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Abstract ThebiologicalHodgkin–Huxleymodel and
its simplified versions have confirmed its effectiveness
for recognizing and understanding the electrical activi-
ties in neurons, and bifurcation analysis is often used to
detect themode transition in neuronal activities.Within
the collective behaviors of neurons, neuronal network
with different topology is designed to study the syn-
chronization behavior and spatial pattern formation. In
this review, the authors give careful comments for the
presented neuron models and present some open prob-
lems in this field, nonlinear analysis could be effec-
tive to further discuss these problems and some results
could be helpful to give possible guidance in the field
of neurodynamics.
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1 Introduction

Neuron is thought as the basic unit in neuronal sys-
tem and the electrical activities show distinct nonlinear
properties. For example, external forcing can induce
mode transition in electrical activities from quiescent
state to spiking, bursting and even chaotic states in
neurons. The Hodgkin–Huxley neuron [1] model and
its many developed versions [2–6] have been available
for bifurcation analysis and understanding the dynam-
ical response to external stimuli, synchronization sta-
bility and evolution of collective behaviors under cou-
pling. Based on these neuron models, dynamical anal-
ysis is carried out on the isolate neuron model, partic-
ularly, coherence resonance and stochastic resonance
are induced by imposing appropriate noise, as a result,
distinct regularity can be found in the sampled time
series for membrane potentials. Furthermore, collec-
tive behaviors are investigated on the neuronal net-
work connected with different topological connection,
such as synchronization transition, pattern selection in
the network. And these results are important and help-
ful to understand potential mechanism for occurrence
of neuronal disease, so reliable schemes can be pre-
sented to prevent the breakdown of neuronal systems.
Brain is a complex neuronal system, which contains
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a large number of neurons, and excitation–inhibition
balance between neurons is important to keep normal
and healthy brain. As a result, it is interesting to detect
and analyze the collective behaviors in brain by using
nonlinear dynamics and model setting from the sam-
pled time series for oscillating behaviors [7–10]. In the
following section, relevant topics will be summarized
with short comments.

The first topic: Functional connection and anatomic
connection to neuron In the last decades, eyes are often
emphasized on the electrical activities of neurons and
many neuron models and relevant nonlinear circuits
are used to produce the complex sampled time series
that are consistent with biological experimental data
by setting appropriate parameters and external forc-
ing. Extensive evidences confirmed that astrocyte could
also be helpful to regulate the electrical activities of
neuron beside the protection from injury for neurons.
As a result, neuron-coupled astrocyte network [11–19]
is designed to investigate the dynamical response and
changes of calcium ions, and it is believed to explain the
occurrence mechanism of seizure [20]. Indeed, some
intermediary neurons have autapse connection [21–
26], which the synapse connects to neuron or soma
via a close loop, and the modulation of autapse driving
is described by a time-delayed feedback on the mem-
brane potential [27]. Some evidence have confirmed
that autapse connection can enhance the self-adaption
of neuron to external stimuli and appropriate distri-
bution of autapse in the network can induce continu-
ous waves to regulate the collective behaviors of neu-
ronal network. For example, autapse driving in neuron
and network can induce coherence resonance [28]. A
various spatial pattern can be formed and selected by
applying appropriate time delay and feedback gain in
the autapse in the neuronal network [29]. Autapse is
classified as chemical autapse and electric autapse, it is
found that electric autapse can give quick response to
external stimuli while chemical can modulate the elec-
trical activities slowly. Within the network, negative
feedback in autapse can generate defects to block the
wave propagation while positive feedback can induce
stable pulses, fronts of target wave to regulate the col-
lective behavior of the neuronal network [30,31]. That
is to say, autapse connection can be of importance for
signal transmission and self-adaption to external stim-
uli. Particularly, Wang et al. argued that the formation
mechanism of autapse could be associated with the
injury of neuron, and the development of autapse can

Fig. 1 Autapse formation on a cable neuron model, it is shown
in Fig. 1 in Ref. [32]

be helpful to propagate the blocked signal via an aux-
iliary loop [32]. As a result, Guo et al. [33] suggested
that electrical field can be imposed on the injured area
of the axon so that blocked signal can be transmitted.
Readers can find the original illustration for the autapse
function on injured axon of neuron, it is also shown in
Fig. 1 as follows.

The autapse current for electric type is often
described by

Iauta = g(V (t − τ) − V (t)) (1)

where τ is the time delay in the autapse and g is the
feedback gain, V is the membrane potential of neu-
ron. A switch between negative feedback and positive
feedback in autapse can be realized by setting appro-
priate gains in autapse, and a time-varying feedback
gain can enhance the self-adaption of neuron to exter-
nal forcing and electrical stimuli. Furthermore, autapse
connection to neuron can enhance the robustness to
electromagnetic radiation, and the disturbance result-
ing from electromagnetic radiation on neurons can be
suppressed by autaptic modulation [34]. For biologi-
cal neuron, described by Hodgkin–Huxley model [1],
channel noise [35] and temperature are important fac-
tors, which can change the excitability and modes in
electrical activities, it often reads as follows

CmdV/dt = g̃Kn
4(VK − V ) + g̃Nam

3h(VNa − V )

+ g̃L (VL − V ) + Iext;
dm/dt = am(V )(1 − m) − βm(V )m + ξm(t);
dh/dt = ah(V )(1 − h) − βh(V )h + ξh(t);
dn/dt = an(V )(1 − n) − βn(V )n + ξn(t);
am = 0.1(V + 40)φ(T )/[1 − exp(−(V + 40)/10)];
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βm = 4φ(T ) exp(−(V + 65)/18);
ah = 0.07φ(T ) exp(−(V + 65)/20);
βh = φ(T )/[1 + exp(−(V + 35)/10)];
an = 0.01(V + 55)φ(T )/[1 − exp(−(V + 55)/10)];
βn = 0.125φ(T ) exp(−(V + 65)/80);
φ(T ) = 3(T−6.3 ◦C)/10 ◦C; (2)

where the variable V describes the membrane poten-
tial of the neurons, m , n and h are parameters for
gate channel, T is temperature of membrane, Iext is
external stimuli and the capacitance of membrane is
Cm = 1µF/cm2. The maximal conductance of potas-
sium is g̃K = 36mS/cm2 , the maximal conductance of
sodium is g̃Na = 120mS/cm2 , the conductanceof leak-
age current is g̃L = 0.3mS/cm2 . The reversal potential
VK = −77mV, VNa = 50mV and VL = −54.4mV.
ξm(t), ξh(t), ξn(t), are independent Gaussian white
noise [36] and the statistic properties [37,38] of the
channel noise are defined by

〈ξm(t)〉 = 0;
〈
ξm(t)ξm(t

′
)
〉
= 2αmβmδ(t − t

′
)

NNa(αm + βm)
= Dmδ(t − t

′
);

〈ξn(t)〉 = 0;
〈
ξn(t)ξn(t

′
)
〉
= 2αnβnδ(t − t

′
)

NK(αn + βn)
= Dnδ(t − t

′
);

〈ξh(t)〉 = 0;
〈
ξh(t)ξh(t

′
)
〉
= 2αhβhδ(t − t

′
)

NNa(αh + βh)
= Dhδ(t − t

′
);

(3)

where Dm , Dn , and Dh describe the intensity of noise,
and δ(t − t

′
) = 1 is Dirac-δ function, NNa and NK

are the total numbers of sodium and potassium chan-
nels present in a given patch of the membrane, respec-
tively. In the case of homogeneous ion channel density,
ρNa = 60µm−2 and ρK = 18µm−2, the total chan-
nels number is decided by NNa = ρNas and NK = ρKs,
and s describes the membrane patch. In case of channel
blocking and poisoning, the conductance is modulated
as follows

gK(n) = g̃Kχk = gmax
K χkn

4; gNa(m, h)

= g̃NaχNa = gmax
Na χNam

3h; (4)

where χk, χNa is the fractions of working, i.e., non-
blocked ion channels, to the overall number of potas-
sium, NK, or sodium, NNa, ion channels, respectively.
When the effect of channel blocking is considered, the
statistical properties of channel noise is described by

〈ξm(t)〉 = 0;

〈
ξm(t)ξm(t ′)

〉 = 2αmβmδ(t − t
′
)

χNaNNa(αm + βm)
;

〈ξn(t)〉 = 0;
〈
ξn(t)ξn(t

′)
〉 = 2αnβnδ(t − t

′
)

χk NK(αn + βn)
;

〈ξh(t)〉 = 0;
〈
ξh(t)ξh(t

′)
〉 = 2αhβhδ(t − t

′
)

χNaNNa(αh + βh)
;

(5)

Compared the description in Eq. (3) with the definition
in Eq. (5), it is found that the noise intensity is enhanced
when partial ion channels are blocked. Furthermore,
according to the definition in Eq. (2), the excitabil-
ity of the media will be changed by the temperature,
as a result, the electrical activities of isolate neuron
and even collective behaviors of neuronal network can
be modulated by changing the temperature of the cell.
However, when autapse connection is considered, the
self-adaption can be enhanced to keep robust the effect
of temperature fluctuation on membrane potential and
also the mode transition in electrical activities. That is,
readers can introduce autaptic current into Eq. (2) to
investigate the modulation and self-adaption from the
autapse driving when temperature is fluctuated.

The second topic: pattern formation and synchro-
nization in neuronal network In the case of network,
statistical function or auto-correlation function is often
defined to calculate the phase transition induced by
bifurcation parameter and topology connection. Based
on the mean field theory, a statistical variable [29] (fac-
tor of synchronization) is defined to study the collective
behaviors and statistic property

F =
N∑
j=1

N∑
i=1

Vi j/N
2 (6)

R =
〈
F2

〉 − 〈F〉2
∑N

j=1
∑N

i=1

(〈
V 2
i j

〉
− 〈

Vi j
〉2)

/N 2
(7)

where R is factor of synchronization, the number of
neurons is N 2 and the variable Vi j is the membrane
potential of neuron. The symbol 〈.〉 represents the aver-
age of variable over time. It is found that perfect syn-
chronization can be reached when the factor of syn-
chronization R is close to 1 while regular spatial pat-
terns such as target wave or spiral waves can be formed
to occupy the network when the synchronization fac-
tor is very low. That is, non-perfect synchronization is
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reached when R is very close to zero.More often, regu-
lar connection and small-world connection are used to
design network, time delay, noise and pacemaker (peri-
odical forcing) are used to induce spatial coherence res-
onance, spiral wave [39–43] can be formed in the two-
dimensional spacewhich the collective behavior can be
controlled completely. And it is believed that the emer-
gence of spiral wave in neuronal network can explain
the biological function in neocortex. In the nerve sys-
tem, most of the researchers believed that small-world
connection could be more reliable than regular net-
work connection, in fact, the small-world network can
be approached by using a local regular connection
(nearest-neighbor connection) and long-range connec-
tion with certain probability. It is also found that local
regular connection can enhance the formation of reg-
ular pattern while long-range connection can destroy
pattern formation. In numerical studies, no-flux or peri-
odical boundary condition is often used, respectively.
In the chain or ring network, spatiotemporal develop-
ment is often detected for dynamical analysis. As it is
well known, strong enough coupling can enhance the
synchronization stability and pattern formation, how-
ever, collapse-induced instability of network can be
triggered by external violent attack or intrinsic destroy
in the network [44,45], for example, parameter shift or
switch can cause breakdown and instability of spiral
waves in the neuronal network, and nonlinear analy-
sis from the sampled time series are helpful to predict
the occurrence of breakdown in the network. Synapse
plays important role in signal exchange and mode tran-
sition in electrical activities of neurons. The normal
function of neural networks depends on a delicate bal-
ance between excitatory and inhibitory synaptic inputs
[46,47]. It is thought that excitatory synaptic inputs are
helpful to trigger the electrical activities of neurons,
while inhibitory synaptic inputs can calm down the fir-
ing in electrical activities. Indeed, many evidences con-
firmed that inhibitory synapse can enhance neural firing
pattern or enhance synchronous degree of coupled neu-
rons and neuronal network [48–51]. Therefore,with the
view of pattern selection and dynamics, neuronal net-
work composed of excitatory and inhibitory neurons
could be detected to understand the cooperation and
self-organization in neuronal network, and further fea-
sible schemes can be used to select appropriate spatial
patterns [52].

The third topic: Model setting under electromag-
netic induction and radiation The motion of charge

particle can be controlled by electromagnetic field and
the spatial distribution of charge particles become com-
plex when these charge particles are exposed to exter-
nal electromagnetic field. For the neuron and biolog-
ical cell, the electrical activities can be changed due
to the electromagnetic induction during the exchange
of ion currents and fluctuation of ion concentrations.
As reviewed in Ref. [53], the effects of electromag-
netic radiation on neuronal electrical activity, energy
metabolism, genomic responses, neurotransmitter bal-
ance, bloodCbrain barrier permeability, cognitive func-
tion, sleep, and various brain diseases including brain
tumors should be considered with the increasing use
of mobile communication. Lisi et al. [54] investigated
the effect of electromagnetic radiations (EMF) at a
frequency of 50 Hz on the development of cerebellar
granule neurons (CGN). References [55,56] presented
experiments to study the oxidative damage to mito-
chondrial DNA in primary cultured neurons exposed
to 1800 MHz radio frequency radiation. Masuda et
al. [57] presented experimental verification and dis-
cussion about effects of 915 MHz electromagnetic
field radiation in TEM cell on the blood–brain barrier
and neurons in the rat brain. Xu et al. [58] discussed
the effects of microwave exposure on the function
of cultured hippocampal neurons of rats using whole
cell patch-clamp analysis combined with immunocyto-
chemistry. They found that chronic exposure (15 min
per day for 8 days) to global system for mobile com-
munication (GSM) 1800-MHz microwaves at specific
absorption rate (SAR) of 2.4 W/kg induced a selec-
tive decrease in the amplitude of -amino-3-hydroxy-5-
methyl-4-soxazole propionic acid (AMPA) miniature
excitatory postsynaptic currents (mEPSCs), whereas
the frequency of AMPA mEPSCs and the amplitude
of N-methyl-D-aspartate (NMDA) mEPSCs did not
change. According to the physical law of electromag-
netic induction, the distribution and density of mag-
netic flux across membrane can be changed when the
cell is exposed to electromagnetic field. As mentioned
in the effect of autapse, time delay, e.g., response time
delay can be used to describe the effect of memory in
neuron. However, in physical view, magnetic field can
be effective to describe the effect of memory of neu-
ron by generating appropriate spatial distribution and
the fluctuation of electromagnetic fieldwillmake effec-
tive information exchange.On the other hand, neuron is
thought as an intelligent circuit to process complex sig-
nals in nerve system, and memristor [59] is proposed
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to design reliable neuronal circuit due to its memory
effect because the memductance is dependent on the
external stimuli. It reads as follows

ρ(ϕ) = dq(ϕ)

dϕ
= α + 3βϕ2 (8)

where α, β are parameters to be dependent on the
memristor. As reported in Refs. [60,61], time-varying
change of intercellular and extracellular ion concen-
tration can induce electromagnetic induction, and this
effect can be described by using magnetic flux accord-
ing to the law of electromagnetic induction, the induced
current from electromagnetic induction can modu-
late the membrane potential via feedback by using
memristor[59]. The induced current and electromag-
netic induction can be described by

i
′ = dq(ϕ)

dt
= dq(ϕ)

dϕ

dϕ

dt
= ρ(ϕ)

dϕ

dt
;

dϕ

dt
= kV (9)

where the induction coefficient k is dependent on the
media and V is the membrane potential. We found
that multiple modes of electrical activities [61] can be
induced by electromagnetic radiation and these results
are consistent with biological experiments. Further-
more, we developed a new cardiac tissue model [62]
and explained the potential mechanism for heart dis-
eased induced by electromagnetic radiation. Continu-
ous wave emitting from the sino-atrial node of heart
can form stable target waves to regulate the electrical
activities and shrinkage of heart, strong electromag-
netic radiation and induction can cause breakdown of
heartbeat and functional role by breaking and suppress-
ing the propagation of target waves. Furthermore, the
synchronization behavior of electrical activities of neu-
rons are discussed when neurons are exposed to noise-
like electromagnetic radiation [63], and double coher-
ence resonance behavior is observed.

The fourth topic: neuronal circuit Since the origi-
nal biological Hodgkin–Huxley neuron model setting,
which can describe the electrical activities on large
axon of squid and the effect of ion channel is also con-
sidered, many oscillator-like neuron models have been
designed for dynamical analysis thus the outputs can
produce spiking, bursting and even chaotic behaviors
to consistent with the sampled series from biological
experiments. On the other hand, these neuronal model
can be realized in nonlinear circuits by using appro-

priate nonlinear devices. Besides the well-known non-
linear resistor, capacitor, two important sensitive elec-
tric devices should be mentioned. One is the Joseph-
son junction [64–67], which shows superconductivity
and quantum characteristics, it is found that Josephson
junction coupled resonator can produce main proper-
ties of electrical activities in neurons. Another impor-
tant device is memristor [68–74], which its memduc-
tance is dependent on the external stimuli thus mem-
ory effect is approached, as a result, nonlinear cir-
cuits and systems [75] composed of memristor can be
initial-dependent to trigger different attractors in inte-
ger and even fractional-order dynamical systems. In cir-
cuit realization, mapped from the theoretical neuronal
model, parameter can be carefully modulated to trig-
ger spiking, bursting states, PSpice [76,77] and FPGA
can be used to verify the reliability of neuronal circuits.
In the circuit setting,memristor and Josephson junction
canuse to generate nonlinear response thus highnonlin-
earity is formed in the dynamical models and systems,
furthermore, memristor can be used to bridge coupling
between nonlinear circuits so that both of the coupled
circuits can be suppressed by the induced currents.

Furthermore, noise and autapse distribution can be
considered in the improved network, the synchroniza-
tion transition and pattern stability could be more
attractive for investigation. The neuronal system is
made of different types of functional neurons such as
excitatory and inhibitory neurons, and neurons show
distinct diversity, readers can set multilayer network to
investigate the collective behaviors in networks.

2 Open problems and discussion

The nerve system contains a large number of neurons
with complex connection type. Within the collective
behavior and synchronization problems, chemical and
electric synapse are connected between neurons, neu-
ronal networks are designed via synapse connection
and coupling, as a result, bifurcation parameters and
noise can be considered to investigate the pattern stabil-
ity [78–82], synchronization transition [83–87], spatial
coherence resonance and stochastic resonance [88–93].
In our view, field coupling could be another effective
way to regulate the collective behaviors of neurons and
networks. The electrical activities in neurons show cer-
tain diversity in amplitude, and the rhythm can carry
more important information because phase synchro-
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nization can be associated with memory [94]. In the
complex physical and biological condition, e.g., noise
driving and electromagnetic radiation, complete syn-
chronization between neurons become more difficult
while the phase synchronization or rhythm becomes
available [95,96]. In Ref. [96], we argued that mag-
netic coupling could be another effective way to realize
phase synchronization though most of the researchers
believed that synapse coupling is the most important
bridge to exchange signals between neurons. In our
view, in the neuronal system, eachneuron can set isolate
electromagnetic field during the fluctuation of ion con-
centration and exchangeof ion currents via the channels
embedded into the membrane, further more, each neu-
ron is also exposed to the integrated electromagnetic
field contributed by other neurons according to super-
position principle of field. As a result, for two isolate
neurons, the field coupling can be reduced by magnetic
coupling as follows
dV1
dt

= f (V1, p);
dϕ1

dt
= kV1 + g(ϕ2 − ϕ1);

dV2
dt

= f (V2, p);
dϕ2

dt
= kV2 + g(ϕ1 − ϕ2); (10)

where V1, V2, ϕ1, ϕ2, denotes the membrane poten-
tial, magnetic flux for the two neurons, g is the
coupling intensity and p is parameter for the neu-
ron, k is the induction coefficient associated with the
media, in f (V, p) represents the local kinetics of neu-
ron model. As confirmed in Ref. [96], phase synchro-
nization can be reached by setting appropriate field
coupling intensity. In the previous works, collective
behavior and consensus of electrical activities are dis-
cussed on regular, small-world, scale-free network, and
the topology connection is often considered as bifurca-
tion parameter to study the stability of synchronization
behaviors. However, in the case of field coupling, sig-
nal exchange can also be realized even neurons are not
connected via synapse. The dynamical equations for
the network can be described by field coupling as fol-
lows
dVi
dt

= f (Vi , p);

dϕi
dt

= kVi + g

⎛
⎝

N∑
j �=i

ϕ j − ϕi

⎞
⎠ ; (11)

where the subscript i is used to discern the neuron in
the network without synapse connection and position
setting.

∑N
j �=i ϕ j represents the field andmagnetic con-

tribution of other neurons to the i th neuron. For exam-
ple, a chain distribution for Hindmarsh–Rose neuron
can be described by

dxi
dt

= yi − ax3i + bx2i − zi + Iext − kρ(ϕi )xi ;
dyi
dt

= c − dx2i − yi ;
dzi
dt

= r [s(xi + 1.6) − zi ];

dϕi
dt

= kxi + g

⎛
⎝

N∑
j �=i

ϕ j − ϕi

⎞
⎠ ; (12)

where the memductance ρ(ϕi ) is calculated according
to Eq. (8), x, y, z is membrane potential, slow current
associated with recovery variable and adaption current,
respectively. Furthermore, this problem can also be dis-
cussed in the two-dimensional space such as square
array, and the dynamical equations can be described
by

dxi j
dt

= yi j − ax3i j + bx2i j − zi j + Iext − kρ(ϕi j )xi j ;
dyi j
dt

= c − dx2i j − yi j ;
dzi j
dt

= r [s(xi j + 1.6) − zi j ];

dϕi j
dt

= kxi j + g

⎛
⎝

N∑
l �=i,m �= j

ϕlm − ϕi j

⎞
⎠ ; (13)

where the subscript i j, l,m is used to mark the neu-
rons in the network, statistical function such as fac-
tor of synchronization can be used to detect the sta-
bility of synchronization, pattern selection in the net-
work by setting different parameters. Differs from the
well-known synapse coupling, maybe, the field cou-
pling between neurons can give new sight to under-
stand the collective behaviors in neuronal networks.
This problem can also be carried out on the biolog-
ical Hodgkin–Huxley neuron model, channel noise,
additive noise can also be further considered to inves-
tigate the synchronization transition and pattern con-
trol for a large number of neurons, it could be help-
ful to understand the occurrence mechanism of neu-
ronal systems induced by electromagnetic radiation.
Finally, it is important to clarify concepts of nonlin-
ear dynamics and their possible function in the real

123



A review for dynamics in neuron and neuronal network 1575

nervous system. Biological experiments can provide
enough data for nonlinear analysis and further investi-
gation on health. For example, biological data are help-
ful to set more reliable neuron models to understand
the mode transition in electrical activities of neurons,
and parameter regions can also be verified to be con-
sistent with the biological experiments [97,98]. Fur-
thermore, electroencephalograph (EEG) [99–101] and
functional magnetic resonance imaging (FMRI) [102–
104] can give enough information to understand the
activities and connection in brain network, further non-
linear analysis can be helpful to understand emergence
mechanism of some neuronal diseases such as Parkin-
son’s disease and epilepsy. That is, nonlinear analysis
and dynamical transition based on these biological data
could be helpful to understand the biological function
and give guidance to prevent the occurrence of neuronal
disease.

3 Conclusions

In this review, some important results on dynamics of
neuronal electrical activities are introduced for readers
in the field of dynamics control. Physical and biologi-
cal factors should be considered for model setting for
complex dynamical systems. Reliable neuron models
are important for dynamical analysis andunderstanding
the synchronization behavior, occurrence mechanism
of neuronal diseases. As a result, the anatomical struc-
ture and functional connection such as autapse con-
nection, physical effect such as electromagnetic induc-
tion and radiation should be considered for model set-
ting. In the end, some open problems are presented and
argued that field coupling between neurons could be
another effective way to exchange signals and infor-
mation encoding. These discussion could be helpful
for further investigation on neurodynamics and relevant
dynamical problems.Wewish the prediction about field
coupling between neurons can be helpful to understand
the neuronal disease induced by electromagnetic radi-
ation from the view of dynamical control and physical
principle.Readers in this field canpresent extensive fur-
ther investigation on this network model for dynamical
discussion.
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