (t)
)

= RL,C
t0 Dα−β

t f (t) (4)

where α ≥ β ≥ 0. Here, the superscript “RL” denotes
the Riemann–Liouville derivative and “C” denotes the
Caputo derivative.

Lemma 1 [54] Let x = 0 be an equilibrium point of
the following nonautonomous fractional order system:

Dαx = f (x, t) (5)

where α ∈ (0, 1) and f (x, t) satisfies the Lipschitz con-
dition with Lipschitz constant l > 0. Suppose that there
exists a Lyapunov function V (t, x(t)) that satisfies:

α1‖x‖α ≤ V (t, x(t)) ≤ α2‖x‖ (6)

V̇ (t, x) ≤ −α3‖x‖ (7)

where α1, α2, α3 and α are positive constants. Then the
equilibrium point of the system (5) is Mittag–Leffler
stable, which also implies asymptotical stable.
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Remark 1 Lemma 1 reveals an important property that
the commonly used Lyapunov function in the form of
V = 1/2x2 do not satisfy the condition (6). Therefore,
alternative Lyapunov function is needed to analyze the
stability of fractional order systems.

In the rest of this paper, the Caputo definition of frac-
tional derivative and integration is employed. To sim-
plify this notation, Dα is utilized to denote the Caputo
fractional derivative of order α.

2.2 Fixed-time stability

Consider the following differential equation system:

ẋ(t) = f (x(t)), x(0) = x0. (8)

where x ∈ Rn and f : Rn → Rn is a nonlinear func-
tion. Suppose that the origin is an equilibrium point
of (8).

Definition 4 [48,55] The origin of system (8) is a finite
time stable equilibrium if the origin is Lyapunov stable
and there exists a function T : Rn �→ R+, called the
settling time function, such that for every x0 ∈ Rn , the
solution x(t, x0) of system (8) satisfies lim

t→T (x0)
x(t, x0)

= 0.

Definition 5 [42] The origin of system (8) is said to be
fixed-time stable equilibriumpoint if it is globally finite
time stable with bounded convergence time T (x0), that
is, there exists a bounded positive constant Tmax such
that T (x0) < Tmax satisfies.

Lemma 2 [49] Consider the following system:

ẏ = −αy
m
n − βy

p
q , y(0) = y0 (9)

where α, β > 0, m, n, p, q are positive odd integers
satisfying m > n and p < q. Then, the equilibrium
point of system (9) is fixed-time stable and the settling
time is upper bounded by:

T <
1

α

n

m − n
+ 1

β

q

q − p
(10)

2.3 Mathematical Lemmas

Lemma 3 [56] For any nonnegative real numbers
ξ1, ξ2, . . . , ξN and 0 < p ≤ 1, the following inequality
holds:

N∑
i=1

ξ
p

i ≥
(

N∑
i=1

ξi

)p

(11)

Lemma 4 [56] For any nonnegative real numbers
ξ1, ξ2, . . . , ξN and p > 1, the following inequality
holds:

N∑
i=1

ξ
p

i ≥ N 1−p

(
N∑

i=1

ξi

)p

(12)

3 Problem formulation

Consider the following N -dimensional nonautonomous
fractional order chaotic system with uncertainties and
external disturbances:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Dαx1 = f1(X, t) + � f1(X, t) + d f
1 (t) + u1,

Dαx2 = f2(X, t) + � f2(X, t) + d f
2 (t) + u2,

. . .

DαxN = fN (X, t) + � fN (X, t) + d f
N (t) + uN

(13)

where α ∈ (0, 1) is the fractional order of the system,
X (t) = [x1, x2, . . . , xN ]T ∈ RN is the state vector,
fi (X, t) ∈ R, i = 1, 2, . . . , N is a known nonlinear
function of X and t ,� fi (X, t) ∈ R and d f

i (t) ∈ R, i =
1, 2, . . . , N are uncertainties and external disturbances
of the system, and ui is the control input.

Assumption 1 The uncertainties � fi (X, t) and exter-
nal disturbances d f

i (t) are bounded, that is, there exist
positive constants εi , μi , such that |� fi (X, t)| ≤ εi ,
|d f

i (t)| ≤ μi .

The fixed-time chaos synchronization problem can
be formulated as designing fractional order fixed-time
nonsingular terminal sliding mode control ui for slave
system (13) such that its trajectories can track the tra-
jectories of the following master system within finite
time upper bounded by a constant independent of initial
values
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Dα y1 = g1(Y, t) + �g1(Y, t) + dg
1 (t),

Dα y2 = g2(Y, t) + �g2(Y, t) + dg
2 (t),

. . .

Dα yN = gN (Y, t) + �gN (Y, t) + dg
N (t)

(14)
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where α ∈ (0, 1) is the fractional order of the system,
Y (t) = [y1, y2, . . . , yN ]T ∈ RN is the state vector,
gi (Y, t) ∈ R, i = 1, 2, . . . , N is a known nonlinear
function of Y and t , �gi (Y, t) ∈ R and dg

i (t) ∈ R, i =
1, 2, . . . , N are uncertainties and external disturbances
of the system.

Assumption 2 The uncertainties �gi (Y, t) and exter-
nal disturbances dg

i (t) are bounded, that is, there exist
positive constants γi , ηi , such that |�gi (Y, t)| ≤ γi ,
|dg

i (t)| ≤ ηi .

Remark 2 It is hard to obtain the exact values for exter-
nal disturbances and uncertainties in many practical
systems. However, the upper bound of external dis-
turbances and uncertainties can be exactly estimated,
for example, using adaptive techniques presented in
[57,58]. Further, the states of chaotic attractors are
bounded [59]. Therefore, Assumptions 1 and 2 are rea-
sonable and accurate.

Subtracting (13) from (14) and defining E(t) =
Y (t) − X (t) = [y1 − x1, y2 − x2, . . . , yN − xN ]T,
we have:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dαe1 = g1(Y, t) + �g1(Y, t) + dg
1 (t)

− ( f1(X, t) + � f1(X, t) + d f
1 (t) + u1),

Dαe2 = g2(Y, t) + �g2(Y, t) + dg
2 (t)

− ( f2(X, t) + � f2(X, t) + d f
2 (t) + u2),

...

DαeN = gN (Y, t) + �gN (Y, t) + dg
N (t)

− ( fN (X, t) + � fN (X, t) + d f
N (t) + uN )

(15)

Now, the fixed-time chaos synchronization problem is
transformed into the fixed-time stabilization problem
for error system (15).

The fixed-time chaos control problem can be formu-
lated as designing fractional order fixed-time nonsin-
gular terminal slidingmode control ui such that chaotic
system (13) can be stabilized within finite time upper
bounded by a constant independent of initial values.

4 Main results

In this section, we will develop a novel fractional order
fixed-time nonsingular terminal sliding mode control

to stabilize the synchronization error system (15) and
the chaotic system (13).

The sliding surface can be constructed as:

si=Dα−1ei + Dα−2 (
β1sig (ei )

m1/n1 +λ1sig (ei )
p1/q1

)
(16)

where β1, λ1 are positive constants, m1, n1, p1, q1 are
positive odd integers that satisfy m1 > n1, p1 < q1,
sig(·)α = | · |αsign(·), and sign(·) is signum function.

The control input is designed as:

ui = gi (Y, t)− fi (X, t)+ (εi+γi+μi+ηi ) sign (si )

+Dα−1 (
β1sig (ei )

m1/n1 + λ1sig (ei )
p1/q1

)
+β2sig (si )

m2/n2 + λ2sig (si )
p2/q2 (17)

where β2, λ2 are positive constants, m2, n2, p2, q2 are
positive odd integers that satisfy m2 > n2, p2 < q2,
sig(·)α = | · |αsign(·), and sign(·) is signum function.

Theorem 1 Consider the synchronization error sys-
tem (15) with uncertainties and external disturbances
satisfying Assumptions 1–2. If this system is controlled
under control input (17), its trajectories will con-
verge to the sliding surface within finite time upper
bounded by:

T1 <
1

N 1−m2/n2β2

n2

m2 − n2
+ 1

λ2

q2
q2 − p2

(18)

Proof Consider the following Lyapunov function can-
didate:

V1 =
N∑

i=1

|si | (19)

Taking time derivative of Lyapunov function V1(t)
along the sliding surface (16) yields:

V̇1 =
N∑

i=1

sign (si ) ṡi

=
N∑

i=1

sign (si )
(

Dαei + Dα−1 (
β1sig (ei )

m1/n1

+ λ1sig (ei )
p1/q1

))
(20)

Substituting error system dynamics (15) into (20),
one has:

V̇1 =
N∑

i=1

sign (si )
(

gi (Y, t)+�gi (Y, t)+dg
i (t)− fi (X, t)
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− � fi (X, t)− d f
i (t)−ui +Dα−1

(
β1sig (ei )

m1/n1

+ λ1sig (ei )
p1/q1

))
(21)

Substituting control input (17) into (21), we have:

V̇1 =
N∑

i=1

sign (si )
(

gi (Y, t) + �gi (Y, t) + dg
i (t)

− fi (X, t) − � fi (X, t) − d f
i (t) − (gi (Y, t)

− fi (X, t) + Dα−1(β1sig (ei )
m1/n1 + λ1sig (ei )

p1/q1)

+ (εi + γi + μi + ηi ) sign (si ) + β2sig (si )
m2/n2

+ λ2sig (si )
p2/q2

)
+ Dα−1

(
β1sig (ei )

m1/n1

+ λ1sig (ei )
p1/q1

))

=
N∑

i=1

sign (si )
(
−β2sig (si )

m2/n2 − λ2sig (si )
p2/q2

)

− (εi + γi + μi + ηi ) + sign (si ) (gi (Y, t) + �gi (Y, t)

+ dg
i (t) − fi (X, t) − � fi (X, t) − d f

i (t)

− gi (Y, t) + fi (X, t)) (22)

Use Lemmas 3–4 and Assumptions 1–2, and (22)
becomes:

V̇1 ≤
N∑

i=1

−β2 |si |m2/n2 − λ2 |si |p2/q2 − (εi + γi + μi + ηi

− |�gi (Y, t)| −
∣∣∣dg

i (t)
∣∣∣ − |� fi (X, t)| −

∣∣∣d f
i (t)

∣∣∣
)

≤ −N1−m2/n2β2

⎛
⎝ N∑

i=1

|si |
⎞
⎠

m2/n2

− λ2

⎛
⎝ N∑

i=1

|si |
⎞
⎠

p2/q2

= −N1−m2/n2β2V m2/n2
1 − λ2V p2/q2

1 (23)

Therefore, according to Lemma 1, the system states
will converge to the sliding surface asymptotically. Fur-
thermore, based on Lemma 2, we can prove fixed-
time convergence and the convergence time is upper
bounded by (18). The proof is completed. �	

When the error state is on the sliding surface, its
dynamics satisfies:

Dα−1ei = −Dα−2 (
β1sig (ei )

m1/n1 + λ1sig (ei )
p1/q1

)
(24)

Theorem 2 Consider the sliding mode dynamics (24).
The error state variables will converge to the origin
within finite time upper bounded by:

T2 <
1

N 1−m1/n1β1

n1

m1 − n1
+ 1

λ1

q1
q1 − p1

(25)

Proof Select the Lyapunov function candidate as fol-
lows:

V2(t) =
N∑

i=1

|ei (t)| (26)

Using Lemmas 3–4 and Property 1, the time derivative
of Lyapunov function V2(t) can be derived as:

V̇2(t) =
N∑

i=1

ėi (t)sign (ei (t))

=
N∑

i=1

(
D2−α

(
Dα−1ei (t)

))
sign(ei (t))

=
N∑

i=1

(sign (ei (t)))
(
D2−α

(−Dα−2 (
β1sig (ei )

m1/n1

+ λ1sig (ei )
p1/q1

)))

=
N∑

i=1

(− (
β1 |ei |m1/n1 + λ1 |ei |p1/q1

))

≤ −N 1−m1/n1β1

(
N∑

i=1

|ei |
)m1/n1

− λ1

(
N∑

i=1

|ei |
)p1/q1

= −N 1−m1/n1β1V m1/n1
2 − λ1V p1/q1

2 (27)

Therefore, according toLemma1, the systemstateswill
converge to zero asymptotically. Furthermore, based
on Lemma 2, we can prove fixed-time stability of the
system and the convergence time is upper bounded by
(25). The proof is completed. �	

From Theorems 1–2, we have the following result:

Theorem 3 For the synchronization error system (15)
with uncertainties and external disturbances satisfying
Assumptions 1–2, if the control input is designed as
(17), the error system will converge to zero within finite
time upper bounded by:

T <
1

N 1−m2/n2β2

n2

m2 − n2
+ 1

λ2

q2
q2 − p2

+ 1

N 1−m1/n1β1

n1

m1 − n1
+ 1

λ1

q1
q1 − p1

(28)

Proof The proof process includes fixed-time conver-
gence to sliding surface and fixed-time stabilization
along the sliding surface. Theorem 1 has proved fixed-
time convergence to sliding surface, and Theorem 2
has proved fixed-time stabilization along the sliding
surface. Therefore, from Theorems 1–2, we have that
Theorem 3 holds. �	
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The proposed control scheme is extended to address
fixed-time fractional order chaotic system stabilization
problem, and we have the following result:

Theorem 4 Consider the stabilization problem of the
fractional order chaotic system (13) with uncertainties
and external disturbances satisfying Assumption 1. If
the system (13) is controlled by control law (29), then
the system can be stabilized within finite time upper
bounded by (30).

ui (t) = − fi (X, t) − Dα−1(β1sig(xi )
m1/n1

+ λ1sig(xi )
p1/q1) − β2sig (si )

m2/n2

− λ2sig (si )
p2/q2 − (εi + μi ) sign (si )

(29)

T <
1

N 1−m2/n2β2

n2

m2 − n2
+ 1

λ2

q2
q2 − p2

+ 1

N 1−m1/n1β1

n1

m1 − n1
+ 1

λ1

q1
q1 − p1

(30)

where β1, λ1, β2, λ2 are positive constants, m1, n1, p1,
q1, m2, n2, p2, q2 are positive odd integers that satisfy
m1 > n1, p1 < q1, m2 > n2, p2 < q2, si is the sliding
surface which has the following form:

si = Dα−1xi+Dα−2 (
β1sig(xi )

m1/n1 + λ1sig(xi )
p1/q1

)
(31)

Proof The proof process is similar to that of Theorem 3
and is omitted here. �	
Remark 3 As mentioned in remark 1 and reported
in [37–41], nonsmooth Lyapunov functions can be
adopted to analyze the stability of fractional order sys-
tems.

Remark 4 The existing control and synchronization
schemes can achieve asymptotical and finite time con-
vergence. Asymptotical convergence implies that exact
convergence cannot be achieved within finite time and
finite time convergence implies exact convergence can
be guaranteed within finite time dependent on initial
condition. In fact, for many practical applications, it
is always hard to obtain accurate information of ini-
tial condition, which makes it difficult to estimate the
convergence time. Therefore, the existing control and
synchronization schemes are unsuitable to be applied
into somepractical fractional order chaotic systems that
require exact convergence and have severe settling time
constraint, such as secure communication and system
emergency control. The proposed control scheme can

achieve exact stabilization and synchronization within
finite time upper bounded by a constant independent
of initial condition and the upper bound is only deter-
mined by design parameters. We can tune the design
parameters to satisfy the requirement of convergence
time.

Remark 5 Singularity is one of the main drawbacks
of the terminal sliding mode control. The existing
fixed-time nonsingular terminal sliding mode controls
[43,46,50] contain singularity term, and they used non-
linear function or saturation function to overcome sin-
gularity, which complicates the controller design and
prolongs the convergence time. In this paper, frac-
tional order control is combined with fixed-time con-
trol, which eliminates singularity term and improves
the performance of the fixed-time control.

Remark 6 The proposed control scheme combines the
advantages of fractional order control and fixed-time
control and has fast and exact convergence property as
well as nonsingular control input.

Remark 7 There are many results on the sliding mode
control of chaotic system, for example, see [26,30,37–
41] and references therein. However, these control
schemes can either achieve asymptotical stabilization,
or guarantee finite time stabilization but the upper
bound of convergence time depends on initial condi-
tion. In comparison with these control schemes, the
contributions of this paper can be summarized as
the following four aspects. First, a novel fractional
order terminal sliding mode surface is proposed, which
can guarantee fixed-time convergence of system states
along the sliding surface. Second, a new nonsingular
terminal sliding mode control law is designed, which
forces the system states to reach the proposed sliding
surface within fixed-time and stay on it forever. Third,
the proposed terminal sliding mode control scheme
does not include singularity term, thereby eliminat-
ing singularity. Fourth, the proposed control scheme
can ensure exact system stabilization within finite time
upper bounded by a constant independent of initial con-
dition and the upper bound is only determinedbydesign
parameters. We can tune the design parameters to sat-
isfy the requirement of convergence time.

Remark 8 In this paper, we propose fractional order
fixed-time nonsingular terminal sliding mode control
to synchronize and stabilize fractional order chaotic
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systemswith uncertainties and disturbances. In [37,38]
and [40], terminal sliding mode control was derived to
stabilize fractional order chaotic systems within finite
time. However, the convergence time of these control
schemes is dependent on initial condition. In this paper,
fixed-time control is extended to the synchronization
and stabilization of fractional order chaotic systems
and as shown in Theorem 3 and Theorem 4, the conver-
gence time of the proposed control is upper bounded
by a constant independent of initial condition but only
dependent on controller design parameters. This advan-
tage facilitates controller design and convergence time
estimation. In [43,46] and [50], fixed-time terminal
sliding mode control was presented. However, the pre-
sented control schemes contain singularity term and
they used nonlinear function or saturation function to
overcome singularity, which complicates the controller
design and prolongs the convergence time. In addition,
these control schemes are only suitable to control inte-
ger order systems and it is hard to extend these results to
fractional order systems. In this paper, fractional order
fixed-time control is proposed, which can be applied
to stabilize and synchronize fractional order systems.
Besides, the proposed control scheme does not include
singularity term, thereby overcoming singularity prob-
lem without complicating controller design and sacri-
ficing convergence time.

Remark 9 Since the control law contains discontin-
uous sign function, it may induce chattering phe-
nomenon. To eliminate chattering, discontinuous sign
function can be replaced by continuous saturation func-
tion.

5 Simulation results

In this section, two illustrative examples are presented
to demonstrate the effectiveness and applicability of
the proposed control scheme.

5.1 Fixed-time synchronization of fractional order
Liu hyperchaotic systems

This example is employed to verify the effectiveness
of the proposed control scheme in synchronization of
fractional order chaotic systems. Let us consider frac-
tional orderLiuhyperchaotic system (32) asmaster sys-
tem and different structural fractional order Liu hyper-

chaotic system (33) as slave system. The systems are
taken from [60].

Master system:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Dq y1 = a (y2 − y1) + y4 + �g1(Y, t) + dg
1 (t)

Dq y2 = by1 + ky1y3 − y4 + �g2(Y, t) + dg
2 (t)

Dq y3 = −hy21 − cy3 − y4 + �g3(Y, t) + dg
3 (t)

Dq y4 = ey1 + �g4(Y, t) + dg
4 (t)

(32)

Slave system:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Dq x1 = a (x2 − x1) + � f1(X, t) + d f
1 (t)

Dq x2 = bx1 − kx1x3 + x4 + � f2(X, t) + d f
2 (t)

Dq x3 = hx21 − cx3 + x4 + � f3(X, t) + d f
3 (t)

Dq x4 = −ex2 + � f4(X, t) + d f
4 (t)

(33)

The parameters for the systems are selected as a = 10,
b = 40, k = 10, c = 2.5, h = 4, e = 2.5, and the
uncertainties and external disturbances are selected as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�g1(Y, t) = 0.25cos(6t)y1, dg
1 (t) = −0.15sin(t),

�g2(Y, t) = −0.2cos(2t)y2, dg
2 (t) = 0.1sin(3t),

�g3(Y, t) = 0.15sin(3t)y3, dg
3 (t) = 0.2cos(5t),

�g4(Y, t) = −0.2cos(t)y4, dg
4 (t) = −0.15cos(t),

� f1(X, t) = −0.25sin(4t)x1, d f
1 (t) = 0.1sin(7t),

� f2(X, t) = 0.1cos(t)x2, d f
2 (t) = 0.15cos(3t),

� f3(X, t)=0.25sin(4t)x3, d f
3 (t)= − 0.15sin(5t),

� f4(X, t) = −0.15sin(t)x4, d f
4 (t) = 0.2cos(2t)

(34)

According to [60], the existence of chaos in the
fractional order Liu hyperchaotic systems (32) and
(33) can be guaranteed if the fractional order q is
set to 0.82. In our simulation, the fractional order
is selected as q = 0.82 and the initial condi-
tions are chosen as (x1(0), x2(0), x3(0), x4(0)) =
(0.6, 0.7, 0.3, 0.4), (y1(0),
y2(0), y3(0), y4(0)) = (0.5, 0.5,0.2, 0.5). Thedynam-
ics of the master and slave systems shows chaotic
behavior, as shown in Figs. 1–2. The presented con-
trol scheme is applied to achieve synchronization and
the controller parameters are selected asβ1 = β2 = 10,
λ1 = λ2 = 10, p1 = p2 = 5, q1 = q2 = 9,
n1 = n2 = 5, m1 = m2 = 9, �1 = 3.3, �2 = 3.2,
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Fig. 1 Phase portraits of master system
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Fig. 2 Phase portraits of slave system

�3 = 3.7, �4 = 4.1 (�i = εi + μi + γi + ηi ,
i = 1, . . . , 4). The results are shown in Figs. 3, 4 and 5.
As shown in Fig. 3, the system states of the slave system
will track the trajectories of the master system within
0.16s and Fig. 4 shows that the synchronization error
ei = yi −xi will converge to zerowithin 0.16s. Accord-
ing to theorem 3, the upper bound of convergence time
can be estimated as T < 1.2079. The results verify
the effectiveness of the proposed control scheme and
the correctness of the theoretical results. The curves of
control input are given in Fig. 5. From Fig. 5, no harm-
ful chattering is observed and the singularity problem
has been overcome effectively.

In order to demonstrate the superiority of the pro-
posed control strategy, the proposed control scheme
is compared with the existing terminal sliding mode
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Fig. 3 Time response of master system and slave system
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Fig. 4 Time response of synchronization error

control results. The control scheme proposed in [37]
is borrowed as a typical example of the existing termi-
nal sliding mode control schemes to make a compari-
son. To make a fair comparison, the simulated condi-
tions for the two controllers are chosen to be the same.
Both control schemes are employed to synchronize the
fractional order hyperchaotic systems (32) and (33).
Figure 6 compares the settling time of both control
schemes under different initial synchronization errors.
As shown in Fig. 6, the settling time of the control
scheme proposed in [37] grows unboundedly as the ini-
tial synchronization errors grow,while the convergence
time of the control scheme proposed in this paper is
bounded by a constant with the increment of the initial
synchronization errors. In addition, the control scheme
proposed in this paper can synchronize the fractional
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Fig. 6 Convergence time versus the logarithm of norm of initial
synchronization errors

order chaotic systems faster than the method presented
in [37]. The results verify the superiority of the pro-
posed control scheme in fractional order chaotic system
synchronization.

5.2 Fixed-time synchronization between fractional
order hyperchaotic Chen system and fractional
order hyperchaotic Lorenz system

The proposed control scheme can also be applied to
other fractional order hyperchaotic systems. In this
case, we consider fixed-time synchronization of two
different fractional order hyperchaotic systems. Let us
consider fractional order Chen system (35) as master

system and fractional order Lorenz system (36) as slave
system.

Master system:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Dq y1 = a (y2 − y1) + y4 + �g1(Y, t) + dg
1 (t)

Dq y2 = by1 + cy2 − y1y3 + �g2(Y, t) + dg
2 (t)

Dq y3 = y1y2 − dy3 + �g3(Y, t) + dg
3 (t)

Dq y4 = y2y3 + r y4 + �g4(Y, t) + dg
4 (t)

(35)

Slave system:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Dq x1 = a1 (x2 − x1) + x4 + � f1(X, t) + d f
1 (t)

Dq x2 = b1x1 − x2 − x1x3 + � f2(X, t) + d f
2 (t)

Dq x3 = x1x2 − c1x3 + � f3(X, t) + d f
3 (t)

Dq x4 = −x2x3 − r1x4 + � f4(X, t) + d f
4 (t)

(36)

Theuncertainties and external disturbances are selected
as (37). When the parameters for the systems are
selected as a = 35, b = 7, c = 12, d = 3,
r = 0.5, a1 = 10, b1 = 28, c1 = 8/3, r1 =
1, q = 0.98 and the initial conditions are cho-
sen as (x1(0), x2(0), x3(0), x4(0)) = (2,−2, 4, 1),
(y1(0), y2(0), y3(0), y4(0)) = (3,−4, 2, 2), master
system (35) and slave system (36) show hyperchaotic
behavior, which is shown in Figs. 7 and 8, respectively.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�g1(Y, t) = 0.15cos(6t)y1, dg
1 (t) = −0.2sin(t),

�g2(Y, t) = −0.25cos(2t)y2, dg
2 (t) = 0.1sin(3t),

�g3(Y, t) = 0.1sin(3t)y3, dg
3 (t) = 0.2cos(5t),

�g4(Y, t) = 0, dg
4 (t) = −0.25cos(t),

� f1(X, t) = −0.15sin(4t)x1, d f
1 (t) = 0.2sin(7t),

� f2(X, t) = 0.15cos(t)x2, d f
2 (t) = 0.1cos(3t),

� f3(X, t) = 0.15sin(4t)x3, d f
3 (t) = −0.25sin(5t),

� f4(X, t) = −0.25sin(t)x4, d f
4 (t) = 0.2cos(2t)

(37)

The presented control scheme is applied to achieve syn-
chronization, and the controller parameters are selected
as β1 = β2 = 6, λ1 = λ2 = 6, p1 = p2 = 5,
q1 = q2 = 9, n1 = n2 = 5, m1 = m2 = 9,
�1 = 6.65,�2 = 9.23,�3 = 9.27,�4 = 28.75(�i =
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Fig. 8 Hyperchaotic attractor of slave system

εi + μi + γi + ηi , i = 1, . . . , 4). The results are
shown in Figs. 9 and 10. As shown in Fig. 9, the sys-
tem states of the slave system will track the trajectories
of the master system within 0.5s and Fig. 10 shows
that the synchronization error ei = yi − xi will con-
verge to zero within 0.5s. According to Theorem 3, the
upper bound of convergence time can be estimated as
T < 2.0131. The results verify the proposed control
scheme can synchronize two different fractional order
hyperchaotic systems within fixed-time.

5.3 Application to chaos suppression for fractional
order power system

In this example, the proposed control scheme is applied
to suppress chaotic oscillation in fractional order inter-
connected power system to demonstrate its effective-
ness in the stabilization of fractional order chaotic sys-
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Fig. 9 Time response of master system and slave system
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Fig. 10 Time response of synchronization error

tems. In power system, the occurrence of chaos can
shrink the region of stability [61], lead to angle diver-
gence and voltage collapse [62,63], and even end up
with a catastrophic blackout. Almost all the studies
about chaotic dynamic of the power system, such as
[64–69], are concerned with integer order model, and
there is little literature reporting fractional ordermodel-
ing and control design for the power system. However,
fractional order modeling can give a more accurate
description about actual physical and applied systems
and the fractional order interconnected power system
model shown in Fig. 11 can be described as:⎧⎨
⎩

Dqδ = ω

Dqω = − 1

H
Pmaxsin(δ)− D

H
ω+ 1

H
Pm+ 1

H
Pecos(βt)

(38)
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Fig. 11 Single line diagram of interconnected power system: 1
and 2 denote equivalent generators; 3 and 4 represent transform-
ers; 5, 6, and 7 are considered as circuit breakers and tie line
between two areas, respectively; 8 is local load
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Fig. 12 Phase portraits of the studied power system

whereq is fractional order, δ = δ1−δ2 andω = ω1−ω2

are relative angle and angular frequencybetween equiv-
alent generators in two areas, H and D are rotational
inertia and damping coefficient of equivalent genera-
tors; Pm is the mechanical power of equivalent gener-
ators and Pe is the amplitude of power disturbance.
Denote α = Pmax/H , γ = D/H , ρ = Pm/H ,
μ = Pe/H and the parameters value are selected as
α = 1, γ = 0.02, ρ = 0.2, μ = 0.2593, β = 1. The
fractional order is selected as q = 0.98 to ensure the
existence of chaos in fractional order interconnected
power system (38) [70]. The initial conditions are cho-
sen as (δ(0), ω(0)) = (0.43, 0.1), and the power sys-
tem exhibits chaotic behavior as depicted in Figs. 12
and 13. Fig. 12 shows that the system is in chaotic state.
As shown in Fig. 13, the power system experiences
irregular and aperiodic morbid angle and frequency
oscillation, which indicates that the synchronous gen-
erators lose synchronism and the power system under-
goes severe frequency swings arising from power dis-
turbance. Now, the power system is in extremis and
it will result in catastrophic blackout if no effective
measurement is taken to suppress chaos. The presented
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Fig. 13 Time response of the studied power systemwithout con-
trol

control scheme is carried out to suppress chaos in
power system and the controlled power system can be
described as:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Dqδ = ω + u1

Dqω = − 1

H
Pmaxsin(δ) − D

H
ω + 1

H
Pm

+ 1

H
Pecos(βt) + u2

(39)

The controller parameters are selected to be β1 = β2 =
8, λ1 = λ2 = 8, p1 = p2 = 7, q1 = q2 = 11,
n1 = n2 = 7, m1 = m2 = 11, �1 = 0, �2 = 0.46.
The results are shown in Figs. 14 and 15. Figure 14
shows that the chaotic oscillation has been suppressed
completely and the system states converge to zero
within 0.28 s.According toTheorem4, the upper bound
of convergence time can be computed as T < 1.3376.
The results validate that the proposed control scheme
can effectively suppress chaos in power system within
fixed-time.Curves of control input are shown inFig. 15.
Fig. 15 shows that there is no harmful chattering in con-
trol input and singularity problem has been overcome
effectively.

For comparison, the terminal sliding mode control
proposed in [37] is also implemented to stabilize the
fractional order interconnected power system (38). The
settling time of the control scheme proposed in this
paper and the control scheme proposed in [37] under
different initial stabilization errors is shown in Fig. 16.
Fig. 16 shows that with the increment of initial stabi-
lization errors, the settling time of the control scheme
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Fig. 14 Time response of the studied power system under pro-
posed control
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Fig. 15 Curves of control input

proposed in [37] grows unboundedly, while the con-
vergence time of the control scheme proposed in this
paper is bounded by a constant. In addition, the con-
vergence time of the control scheme proposed in this
paper is shorter than that of the method presented in
[37]. The results verify the superiority of the proposed
control scheme in fractional order chaotic system sta-
bilization.

6 Discussion about the applications of the
proposed scheme

Some other chaotic systems also exist in real world,
such as neural network. In recent years, neural net-
work has attracted great attention from researchers due
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Fig. 16 Convergence time versus the logarithmof normof initial
stabilization errors

to its wide applications in signal and image process-
ing [71], automatic control [72], pattern recognition
[73], and so on. Since Arena et al. [74] firstly investi-
gated bifurcation and chaos in fractional order neural
networks, many important and interesting results have
been obtained for fractional order chaotic neural net-
work. Besides, many chaotic systems have time delay.
In this section, the application of the proposed scheme
to the synchronization and stabilization of fractional
order time-delayed chaotic neural network systems is
taken as an example to demonstrate that the proposed
scheme can be applied to other chaotic systems and
time-delayed chaotic systems.

Consider a class of fractional order neural networks
whose dynamics can be described by:

Dαxi (t) = −di xi (t) +
N∑

j=1

ai j f j (x j (t))

+
N∑

j=1

bi j g j
(
x j

(
t − τ j

)) + Ii (40)

where i = 1, 2, . . . , N , N is the number of neurons
in neural network, xi is the state of the i-th neuron,
f j (x j (t)) and g j (x j (t − τ j )) correspond to activa-
tion functions of the j-th neuron, ai j and bi j represent
the connection weight and the time delay connection
weight, respectively, τ j denotes time delay along the
axon of the j-th unit from the i-th unit, di > 0 is the
rate with which the i-th neuronwill reset its potential to
the resting state when disconnected from the network,
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Ii is an external input. The initial condition for system
(40) is xi (t) = φi (t), t ∈ [−τ, 0], where τ = max{τ j }.

In this paper, we consider system (40) as master
system and the following system as slave system:

Dα yi (t) = − di yi (t) +
N∑

j=1

ai j f j (y j (t))

+
N∑

j=1

bi j g j
(
y j

(
t − τ j

)) + Ii + ui

(41)

where ui is control input and the meanings of other
parameters are the same as system (40). The initial con-
dition for system (41) is yi (t) = ψi (t), t ∈ [−τ, 0],
where τ = max{τ j }.

In order to achieve fixed-time chaos synchroniza-
tion, we need the following assumption for delayed
systems (40) and (41).

Assumption 3 The activation functions f j and g j sat-
isfy Lipschitz conditions, that is, there exist positive
constants L j and N j , such that | f j (x j ) − f j (y j )| ≤
L j |x j − y j |, |g j (x j ) − g j (y j )| ≤ N j |x j − y j |.
Denote synchronization error ei = yi − xi and its
dynamics can be expressed as:

Dαei (t) = −di ei (t) +
N∑

j=1

ai j f j
(
e j (t)

)

+
N∑

j=1

bi j g j
(
e j

(
t − τ j

)) + ui (42)

where f j (e j (t)) = f j (y j ) − f j (x j ), g j (e j (t − τ j )) =
g j (y j (t − τ j )) − g j (x j (t − τ j )).

The sliding surface can be constructed as:

si = Dα−1ei + Dα−2(β1sig (ei )
m1/n1 + λ1sig (ei )

p1/q1)

(43)

where β1, λ1 are positive constants, m1, n1, p1, q1 are
positive odd integers that satisfy m1 > n1, p1 < q1,
sig(·)α = | · |αsign(·), and sign(·) is signum function.

The control input can be designed as:

ui = −ηi sign (si (t)) |ei | − β2sig (si )
m2/n2

− λ2sig (si )
p2/q2

− Dα−1 (
β1sig (ei )

m1/n1 + λ1sig (ei )
p1/q1

)
− δi sign (si (t)) |ei (t − τi )| (44)

where β2, λ2 are positive constants, ηi and δi are posi-
tive constants determined later, m2, n2, p2, q2 are pos-
itive odd integers that satisfy m2 > n2, p2 < q2,
sig(·)α = | · |αsign(·), and sign(·) is signum function.

Theorem 5 Consider the synchronization error sys-
tem (42) under Assumption 3. If this system is con-
trolled under control input (44), its trajectories will
converge to the sliding surface (43) within finite time
upper bounded by:

T3 <
1

N 1−m2/n2β2

n2

m2 − n2
+ 1

λ2

q2
q2 − p2

(45)

Proof Consider the following Lyapunov function can-
didate:

V3 =
N∑

i=1

|si | (46)

The time derivative of Lyapunov function V3(t) can be
derived as:

V̇3 =
N∑

i=1

sign (si ) ṡi

=
N∑

i=1

sign (si ) (Dαei + Dα−1(β1sig (ei )
m1/n1

+ λ1sig (ei )
p1/q1)) (47)

Substituting error system dynamics (42) and control
input (44) into (47), one has:

V̇3 =
N∑

i=1

sign (si )

⎛
⎝−di ei +

N∑
j=1

ai j f j
(
e j (t)

)

+
N∑

j=1

bi j g j
(
e j

(
t − τ j

)) + ui

+ Dα−1
(
β1sig (ei )

m1/n1 + λ1sig (ei )
p1/q1

))

= −
N∑

i=1

di ei sign (si ) +
N∑

i=1

N∑
j=1

ai j f j
(
e j (t)

)
sign (si )

+
N∑

i=1

N∑
j=1

bi j g j
(
e j

(
t − τ j

))
sign (si ) −

N∑
i=1

ηi |ei |

−
N∑

i=1

β2 |si |m2/n2 −
N∑

i=1

λ2 |si |p2/q2

−
N∑

i=1

δi |ei (t − τi )| (48)
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Employing Assumption 3, (48) becomes:

V̇3 ≤
N∑

i=1

di |ei | +
N∑

i=1

N∑
j=1

∣∣ai j
∣∣ L j

∣∣e j (t)
∣∣

+
N∑

i=1

N∑
j=1

∣∣bi j
∣∣ N j

∣∣e j
(
t − τ j

)∣∣ −
N∑

i=1

ηi |ei |

−
N∑

i=1

β2 |si |m2/n2 −
N∑

i=1

λ2 |si |p2/q2

−
N∑

i=1

δi |ei (t − τi )|

= −
N∑

i=1

(ηi − di −
N∑

j=1

∣∣a ji
∣∣ Li ) |ei (t)|

−
N∑

i=1

β2 |si |m2/n2

−
N∑

i=1

⎛
⎝δi −

N∑
j=1

∣∣b ji
∣∣ Ni

⎞
⎠ |ei (t − τi )|

−
N∑

i=1

λ2 |si |p2/q2 (49)

Choosing ηi ≥ di +∑N
j=1 |a ji |Li and δi ≥ ∑N

j=1 |b ji |
Ni , and using Lemmas 3–4, we have

V̇3 ≤
N∑

i=1

−β2 |si |m2/n2 − λ2 |si |p2/q2

≤ −N 1−m2/n2β2

(
N∑

i=1

|si |
)m2/n2

− λ2

(
N∑

i=1

|si |
)p2/q2

= −N 1−m2/n2β2V m2/n2
3 − λ2V p2/q2

3

(50)

Therefore, according toLemma1, the systemstateswill
converge to the sliding surface asymptotically. Further-
more, based on Lemma 2, we can prove fixed-time con-
vergence and the convergence time is upper bounded
by (45). The proof is completed. �	

When the error state is on the sliding surface, its
dynamics satisfies:

Dα−1ei= − Dα−2 (
β1sig (ei )

m1/n1 +λ1sig (ei )
p1/q1

)
(51)

Theorem 6 Consider the sliding mode dynamics (51).
The error state variables will converge to the origin
within finite time upper bounded by:

T4 <
1

N 1−m1/n1β1

n1

m1 − n1
+ 1

λ1

q1
q1 − p1

(52)

Proof Similar to the proof process of Theorem 2, we
can prove Theorem 6 hold and detailed proof process
is omitted here. �	s

From Theorems 5 and 6, we have the following
result:

Theorem 7 For the synchronization error system (42)
under Assumption 3, if the control input is designed as
(44), the error system will converge to zero within finite
time upper bounded by:

T <
1

N 1−m2/n2β2

n2

m2 − n2
+ 1

λ2

q2
q2 − p2

+ 1

N 1−m1/n1β1

n1

m1 − n1
+ 1

λ1

q1
q1 − p1

(53)

The proposed control scheme is extended to address
fixed-time fractional order chaotic neural network sys-
tem stabilization problem. Suppose y∗

i is an equilib-
riumpoint of system (41).Denote the stabilization error
ei = yi (t) − y∗

i and its dynamics satisfies:

Dαei (t) = − di ei (t) +
N∑

j=1

ai j f j (e j (t))

+
N∑

j=1

bi j g j
(
e j

(
t − τ j

)) + ui

(54)

where f j (e j (t)) = f j (y j ) − f j (y∗
j ), g j (e j (t − τ j )) =

g j (y j (t − τ j )) − g j (y∗
j ).

Construct the sliding surface (43) and the controller
can be designed as:

ui = − ηi sign (si (t)) |ei | − β2sig (si )
m2/n2

− λ2sig (si )
p2/q2

− Dα−1(β1sig (ei )
m1/n1 + λ1sig (ei )

p1/q1)

− δi sign (si (t)) |ei (t − τi )|

(55)
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where β2, λ2 are positive constants, ηi and δi are posi-
tive constants that satisfy ηi ≥ di + ∑N

j=1 |a ji |Li and

δi ≥ ∑N
j=1 |b ji |Ni , m2, n2, p2, q2 are positive odd

integers that satisfy m2 > n2, p2 < q2, sig(·)α =
| · |αsign(·), and sign(·) is signum function.

Similar to Theorem 4 and Theorem 7, we have the
following result.

Theorem 8 Consider the stabilization problem of the
fractional order chaotic neural network system (41)
under Assumption 3. If the system (41) is controlled
by control law (55), then the system can be stabilized
within finite time upper bounded by:

T <
1

N 1−m2/n2β2

n2

m2 − n2
+ 1

λ2

q2
q2 − p2

+ 1

N 1−m1/n1β1

n1

m1 − n1
+ 1

λ1

q1
q1 − p1

(56)

Remark 10 If the time-varying delay strength bi j =
0, mater system (40) and slave system (41) become
fractional order neural networkswithout time delay and
can be described as:

Dαxi (t) = −di xi (t) +
N∑

j=1

ai j f j
(
x j (t)

) + Ii (57)

Dα yi (t) = −di yi (t) +
N∑

j=1

ai j f j
(
y j (t)

) + Ii + ui

(58)

Construct sliding surface (43) and the controller can be
designed as:

ui = −ηi sign (si (t)) |ei | − β2sig (si )
m2/n2

− λ2sig (si )
p2/q2

− Dα−1 (
β1sig (ei )

m1/n1 + λ1sig (ei )
p1/q1

)
(59)

where β2, λ2 are positive constants, ηi is a posi-
tive constant that satisfies ηi ≥ di + ∑N

j=1 |a ji |Li ,
m2, n2, p2, q2 are positive odd integers that satisfy
m2 > n2, p2 < q2, sig(·)α = | · |αsign(·), and sign(·)
is signum function.

Control input (59) can achieve fixed-time synchro-
nization for systems (57) and (58) and fixed-time sta-
bilization for system (58). Moreover, ei = yi − xi for
synchronization and ei = yi − y∗

i for stabilization.

Remark 11 Information about the neuron states is
required to design control input (44), (55) and (59).
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Fig. 17 Phase portraits of master system

However, formost cases, only partial information about
neuron states of large scale neural networks can be
obtained. Fortunately, references [75] and [76] provide
state estimators to estimate the neuron states through
available measurements.

Numerical simulations are conducted to verify the
effectiveness of the proposed scheme. In our simu-
lation, fractional order Hopfield neural networks are
considered and the system parameters are selected as
d1 = d2 = 1, a11 = 2, a12 = 0.3, a21 = 5, a22 = 3,
b11 = −2, b12 = 0.2, b21 = 0.3, b22 = −2.5,
I1 = I2 = 0, τ1 = τ2 = 1, f j (x j ) = g j (x j ) =
tanh(x j ). It is not difficult to check that Assumption 3
holds with L j = N j = 1. If the fractional order
α is set to 0.92 and the initial conditions are chosen
as (x1(s), x2(s)) = (0.4, 0.6), for s ∈ [−1, 0] and
(y1(s), y2(s)) = (−0.4,−2), for s ∈ [−1, 0], mas-
ter system (40) and slave system (41) exhibit chaotic
behavior, which is shown in Figs. 17 and 18, respec-
tively. The proposed scheme is applied to synchro-
nize fractional order chaotic neural networks (40) and
(41). The controller parameters are selected as η1 = 8,
η2 = 4.3,β1 = β2 = 12,λ1 = λ2 = 12, p1 = p2 = 5,
q1 = q2 = 9, n1 = n2 = 5, m1 = m2 = 9, δ1 = 2.3
and δ2 = 2.7. Time response of system (40) and system
(41) under control input (44) are presented in Fig. 19.
As shown in Fig. 19, the system states of the slave
system will track the trajectories of the master system
within 0.18 s. Next, the proposed scheme is applied to
stabilize fractional order chaotic neural network (41)
with the same controller parameters and the results are
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Fig. 18 Phase portraits of slave system
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Fig. 19 Time response of master system and slave system under
control input (44)

shown in Fig. 20. Fig. 20 shows that the systemwill sta-
bilize to its equilibrium point (y∗

1 , y∗
2 ) = (0, 0) within

0.16 s. All the results verify the effectiveness of the
proposed scheme in synchronization and stabilization
of fractional order chaotic neural networks with time
delay.

7 Conclusion

In this paper, fractional order fixed-time nonsingular
terminal sliding mode control scheme is proposed to
stabilize and synchronize fractional order chaotic sys-
tems with uncertainties and external disturbances. A
novel fractional order terminal sliding surface is first
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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−0.5

0

0.5

t/s

y 2

Fig. 20 Time response of system (41) under control input (55)

proposed to guarantee fixed-time convergence of sys-
tem states along the sliding surface, and then, a non-
singular terminal sliding mode control is designed to
force the system state to reach the sliding surface
within fixed-time and remain on it forever. The fixed-
time stability and robustness of the proposed control
scheme are proved using fractional Lyapunov stabil-
ity theory, and the upper bound of convergence time
is also estimated. Finally, the simulation results con-
firm the estimated convergence time bound and demon-
strate that the proposed control scheme can achieve
chaos synchronization and suppress chaotic oscillation
in fractional order power system within fixed-time. It
is worth noting that the proposed control scheme can
be extended to synchronize and stabilize other chaotic
systems and time-delayed chaotic systems.
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