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Abstract This paper investigates the low-velocity
impact response of a shear deformable laminated beam
which contains both carbon nanotube reinforced com-
posite (CNTRC) layers and carbon fiber reinforced
composite (CFRC) layers. The effect of matrix cracks
is considered, and a refined self-consistent model is
selected to describe the degraded stiffness caused by
the damage. The beam including damping effects rests
on a two-parameter elastic foundation in thermal envi-
ronments. Based on a higher-order shear deformation
theory and von Kármán nonlinear strain–displacement
relationships, the motion equations of the beam and
impactor are established and solved bymeans of a two-
step perturbation approach. The material properties of
both CFRC layers and CNTRC layers are assumed
to be temperature-dependent. To assess engineering
application of this hybrid structure, two conditions for
outer CNTRC layers and outer CFRC layers are com-
pared. Besides, the effects of the crack density, volume
fraction of carbon nanotube, temperature variation, the
foundation stiffness and damping on the nonlinear low-
velocity impact behavior of hybrid laminated beams are
also discussed in detail.
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1 Introduction

Carbon nanotubes (CNTs) possessing extraordinary
mechanical and physical properties over traditional car-
bon fiber [1,2] shows a great prospect on the aero-
nautical application. It has been reported that a small
quantity of CNTs could significantly improve elastic
moduli of polystyrene composites [3]. In other words,
the composites using CNTs rather than carbon fibers as
reinforcements can reduce theweight further.However,
owing to the weak combination between carbon nan-
otube (CNT) and matrix, excess addition of CNT will
degrade the mechanical properties, instead [4]. In this
condition, Shen [5] firstly presented the novel concep-
tion of functionally graded (FG) carbon nanotube rein-
forced composite (CNTRC), which develops the most
out of the effectiveness of reinforcement. Since then,
many researchers have been focused on the mechanical
behaviors of FG-CNTRC structures [6–18].

As an important mechanical property, low-velocity
impact response always affects the engineering appli-
cation of the structures. However, to the best of
authors’ knowledge, the relevant literatures [19–22]
which report the low-velocity impact of FG-CNTRC
structures are lacked. Wang et al. [19] first investi-
gated the low-velocity impact response of CNTRC
plates and sandwiches. They built the motion equa-
tions of the plate based on a higher-order shear defor-
mation theory and vonKármán nonlinearity. Two types
of FG-CNTRC single layer plate, i.e., FG-X and FG-
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�, were considered, and uniformed distributed (UD)
CNTRC plate was also included as a comparator. The
results illustrated that the impact properties of CNTRC
plate were significantly influenced by initial velocity
of the impactor and initial stress of the plate as well
as CNT volume fraction. Jam and Kiani [20] studied
the response of FG-CNTRC beams subjected to the
action of an impacting mass. In their analysis, Tim-
oshenko beam theory (TBT) was employed and the
results were obtained by Ritz method. They found that
indentation, peak contact force and contact history time
were all improved with the increase of the radius of
projectile. An investigation of low-velocity impact on
CNTRC skew plates was implemented by Malekzadeh
and Dehbozorgi [21]. The equilibrium equations were
formulated based on the first-order shear deformation
theory and solved by finite element method (FEM). It
was found that the peak contact forcewas increased, but
the impact duration was reduced when the skew angle
of CNTRC plate became larger. Song et al. [22] inves-
tigated the dynamic response of CNT reinforced FG
composite plates subjected to impact loading. Besides
FG-X distribution, FG-O was also taken into account.
They found that increasing the stiffness near the sur-
face of the plate could effectively reduce the deflection
of the plate.

Although the relevant literatures about low-velocity
impact of CNTRC beam are very little, we can still
take the literatures about low-velocity impact of CFRC
beam as reference. For example, a Ritzmethod for low-
velocity impact analysis of CFRC laminated beam sub-
jected to asynchronous/repeated multiple masses was
presented by Sisi et al [23]. In their method, a higher-
order shear deformation beam theory was employed
and a modified Hertzian contact law was used to simu-
late the contact process. In their analysis, the arbitrary
layups and various boundary conditions were both con-
sidered. Besides, Topac et al. [24] investigated CFRC
beams under low-velocity impact both experimentally
and numerically. They employed ABAQUS to simu-
late the experiments and observed the development of
damage during the impact process.

Because of the limitation of manufacturing, it is dif-
ficult to produce a structure in large size by CNTRC.
Presently, it seems to be feasible to replace someCFRC
layers by CNTRC layers in a composite structure for
the application. However, in a laminated structure, if
all the single CNTRC layers are chosen to be the same
FG type, the effect of FG distributed CNTs on struc-

tural behavior could be neglected [25–27]. Hence, we
presented a novel CNT FG distribution for laminated
structures, which has been proved to be efficiency for
improving the mechanical properties in our previous
works [16,17]. In the present work, we pay our atten-
tion to the low-velocity impact response of damped
hybrid laminated beams containing both CFRC lay-
ers and CNTRC layers resting on an elastic founda-
tion. The dynamic equations of the beams are based
on a higher-order shear deformation theory and von
Kármán stress–strain relationship. The solutions are
derived by a two-step perturbation technique [28]. The
effect of matrix cracking is included and which is mod-
eled by a refined self-consistent method (SCM). Fur-
thermore, as CFRC and CNTRC are both assumed
to be temperature-dependent, we also consider the
influence of temperature variation. A modified Hertz
model is proposed to describe the contact force and
then the system of impactor and beam can be solved
by a forth-order Runge–Kutta method. The numerical
results show the effects of matrix cracks on contact
force and center defection of hybrid beams under dif-
ferent conditions.

2 Governing equations

A hybrid laminated beam with length L and width b
which consists of n plies is considered. Each ply has
a constant thickness hp, and the total thickness of the
beam is h = n× hp. An impactor with mass mi , initial
velocity V 0 and tip radius Ri is impacted to the surface
of the beamat themiddlewhich is assumed to be simply
supported and in-plane immovable. The schematic of
the impactor and beam is shown in Fig. 1.

2.1 Modified contact model

In the case of low-velocity impact, theHertz contact law
is simpler andmore accurate than other contact theories
[29]. Hence, the total contact force Fc is assumed to be
related to the local contact indentation δ(t):

Fc(t) = Kc[δ(t)]r (1)

The local contact indentation δ(t) is defined as

δ(t) = W
i
(t) − W (t) (2)

where W
i
(t) denotes the displacement of the impactor

and W (t) represents the deflection of the beam at the
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Fig. 1 Geometry and
coordinate system of a
hybrid laminated beam

impact location. According to Hertz contact law, the
exponent r = 1.5 is considered for the contact between
two homogeneous isotropic solids. However, it has
been reported that r = 1.5 is also available for lam-
inated composite targets [30]. Kc is contact stiffness
and defined by

Kc = 4

3
E∗√Ri (3)

where Ri is the radius of the impactor tip, and

E∗ =
(
1 − νiνi

Ei
+ 1

Ez

)−1

(4)

where Ei and νi are the Yong’s modulus and Poisson’s
ratio of the impactor, respectively, and Ez is the trans-
verse Yong’smodulus at the surface of the beam, which
can be approximated the same as the Yong’s modulus
E22. Since E22is variable in the thickness direction, we
assume that Ez is not a fixed value during impact pro-
cess and is dependent on indentation. Based on that, a
new definition of Ez can be written as

Ez(t) = 1

δ(t)

∫ tu+δ(t)

tu
E22(Z)dZ (5)

in which Z = tu is the top surface of the beam. During
the unloading phase, the contact force Fc can be defined
as

Fc(t) = Fmax

[
δ(t) − δ0

δmax − δ0

]s
(6)

where Fmax and δmax are the maximum contact force
and indentation. The local indentation δ0 equals to zero
when δmax remains below a critical indentation during
the loading phase [31]. It shows that exponent s = 2.5
provides a good fit to the experimental data [32].

2.2 Nonlinear dynamics

A two-dimensional coordinate system (X , Z ) is used, in
which X is in the lengthdirectionof thebeamand Z is in
the direction of the downward normal to themiddle sur-
face, as shown in Fig. 1. Let W be the deflection of the
beam and Ψ x be the mid-plane rotation of the normal
about the Y axis. The beam rests on a two-parameter
elastic foundation. The foundation is assumed to be
bondedwellwith the beam in the large deflection region
and the load–displacement relationship of the founda-
tion can be expressed by p = K 1W −K 2(d2W/dX2),
where p is the force per unit area, K 1 and K 2 are,
respectively, the Winkler foundation stiffness and the
shearing layer stiffness of the foundation. The damping
force Fc is assumed to be constituted by two parts [33],
which are proportional to the speeds of lateral vibration
and the bending slope separately, that is

Fc = Cw

∂W

∂t
+ Cψ

∂Ψ x

∂t
(7)

in which Cw and Cψ are damping coefficients per unit
length corresponding to lateral and rotational speed,
respectively. Based on a higher-order shear defor-
mation beam theory and von-Kármán-type nonlinear
strain–displacement relationships, the governing equa-
tions of a shear deformable laminated beam, which
includes the beam–foundation interaction and thermal
effect, can be expressed by

s11
∂4W

∂X4 + s12
∂3Ψ x

∂X3 + B11

A11

∂2N
T

∂X2 + ∂2M
T

∂X2

+ Nx
∂2W

∂X2 +
(

K 1W − K 2
∂2W

∂X2

)
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= Q + I1
∂2W

∂t2
+ Î5

∂3Ψ x

∂X∂t2

− 4

3h2
Î7

∂4W

∂X2∂t2
− Cw

∂W

∂t
(8)

s21
∂3W

∂X3 + s22
∂2Ψ x

∂X2 − s23

(

Ψ x + ∂W

∂X

)

−s26
∂N

T

∂X
+ ∂S

T

∂X

= Ĩ3
∂2Ψ x

∂t2
− 4

3h2
Ĩ5

∂3W

∂X∂t2
− Cψ

∂Ψ x

∂t
(9)

Nx = 1

L

∫ L

0

⎡

⎣ A11

2

(
∂W

∂X

)2

+ B11
∂Ψ x

∂X

− 4

3h2
E11

(
∂Ψ x

∂X
+ ∂2W

∂X2

)

− N
T

]

dX (10)

where

s11 = − 4

3h2

(

F11 − B11E11

A11

)

s12 = D11 − 4

3h2
F11 − B11

A11

(
B11 − 4

3h2
E11

)

s21 = − 4

3h2
F11 + 16

9h4
H11

+ 4E11

3h2A11

(
overlineB11 − 4

3h2
E11

)

s22 = D11 − 4

3h2
F11 − 4

3h2

(
F11 − 4

3h2
H11

)

− 1

A11

(
B11 − 4

3h2
E11

)2

s23 = A55 − 4

h2
D55 − 4

h2

(
D55 − 4

h2
F55

)

s26 = B11

A11
− 4

3h2
E11

A11
(11)

where A11, B11, etc., are the reduced stiffnesses of
beam and they can be expressed by

(A11, B11, D11, E11, F11, H11)

= b
N∑

k=1

hk∫

hk−1

(Q̃11)k(1, Z , Z2, Z3, Z4, Z6)dZ (12)

(A55, B55, D55)

= b
N∑

k=1

hk∫

hk−1

(Q̃55)k(1, Z , Z2)dZ (13)

in which Q̃11 and Q̃55 are the refined transformed elas-
tic constants, defined by [34,35]

Q̃11 = Q11

+ (Q16)
2Q22 − 2Q12Q16Q26 + (Q12)

2Q66

(Q26)
2 − Q22Q66

(14)

Q̃55 = Q55 − (Q45)
2

Q44
(15)

In Eqs. (12) and (13), subscript k (1 ≤ k ≤ N ) denotes
the kth ply in the laminate. In such away, hk is the value
of top surface of the kth ply while h0 is the value of
bottom surface of the beam. The degraded stiffnesses
Qi j affected bymatrix crackswill be detailed discussed
in the next Section. In Eqs. (8) and (9), the inertias
Ii (i = 1, 2, 3, 4, 5, 7) are defined by

(I1, I2, I3, I4, I5, I7)

= b
N∑

k=1

hk∫

hk−1

ρk(1, Z , Z2, Z3, Z4, Z6)dZ (16)

where ρk is the mass density of the kth ply, and

I 2 = I2 − 4

3h2
I4, I 3 = I3 − 8

3h2
I5 + 16

9h4
I7,

Ĩ3 = I 3 − I 2 I 2
I1

,

I 5 = I5 − 4

3h2
I7,

Ĩ5 = I 5 − I 2 I4
I1

,

Î5 = Ĩ3 − 4

3h2
Ĩ5, Ĩ7 = I7 − I4 I4

I1
, Î7

= Ĩ5 − 4

3h2
Ĩ7 (17)

In Eqs. (8)–(10), N
T
, M

T
and P

T
are force, moment

and higher-order moment caused by temperature rise
and defined by

(N
T
, M

T
, P

T
)

=
N∑

k=1

hk∫

hk−1

(Ax )k(1, Z , Z3)	TdZ (18)

S
T = M

T − 4

3h2
P
T

(19)

where 	T = T − T0 is the temperature rise from the
reference temperature T0 at which there are no thermal
strains and

123



Nonlinear low-velocity impact on damped and matrix-cracked hybrid laminated beams 1867

Ax = Q11(c
2α11 + s2α22) + Q12(s

2α11 + c2α22)

+2csQ16(α11 − α22) (20)

in which, c and s denote cos θ and sin θ , respectively,
where θ is the lamination angle with respect to the X -
axis. α11 and α22 are thermal expansion coefficients of
a single layer in X and Y directions, respectively.

In the analysis, the longitudinal vibrationof impactor
can be neglected. Hence, the equation of motion of the
impactor and the corresponding initial conditions can
be written as

mi Ẅ
i
(t) + Fc(t) = 0,W

i
(0) = 0, Ẇ

i
(0) = V 0 (21)

3 Micromechanical models

It is assumed that for both CFRC and CNTRC the
matrix is the same. In microscale, the only difference
for two materials is the reinforcement. From [5] and
[36], the properties of CFRC and CNTRC can be got-
ten together and written as

E11 = η1Vr E
r
11 + VmE

m,

η2

E22
= Vr

Er
22

+ Vm
Em

− η4VrVm
V 2
r E

m/Er
22 + V 2

mE
r
22/E

m − 2vrvm
Vr Er

22 + VmEm
,

η3

G12
= Vr

Gr
12

+ Vm
Gm

,

ν12 = Vrν
r
12 + Vmνm, (22)

where E11, E22,G12 and ν12 are elastic modulus, shear
modulus and Poisson’s ratio, respectively. The super-
script or subscript r denotes reinforcement, while m
denotes matrix. V is the volume fraction of component
(reinforcement ormatrix) inmaterials, and the relation-
ship Vr + Vm = 1 is satisfied. It is worth noting that
efficiency parameters ηi (i = 1, 2, 3, 4) depend on the
type of material. For CFRC, η1 = η2 = η3 = η4 = 1;
while for CNTRC, η4 = 0 and the values of η1, η2 and
η3 will be detailed given in Sect. 5.

Usually, fibers are uniformly distributed in the thick-
ness direction in CFRC and the volume fraction of
fiber is independent on the value of Z , consequently.
However, the condition is different for CNTs, which
can be functionally graded distributed in the thick-
ness direction. Hence, the CNT volume fraction is
the function of Z . In the present study, two regu-
lar types of FG-CNTRC, i.e., FG-V and FG-�, are

employed for a single layer. The volume fractions cor-
responding to those four types can be expressed as

VCN = 2

(
Z − t0
t1 − t0

)
V ∗
CN (FG-V) (23a)

VCN = 2

(
t1 − Z

t1 − t0

)
V ∗
CN (FG − �) (23b)

where the subscript CN denotes CNT. Z = t1 and
Z = t0 are, respectively, the top surface and bottom
surface of a CNTRC ply, and V ∗

CN depends on the
mass densities of CNTs and matrix, and can be written
as

V ∗
CN = wCN

wCN + (
ρCN/ρm

)− (
ρCN/ρm

)
wCN

(24)

wherewCN is themass fraction ofCNTs. It isworth not-
ing that for uniformly distributed CNTRC ply VCN =
V ∗
CN.
The overall elastic moduli of the composite may

change if matrix cracks arise. According to [37],
the self-consistent estimates for the overall compli-
ance matrices S of matrix-cracked composite can be
expressed by

S = S0 + ρcrk� (25)

where the subscript 0 denotes intact composite and the
damage parameter ρcrk can be written as

ρcrk = 1

4
πρcrk (26)

in which the detailed expression of the crack density
parameter ρcrk is defined as [38]

ρcrk = 4ηl2 (27)

where η is the number of cracks per unite area and l
is the half length of two adjacent cracks. It must be
emphasized that the surface layer containing cracks
may be regarded as half of a layer of the thickness. This
means the crack density of a surface layer is twice as
much as that of interior layer with the same angle-ply.
The coordinate system presented in Fig. 1 is different
from that used in [37], in which the fiber is aligned
in the Z -direction, whereas in the present work the
fiber is aligned in the X -direction. Accordingly, the
6 × 6 matrix � can be derived under present coordi-
nate system. However, only three nonzero components
can be obtained, and for the sake of convenience, they
are expressed in terms of compliances Si j of effective
medium as

�22 = S11S22 − S212
S11

(√
α1 + √

α2
)

(28a)
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�44 =
√(

S11S22 − S212
) (

S11S33 − S213
)

S11(√
α1 + √

α2
)

(28b)

�66 = √
S55S66 (28c)

where α1 and α2 are roots of

(S11S22 − S212)α
2 − [S11S44 + 2(S11S23 − S12S13)]α

+ S11S33 − S213 = 0 (29)

These results imply that only three compliance coeffi-
cients S22, S44 and S66 are affected by the cracks. S66
can be obtained directly fromEqs. (25) and (28c),while
Eq. (29) can be solved by Newton–Raphson method as
reported in [38]. The remaining unknowns S22 and S44
are then solved fromEqs. (28a) and (28b). Based on the
laminated plate theory, the reduced compliance matrix
S can be expressed as

⎡

⎢⎢⎢⎢⎢⎢
⎣

S11
S12
S22
S16
S26
S66

⎤

⎥⎥⎥⎥⎥⎥
⎦

=

⎡

⎢⎢⎢⎢⎢⎢
⎣

c4 2s2c2 s4 s2c2

s2c2 1 − 2s2c2 s2c2 −s2c2

s4 2s2c2 c4 s2c2

2sc3 2sc(s2 − c2) −2s3c sc(s2 − c2)
2s3c 2sc(c2 − s2) −2sc3 sc(c2 − s2)
4s2c2 −8s2c2 4s2c2 1 − 4s2c2

⎤

⎥⎥⎥⎥⎥⎥
⎦

⎡

⎢⎢
⎣

S11
S12
S22
S66

⎤

⎥⎥
⎦ (30)

The relationships between stiffness coefficients Qi j

and compliance coefficients Si j are

Q11 = S22
S11S22 − S212

,

Q12 = − S12
S11S22 − S212

,

Q22 = S11
S11S22 − S212

,

Q44 = 1

S44
, Q55 = 1

S55
, Q66 = 1

S66
(31)

4 Solution method

It has been reported that nonlinear problems can be
solved by numerous methods [9,11,13,15–24,28,39–
42]. A two-step perturbation technique [28] is selected
herein to solve the governing equations obtained in
Sect. 2. For the sake of convenience, the following
dimensionless parameters are introduced

x = π
X

L
,W = W

L
, Ψx = Ψ x

π
, Nx = L2Nx

π2D11
,

(Mx , Px ) = L2

π2hD11

(
Mx ,

4

3h2
Px

)
,

(K1, k1) = K 1

(
L4

π4D11
,
L4

E0 I

)
,

(K2, k2) = K 2

(
L2

π2D11
,
L2

E0 I

)

cw = CwbL3

π3D11

√
E0

ρ0
, cψ = CψbL

πD11

√
E0

ρ0

(γ11, γ12, γ21, γ22) = 1

D11
(−s11, s12,−s21, s22),

γ23 = L2

π2D11
s23, γ13 = L2A11

π2D11
,

(γ14, γ15) = L

π2D11

(
B11 − 4

3h2
E11,

4

3h2
E11

)
,

(γ16, γ26) = 1

A11L

(
B11, B11 − 4

3h2
E11

)
,

γ17 = − bI1E0L2

π2ρ0D11
,

V0 = V 0

π

√
ρ0

E0
,

(γ18, γ19, γ28, γ29)

= −
(
Î5,− 4

3h2
Î7, Ĩ3,− 4

3h2
Ĩ5

)
E0

ρ0D11
,

t = π t

L

√
E0

ρ0
,

ωL = �L
L

π

√
ρ0

E0
,

γT 1	T = L2AT
x 	T

π2D11
,

(γT 3, γT 6)	T = L2	T

π2hD11

(
DT
x ,

4

3h2
FT
x

)
,

λq = FcbL

π2D11
(32)

in which ρ0 and E0 are herein the reference values of
ρm and Em at the room temperature (T0 = 300 K).

By employing Eqs. (32), (8) and (9) may then be
rewritten in the following dimensionless form

γ11
∂4W

∂x4
− γ12

∂3Ψx

∂x3
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−π

⎧
⎨

⎩

π∫

0

[
γ13

2

(
∂W

∂x

)2

+ γ14
∂Ψx

∂x
− γ15

∂2W

∂x2

]

dx

⎫
⎬

⎭

∂2W

∂x2
+ γT 1	T

∂2W

∂x2
− γ16

∂2NT

∂x2

− γT 3	T
∂2MT

∂x2

+
(
K1W − K2

∂2W

∂x2

)

= λq − cw

∂W

∂t
+ γ17

∂2W

∂t2
+ γ18

∂3Ψx

∂x∂t2

+ γ19
∂4W

∂x2∂t2
(33)

γ21
∂3W

∂x3
− γ22

∂2Ψx

∂x2
+ γ23

(
Ψx + ∂W

∂x

)

− γ26
∂NT

∂x
− (γT 3 − γT 6)	T

∂2MT

∂x2

= γ28
∂2Ψx

∂t2
− cψ

∂Ψx

∂t
+ γ29

∂3W

∂x∂t2
(34)

Since two ends of the beam (x = 0, π ) are simply
supported, the initial conditions may be written as

W |t=0 = ∂W

∂τ

∣∣∣∣
t=0

= 0, Mx |t=0 = ∂Mx

∂τ

∣∣∣∣
t=0

= 0

(35)

The solutions of Eqs. (33) and (34) can be assumed and
expanded by a two-step perturbation technique

W (x, t) = W ∗(x) + W̃ (x, t) (36a)

Ψx (x, t) = Ψ ∗
x (x) + Ψ̃x (x, t) (36b)

in which W̃ (x, t) is an additional deflection andW ∗(x)
is an initial deflection due to initial thermal bending
moment. Ψ̃x (x, t) and Ψ ∗

x (x) are the mid-plane rota-
tions corresponding to W̃ (x, t) and W ∗(x), respec-
tively. Note thatW ∗(x) = Ψ ∗

x (x) = 0 at room temper-
ature. In such a case, Eqs. (33) and (34) can be rewritten
as

γ11
∂4W̃

∂x4
− γ12

∂3Ψ̃x

∂x3
− π

⎧
⎨

⎩

π∫

0

[
γ13

2

(
∂W̃

∂x

)2

+γ14
∂Ψ̃x

∂x
− γ15

∂2W̃

∂x2

]
dx

}(
∂2W̃

∂x2
+ ∂2W ∗

∂x2

)

−π

⎧
⎨

⎩

π∫

0

[
γ13

2

(

2
∂W̃

∂x

∂W ∗

∂x
+
(

∂W ∗

∂x

)2
)

+γ14
∂Ψ ∗

x

∂x
− γ15

∂2W ∗

∂x2

]
dx

}
∂2W̃

∂x2

= λq −
(
K1W̃ − K2

∂2W̃

∂x2

)
− ε

(
cw

∂W̃

∂τ

)

+ε2
(

γ17
∂2W̃

∂τ 2
+ γ18

∂3Ψ̃x

∂x∂τ 2
+ γ19

∂4W̃

∂x2∂τ 2

)
(37)

γ21
∂3W̃

∂x3
− γ22

∂2Ψ̃x

∂x2
+ γ23

(
Ψ̃x + ∂W̃

∂x

)

= −ε

(
cψ

∂Ψ̃x

∂τ

)

+ε2
(

γ28
∂2Ψ̃x

∂τ 2
+ γ29

∂3W̃

∂X∂τ 2

)
(38)

Using a two-step perturbation technique, the solutions
can be written in the following forms

W̃ (x, τ, ε) =
∑

j=1

ε jw j (x, τ ),

Ψ̃x (x, τ, ε) =
∑

j=1

ε jψx j (x, τ ),

λq (x, τ, ε) =
∑

j=1

ε jλ j (x, τ ) (39)

where ε is a small perturbation parameter without any
physical meaning and τ = εt is introduced to improve
perturbation procedure for solving nonlinear vibration
problem. Using Eqs. (37)–(39), a set of perturbation
equations for the different order of ε can be obtained
and solved order by order. We obtain the asymptotic
solutions

W = εA(1)
10 sinmx + O

(
ε4
)

(40a)

Ψx = εB(1)
10 cosmx + ε2B(2)

10 cosmx

+ ε3B(3)
10 cosmx + O(ε4) (40b)

λq =
[
g30ε Ä

(1)
10 + g31εA

(1)
10

]
sinmx

+
[(

εA(1)
10

)2
g321+

(
εA(1)

10

) (
εA∗

10

)
g322

]
sinmx

+
[(

εA(1)
10

)3
g331 +

(
εA(1)

10

)2
εA∗

10g332

]

sinmx + O(ε4) (40c)

We take x = π/2, which is the impact point. The sec-

ond perturbation parameter
(
εA(1)

10

)
in Eq. (40c) can

be replaced by the maximum dimensionless deflection
of the beam Wm through Eq. (40a). Applying Galerkin
process, Eq. (41) can be rewritten as

g30
d2 (Wm)

dτ 2
+ gc

d (Wm)

dτ
+ g31 (Wm) + g32 (Wm)2
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Table 1 Temperature-dependent material properties for (10, 10) SWCNT [44]

T (K) ECN
11 (TPa) ECN

22 (TPa) GCN
12 (TPa) αCN

11 (×10−6/K) αCN
22 (×10−6/K)

300 5.6466 7.0800 1.9445 3.4584 5.1682

400 5.5679 6.9814 1.9703 4.1496 5.0905

500 5.5308 6.9348 1.9643 4.5361 5.0189

νCN12 = 0.175, ρCN = 1750 kg/m3

Table 2 Linear frequencies and nonlinear to linear frequency
ratios comparison for laminated beams with both ends simply
supported

Layup Source � (rad/s) ωNL/ωL
(Wm/h = 1.0)

[0]6 R–R [45] 454.0380 1.8028

FEM [45] 455.4909 1.8028

Present 452.8157 1.8031

[0/90/90]s R–R [45] 387.0870 1.4807

FEM [45] 388.3258 1.4807

Present 386.0171 1.4812

[90/90/0]s R–R [45] 152.0934 2.9525

FEM [45] 152.5801 2.9525

Present 151.7186 2.9543

[90]6 R–R [45] 126.6574 1.8028

FEM [45] 127.0627 1.8028

Present 126.5463 1.8028

+ g33 (Wm)3 = gq(W
i − Wm)

3
2 (41)

After the process of non-dimension, Eq. (21) can be
rewritten as

Ẅ i = gi (W
i − Wm)3/2 (42)

A forth-orderRunge–Kutta numericalmethod is appro-
priate to solve Eqs (41) and (42). All symbols used
in Eqs. (41) and (42) will be detailed described in
“Appendix.”

5 Numerical studies and discussion

In this section, the numerical results of low-velocity
impact on hybrid beams with various parameters are
presented. The beam with b = h = 1 mm and L =
30 mm is simply supported. As is mentioned before,
the CFRC and CNTRC have the same matrix mate-
rial, whose mechanical properties are assumed to be

νm = 0.34, αm = 45(1 + 0.0005	T ) × 10−6 K−1,
Em = (3.52 − 0.0034T ) GPa and ρm = 1150 kg/m3.
For CFRC, the volume fraction of carbon fiber is fixed
at 0.6 and the detailed material properties of the fiber
are [43]: E f

11 = 233.05 GPa, E f
22 = 23.1 GPa, G f

12 =
8.96 GPa, ν f = 0.2, ρ f = 1750 kg/m3, α

f
11 =

−0.54 × 10−6K−1, and α
f
22 = 10.08 × 10−6 K−1.

While for CNTRC, the (10, 10) single-walled carbon
nanotubes (SWCNTs) are selected to be reinforcements
and the temperature-dependent material properties are
listed in Table 1 [44]. In computation, three volume
fractions (V ∗

CN = 0.12, 0.17 and 0.28) of CNTs are
considered and the corresponding efficiency parame-
ters are given by

V ∗
CN = 0.12 : η1 = 0.137, η2 = 1.022, η3 = 0.715,

V ∗
CN = 0.17 : η1 = 0.142, η2 = 1.626, η3 = 1.138,

V ∗
CN = 0.28 : η1 = 0.141, η2 = 1.585, η3 = 1.109.

In addition, we assume that out-plane shear moduli
G13 = G12 and G23 = 1.2G12. It has been proved
in our previous work [14,15] that FG-1 grading pro-
file could significantly improve the mechanical proper-
ties of beams or plates. Hence, we only take FG-1 into
account. For FG-1, the FG-V CNTRC layers are used
above the middle plane, while below the middle plane,
FG-� CNTRC layers are used. It is assumed that the
matrix cracks occur only in CFRC layer. Unless other-
wise statement, the properties of materials constituted
of the hybrid beam and assumptions mentioned above
are used in the following examples.

The impactor is made from steel with the mechan-
ical properties: Ei = 207 GPa, νi = 0.3 and ρi =
7960 kg/m3. The geometry of the impactor is spher-
ical with radius Ri = 1mm. Unless otherwise state-
ment, the initial velocity of the impactor is taken to be
1m/s.
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Fig. 2 Comparisons of impact response for CNTRC beamswith
both ends simply supported: a contact force history and b inden-
tion

5.1 Comparison studies

Before carrying out the parametric studies, we have
to test the effectiveness and accuracy of the present
method. Eq. (42) can be degraded to be used to analyze
the nonlinear free vibration of beam, when gq is taken
to be zero. The comparison of both linear and nonlin-
ear frequencies of the composite laminated beams with
four layups ([0]6, [0/90/90]s, [90/90/0]s and [90]6)
between the results of Gunda et al. [45] and present
results is shown in Table 2. The geometry of the beam
is 0.25m×0.01m×0.001m and the material properties
of a single layer are E1 = 155 GPa, E2 = 12.1 GPa,
ν12 = 0.248, G12 = 4.4 GPa and ρ = 1570 kg/m3.
In Table 2, Gunda et al. [45] employed two meth-
ods, Rayleigh–Ritz (R–R) and finite element method
(FEM), to analyze this vibration problem. It is shown
that the present results have good agreements with the
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Fig. 3 Effects of different materials used in outer layers on low-
velocity impact response of hybrid beams with both ends simply
supported: a contact force history and b deflection of beam

both R–R and FEM results obtained by Gunda et al.
[45].

Another validated example of low-velocity impact
on a CNTRC beam with both ends simply supported is
given. The material for impactor is the same as we used
here, but the radius is 10 mm and the initial velocity
is 3 m/s. The beam has square cross section with b =
h = 10 mm and the ratio of length to thickness is 30.
The volume fraction of CNT is taken to be 0.28 and two
FG distributions of CNTRC, i.e., FG-X and FG-�, are
considered. The curves of contact force and indention
vs. time are calculated and plotted in Fig. 2. It is shown
that the peak contact forces obtained from the present
method are slightly lower than those of Jam and Kiani
[20], and the indentions are also lower than those of Jam
andKiani [20]. The TBT is employed by Jam andKiani
[20], and the difference between the present results and
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Fig. 4 Effects of matrix cracks used in outer layers on low-
velocity impact response of hybrid beams with both ends simply
supported: a contact force history and b deflection of beam

the results of Jam and Kiani may be caused by the
different beam theories.

5.2 Parametric studies

To compare the effect of the material for the outer
layers on low-velocity impact response of the hybrid
beam, two stack sequences [0C/90F/90F/0C ] and
[0F/90C/90C/0F ],where superscriptsCandF, respec-
tively, represent CNTRC and CFRC, are both taken
into account as shown in Fig. 3. It is clearly observed
that the beamwith [0C/90F/90F/0C ], where the FG-1
distribution for CNTs is used, has the largest contact
force but the lowest deflection. This is because FG-
1 CNTRC layer provides the highest contact stiffness
and the higher overall stiffness. When outer layers are
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Fig. 5 Effects of CNT volume fraction on low-velocity impact
response of hybrid beams with both ends simply supported: a
contact force history and b deflection of beam

CFRC, the influence of CNT FG distribution may be
ignored. The beam with [0C/90F/90F/0C ] layup and
FG-1 grading profile layers is only considered in the
following examples, due to its best behavior.

The effect of matrix cracking on contact force and
deflection of the hybrid beam is illustrated in Fig. 4.
Two matrix crack densities (0.2 and 0.5) are chosen,
and the CNT volume fraction is 0.12. It can be found
that the presence of matrix cracks can slightly increase
the deflection but has almost no effect on the contact
force. It is because the transverse matrix cracks only
appear in the interior FRC layers, the contact stiffness
between the impactor and the beam is affected hardly,
but the overall stiffness of the beam is still degraded
slightly.

Figure 5 presents the effect of CNT volume frac-
tion on low-velocity impact response of the hybrid
beam. Obviously, the stiffness of CNTRC layers will
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Fig. 6 Effects of temperature variation on low-velocity impact
response of hybrid beams with both ends simply supported: a
contact force history and b deflection of beam

be increased with higher volume fraction of CNT rein-
forcements. As seen from this figure, the contact force
is increased with improving the CNT volume fraction.
However, under the same condition, the curve of deflec-
tion of the beam declines. Figure 6 shows the effect of
temperature changes on low-velocity impact response
of the hybrid beam. In fact, the increase of temper-
ature will cause the stiffness degradation of both the
matrix and CNT. That means the stiffness of each layer
in the beam is reduced and it can be seen from Fig. 6
that increasing the temperature may reduce both con-
tact force and plate deflection. The effect of various
initial velocities on contact force and deflection of the
hybrid beam is analyzed in Fig. 7. As expected, the
larger velocity may cause the greater contact force and
higher curve of deflection.

Figures 8, 9 demonstrate the effect of foundation
stiffness and damping on low-velocity impact response
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Fig. 7 Effects of initial velocity on low-velocity impact response
of hybrid beamswith both ends simply supported: a contact force
history and b deflection of beam

of the hybrid beam, respectively. In Fig. 8, the foun-
dation stiffness are (k1, k2) = (1000, 100) for the
Pasternak elastic foundation, (k1, k2) = (1000, 0)
for the Winkler elastic foundation and (k1, k2) =
(0, 0) for the beam without an elastic foundation. In
Fig. 9, the dimensionless damping coefficients cw and
cψ defined in Eq. (32) are determined according to
[31] and the relative Rayleigh damping coefficient is
taken to be 0.09 [46]. The damping coefficients are
(cw, cψ) = (0.157, 0) for only considering the effect
of lateral speed, (cw, cψ) = (0.157, 1.57) for consid-
ering both the effect of lateral and rotational speed and
(cw, cψ) = (0, 0) for without considering damping
effect. From Fig. 8a, it can be observed that the peak
value of the contact force is almost invariable, due to
no effect of the foundation on contact stiffness. As seen
from Fig. 8b, the deflection of the beam drops with the
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Fig. 8 Effects of elastic foundation on low-velocity impact
response of hybrid beams with both ends simply supported: a
contact force history and b deflection of beam

increase of elastic foundation. The similar conclusion
can be obtained from Fig. 9b, but the damping effect
is tiny. Moreover, neither damping effect nor elastic
foundation can affect the contact force.

6 Conclusions

The nonlinear low-velocity impact response of damped
and matrix-cracked hybrid beams containing both
CFRC layers and CNTRC layers is investigated in this
paper. The matrix cracking is modeled by a refined
SCM, and amodifiedHertzmodel is utilized to describe
the contact force between the impactor and the beam.
The numerical results show the followingmain conclu-
sions:
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Fig. 9 Damping effects on low-velocity impact response of
hybrid beams with both ends simply supported: a contact force
history and b deflection of beam

1. The results illustrate that the FG-1 distribution of
CNTRC layers for hybrid laminated beams has a
significant influence on the low-velocity impact
response. Obviously, the beam possesses a lower
deflection when the outer layers are CNTRC.

2. The peak value of deflection for the beam is
increased slightly when the matrix cracking is
occurred. However, the presence of matrix cracks
plays little or no role on the contact force.

3. The effect of damping on the low-velocity impact
response of the beam is the same as that of elastic
foundation. The reduction of center deflection due
to elastic foundation is more significant than that
caused by damping.

Based on the above points, it is advised that the sur-
face layers of the hybrid laminated beam applied in
engineering is selected to be CNTRC.
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Appendix

In Eqs. (41) and (42)

g30 = −γ17 + m2 (γ18 + γ19)
γ21m2 − γ23

γ22m2 + γ23

−
(

γ29 + γ28
γ21m2 − γ23

γ22m2 + γ23

)
γ12m4

γ22m2 + γ23
(43)

g31 = m4
[
γ11 − γ12

γ21m2 − γ23

γ22m2 + γ23

]
+ (K1 + K2m

2)

+ 2m2π

[
γ15 − γ14

γ21 − γ23

γ22 + γ23

]
Φ

+ 2πC1

[
γ15 − γ14

γ21m2 − γ23

γ22m2 + γ23

]
Φ (44)

g32 = 2m3π

[
γ15 − γ14

γ21m2 − γ23

γ22m2 + γ23

]

+ 3

4
π2C2γ13Φ (45)

g33 = m4π2

4
γ13 (46)

gc = cw + cψ

m4γ12(γ21m2 − γ23)

(γ22m2 + γ23)2
(47)

gq = 2kcbL5/2

π3D11
sin

m

2
π (48)

gi = −kcρ0L5/2

π2ME0
(49)

In Eqs. (44) and (45),C1 andC2 is dependent on the
value of m. When m = 1, C1 and C2 are both equaled
to be 1. In other case, C1 = C2 = 0.
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