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Abstract The paper reports the simplest 4-D dissipa-
tive autonomous chaotic system with line of equilibria
and many unique properties. The dynamics of the new
system contains a total of eight terms with one nonlin-
ear term. It has one bifurcation parameter. Therefore,
the proposed chaotic system is the simplest compared
with the other similar 4-D systems.The Jacobianmatrix
of the new system has rank less than four. However, the
proposed system exhibits four distinct Lyapunov expo-
nents with (+, 0,−,−) sign for some values of param-
eter and thus confirms the presence of chaos. Further,
the system shows chaotic 2-torus (+, 0, 0,−), quasi-
periodic [(0, 0,−,−), (0, 0, 0,−)] and multistability
behaviour. Bifurcation diagram, Lyapunov spectrum,
phase portrait, instantaneous phase plot, Poincaré map,
frequency spectrum, recurrence analysis, 0–1 test, sen-
sitivity to initial conditions and circuit simulation are
used to analyse and describe the complex and rich
dynamic behaviour of the proposed system. The hard-
ware circuit realisation of the new system validates the
MATLAB simulation results. The new system is devel-
oped from thewell-knownRossler type-IV 3-D chaotic
system.
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1 Introduction

A recent trend of chaos theory is devoted to the devel-
opment of new chaotic systems which have unique
features and unusual behaviours. The behaviours of
a dynamical (chaotic/hyperchaotic) system are char-
acterised by its equilibrium points [1]. Many recent
papers are reported based on the properties of equi-
librium points [1–7]. Hence, developing a new chaotic
system which has unique features and unusual
behaviours is the motivation of this paper.

The available chaotic or hyperchaotic systems are
mainly categorised into two parts. These are self-
excited attractors and hidden attractors [8]. The widely
known chaotic systems like Lorenz [9], Lu [10], Chen
[11] systems and system in [12,13], etc. belong to self-
excited attractors. These attractors have basin of attrac-
tions associated with the unstable equilibrium points.
However, in case of hidden attractors, basin of attrac-
tion does not intersect with any small neighbourhood
of any equilibrium points [14]. The analytical investi-
gation, numerical localisation and computation of the
hidden chaotic attractors are more difficult compared
with the self-excited attractors [15–17]. The localisa-
tions of the hidden chaotic Chua attractors are dis-
cussed in [16,17]. The control of multistability in the

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11071-017-3556-4&domain=pdf


1846 J. P. Singh, B. K. Roy

Table 1 Categorisation of the 4-D hyperchaotic/chaotic systems with many number of equilibria

Sl. no. Chaotic/hyperchaotic Nature of system References No. of terms

1. 4-D Chaotic system Plane of equilibria [5] Seven terms with five nonlinear terms

2. 4-D Chaotic system Line of equilibria This work Eight terms with one nonlinear term

3. 4-D Hyperchaotic system Line of equilibria [30,31] Nine terms with five nonlinear terms [31]

Eight terms with five nonlinear terms [30]

4. 4-D Hyperchaotic system Curve of equilibria [32] Eleven terms with three nonlinear terms

5. 4-D Memristive hyperchaotic Line of equilibria [35,36] Ten terms with five nonlinear terms [35]

system Nine terms with two nonlinear terms [36]

hidden chaotic attractors is reported in [18]. Hidden
chaotic attractors are appeared in many applications
like in induction motor with bound rotor [19], in con-
vective fluid motion in rotating cavity [20]. The system
which has no equilibrium point or only stable equilib-
rium points or a line of equilibria attractors is the type
of hidden attractor [5,8,21–25]. Some recent category
of hidden attractor is reported with only unstable node
equilibrium point in a chaotic system [24].

Usually chaotic or hyperchaotic system has count-
able number of equilibria; one equilibrium point [26],
two equilibrium points [27], three equilibrium points
[9] or four equilibrium points [28]. Recently some
chaotic or hyperchaotic systems are reportedwithmany
equilibrium points like [29,30]. Some papers are avail-
able on these types of systems. Few papers are avail-
able on system which has line of equilibria [2,31,32].
A 3-D system with curve of equilibria is reported in
[33]; a 3-D systemwith surface of equilibria is reported
in [7]; [3,34] reported a 3-D system with circle of
equilibria. Very recently, a 4-D chaotic system with
plane of equilibria is reported in [5]. However, most
of the reported systems with many number of equi-
libria are derived from a general algebraic expres-
sion [2,3,5,8,25,29,33,34] using extensive numerical
search. The reported 4-D systems with many number
of equilibria are summarised in Table 1. Thus, devel-
oping the simplest new 4-D chaotic system from a con-
ventional chaotic system which has many number of
equilibria (line of equilibria) with unique properties is
still a challenging task.

In this paper, the simplest 4-D chaotic system with
line of equilibria is reported. The system is different
from the category of the rare attractor, or new category
of rare attractor [5,37,38]. In the proposed system, the
basin of attraction of the chaotic attractor intersect the

line of equilibria, but some point of basin of attrac-
tion may not intersect the line of equilibria. Here, the
attractors are generated by choosing arbitrary initial
conditions. The proposed systemmay consider as a new
category of hidden attractor. The new system is derived
fromRossler type-IV 3-D chaotic system [39]. Follow-
ing points explain the interesting and unique properties
of the proposed 4-D chaotic system:

1. The system has a line of equilibria and is derived
from type-IV Rossler 3-D chaotic system [39].

2. The system has only one nonlinear term and a total
of eight terms.Thus, the system is the simplest com-
pared with similar available 4-D chaotic or hyper-
chaotic systems which have many equilibria. This
claim is validated from Table 1. Although the sys-
tem in [5] has seven terms, it consists of five non-
linear terms.

3. The rank of the Jacobian matrix is less than four.
However, the system has four distinct Lyapunov
exponents for some values of the parameters. Thus,
the system behaves as a 4-D system with those val-
ues of parameters.

4. The system has chaotic 2-torus nature of Lyapunov
exponents. Such nature of a dissipative chaotic sys-
tem is rare in the literature.

5. The system shows 3-torus and 2-torus (quasi-
periodic) and periodic responses other than the
chaotic behaviour. The system also exhibits mul-
tistability (i.e., coexistence of attractors).

6. The system has asymmetry to its coordinates,
planes and spaces. It has only one bifurcation
parameter.Asymmetry indicatesmore disorderness
and randomness of the system than to symme-
try [40].

The above points also reflect the novelty and con-
tributions of the proposed chaotic system. In 2011
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[41] proposed three standard criteria for publication
of a new system. These three criteria are as follows
[5,41]:

1. The system should report an important unsolved
problem in the literature.

2. The system should exhibit novel behaviour which
is not available in the literature.

3. The system should be simple than the similar types
of available system.

It is to be noted that a new system should satisfy at least
one of the above criteria. Here, the proposed system
in this paper satisfies both the second and third con-
ditions. Many tools are used for analysis of a chaotic
system. The following tools are used to analyse the pro-
posed chaotic system: bifurcation diagram, Lyapunov
spectrum, phase portrait, instantaneous phase plot, Poi-
ncaré map, frequency spectrum, recurrence analysis,
0–1 test, sensitivity to initial conditions and hardware
circuit realisation.

The rest part of the paper is organised as follows.
Section 2 describes the dynamics of the proposed sys-
tem. The theoretical analyses of the system are pre-
sented in Sect. 3. Section 4 describes the numerical
findings of the system. The sensitivity to initial con-
ditions of the proposed system is discussed in Sect. 5.
Section 6 describes the experimental circuit design and
hardware circuit realisation of the proposed system.
Finally, conclusions are presented in Sect. 7.

2 Dynamics of the new 4-D chaotic system

In 1979, Rossler proposed some sets (proto types) of
chaotic systems [39]. Thedynamics of theRossler type-
IV chaotic system is described as:

⎧
⎪⎨

⎪⎩

ẋ1 = −x2 − x3
ẋ2 = x1
ẋ3 = a

(
x2 − x22

) − bx3

(1)

where x1, x2, x3 are the state variables. The system
exhibits chaotic behaviour with a = 0.386, b = 0.2.
System (1) produces attractors for the initial conditions
x(0) = (0.7,−0.6,−0.7)T and has two equilibrium
points E1(0, 0, 0) and E2(0, 1.518,−1.581). The vari-
able x(0) is the vector of the initial condition of states
of system (1) used for numerical simulation.A new4-D

chaotic system is developed by introducing a state feed-
back control to the second state equation. The dynamics
of the new chaotic system is described as:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ1 = −x2 − x3
ẋ2 = x1 − x4
ẋ3 = a

(
x2 − x22

) − bx3
ẋ4 = cx2

(2)

where a, b, c are the parameters and x1, x2, x3, x4 are
the state variables. Here in system (2), the parame-
ters a = b = 0.5 are kept fixed. But c is consid-
ered as the bifurcation parameter. This is because of
the fact that the parameters a and b are the parameters
of the original system and parameter c is the param-
eter of the new system. Hence, to see the effect of
the new parameters on the new system, it is consid-
ered as the bifurcation parameter. However, the param-
eters a and b are also varied to see their effect, i.e.,
different dynamical responses of the new system. The
results of variation of parameters a, b and c in bifur-
cation diagram and Lyapunov spectrum are discussed
in the numerical finding section. In this paper, all the
simulations are carried out using ode − 45 solver in
MATLAB simulation environment with initial condi-
tions x (0) = (0.01, 0.001, 0.001, 0.1)T. Detailed the-
oretical and numerical analyses of system (2) are pre-
sented in subsequent sections.

3 Theoretical findings

In this section, some theoretical analyses of the pro-
posed systemare presentedusingdissipativity property,
symmetrical property and equilibrium points analyses.

3.1 Dissipative and symmetrical property

The divergence of system (2) is described as

∇V = ∂ ẋ1
x1

+ ∂ ẋ2
x2

+ ∂ ẋ3
x3

+ ∂ ẋ4
x4

= −b (3)

Thus, system (2) is dissipative for b > 0. The pro-
posed system has rate of state space contraction equal
to −1/2 for b = 0.5. The system has no trajectories
going to infinity as t → ∞. The dissipativity property
of a system gives existence of bounded global attractor
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and analytical localisation of the global attractor in the
phase space [42].

The boundedness of the chaotic trajectories of
system (2) is proved using the following theorem.
The boundness of a chaotic system using the similar
approach can be seen in [6,43].

Theorem 1 Suppose that parameters a, b and c of sys-
tem (2) are positive. Then, the orbits of system (2)
including chaotic orbits are confined in a bounded
region.

Proof Consider a Lyapunov function candidate as in
(4)

v (x1, x2, x3, x4) = 1

2

[
cx21 + cx22 + x23 + x24

]
(4)

The time derivative of (4) is given as

v̇ (x1, x2, x3, x4) = cx1 ẋ1 + cx2 ẋ2 + x3 ẋ3 + x4 ẋ4 (5)

Using system dynamics (2), (5) can be written as

v̇(x1, x2, x3, x4) = −cx1x3 + ax2x3 − ax22 x3 − bx23

= −
(

c

2
√
b
x1 + √

bx3

)2

+ c2

4b
x21 −

(√
ax3x2 −

√
ax3
2

)2

+ a

4
x23

Let R0 be the sufficiently large region so that for all
trajectories (x1, x2, x3, x4) satisfy

v(x1, x2, x3, x4) = R for R > R0

with the following condition
[(

c

2
√
b
x1 + √

bx3

)2

+
(√

ax3x2 −
√
ax3
2

)2

>
c2

4b
x21 + a

4
x23

]

Consequently on the surface

{(x1, x2, x3, x4)|V (x1, x2, x3, x4)} = R.

Since, R > R0 we can write,

v(x1, x2, x3, x4) < 0,

or we can say that, the set

{(x1, x2, x3, x4)|v(x1, x2, x3, x4)} ≤ R

is a confined region for all the trajectories of system
(2). ��

The system is not invariant under any coordinate, plane
and space transformation. Thus, the system is asym-
metrical to its coordinates, planes and spaces.

3.2 Equilibria and eigenvalues

The equilibria of system (2) can be found by equating
each state equation to zero. The equilibria of system (2)
are E = (x∗

1 , 0, 0, x
∗
1 ). Thus, it is clear that system (2)

has a line of equilibria. The eigenvalues and stability
corresponding to the equilibria E can be found by using
the Jacobian matrix. The Jacobian matrix of proposed
system (2) at equilibria E is given in (6).

J =

⎡

⎢
⎢
⎣

0 −1 −1 0
1 0 0 −1
0
0

a
c

−b
0

0
0

⎤

⎥
⎥
⎦ (6)

The characteristic equation of (6) is

λ
(
λ3 + k1λ

2 + k2λ + k3
)

= 0 (7)

where k1 = b, k2 = c, k3 = bc. It is clear that there is a
zero eigenvalue for all equilibriumpoints of system (2).
The eigenvalues and their corresponding eigenvectors
of the system for a = b = 0.5, c = 0.014 are given in
Table 2. A comparison between the proposed system
and the Rossler type-IV chaotic systems is given in
Table 3. The proposed system belongs to the category
of the hidden attractors since it has line of equilibria
[44,45].

4 Numerical findings

The dynamic behaviours of a self-excited chaotic or
hyperchaotic system (having countable equilibrium
points) can be obtained with the knowledge of loca-
tion of equilibria or by considering initial conditions
near a equilibrium point. However, for a system with
a line of equilibria, it is difficult to obtain the dynamic
behaviours with the knowledge of the location of equi-
libria. The dynamic behaviours of the proposed system
are analysed using numerical findings. In this section,
different numerical tools are used to analyse the com-
plex dynamic behaviours of the proposed system.
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Table 2 The eigenvalues and their corresponding eigenvectors of the new system with c = 0.014 at equilibria E

Sl. no. Eigenvalues Eigenvectors

1 λ1 = 0.1509 + 1.1105i (0.7186, 0.0892 − 0.6420i,−0.1976 − 0.1560i,−0.0078 − 0.0022i)

2 λ2 = 0.1509 − 1.1105i (0.7186, 0.0892 + 0.6420i,−0.1976 + 0.1560i,−0.0078 + 0.0022i)

3 λ3 = −0.8018 (−0.3898,−0.4758, 0.7884, 0.0083)

4 λ4 = 0 (0.7071, 0, 0, 0.7071)

Table 3 Comparison between Rossler type-IV and the new system

Sl. no. Property System (1) System (2)

1 Divergence ∇v < 0 ∇v < 0

2 Symmetrical Asymmetry Asymmetry

3 Equilibrium point Two Infinite number (line of equilibria)

4 Dynamical behaviour Chaotic, periodic, quasi-periodic Chaotic, chaotic 2- torus, periodic, quasi-periodic

5 Types of attractors Self-excited attractors Hidden attractors

6 Lyapunov dimension (DKY) 2 < DKY < 2.1 3 < DKY < 3.2

Fig. 1 Bifurcation diagram
of system (2) with
c ∈ [0.0, 0.0629] and
a = b = 0.5

0 0.01 0.02 0.03 0.04 0.05 0.06
0

0.5

1

1.5

2

2.5

parameter   c

x 2

4.1 Bifurcation and Lyapunov spectrum analyses

The dynamic behaviour of the proposed system for
other values of the bifurcation parameter is analysed
using bifurcation diagram and Lyapunov spectrum.
Both the plots are obtained by variation of one param-
eter while keeping other fixed. Lyapunov spectrum is
obtained using Lyapunov exponents for different val-
ues of parameter. Lyapunov exponents are obtained
by using Wolf algorithm [46] with observation time
T = 10,000 and sampling size �t = 0.002.

The bifurcation diagram of the proposed system
with a variation of parameter c ∈ [0.0, 0.0629] and
c ∈ [0.063, 0.26] keeping other parameters fixed
are shown in Figs. 1 and 2, respectively. Lyapunov
spectrum of the proposed system with the variation of
parameter c ∈ [0.0, 0.0629] and c ∈ [0.063, 0.26]
and keeping other parameters fixed are shown in Figs. 3
and4, respectively.Both the bifurcation diagramsof the
system are generated with 10,000 observation time but
discarding initial T = 9600 transient time signal, step
size �t = 0.01 and fixed initial conditions x (0) =
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Fig. 2 Bifurcation diagram
of system (2) with
c ∈ [0.063, 0.25] and
a = b = 0.5

Fig. 3 Lyapunov spectrum
of system (2) with
c ∈ [0.0, 0.0629] and
x (0) = (0.01, 0.001,
0.001, 0.1)T
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Fig. 4 Lyapunov spectrum
of system (2) with
c ∈ [0.063, 0.25] and
x (0) = (0.01, 0.001,
0.001, 0.1)T
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Fig. 5 Lyapunov spectrum
of system (2) with
a ∈ [0.4, 0.5273] ,
b = 0.5, c = 0.014 and
x (0) = (0.01, 0.001,
0.001, 0.1)T
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Fig. 6 Lyapunov spectrum
of system (2) with
b ∈ [0.44, 0.75] ,
a = 0.5, c = 0.014 and
x (0) = (0.01, 0.001,
0.001, 0.1)T
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(0.01, 0.001, 0.001, 0.1)T. It is noted from these fig-
ures that the system produces chaotic, chaotic 2-torus
and quasi-periodic behaviours (including 2-torus and
3-torus). The 2-torus quasi-periodic behaviour is con-
sidered when the nature of the Lyapunov exponents
is (0, 0, −, −) and 3-torus is considered when the
nature of Lyapunov exponents is (0, 0, 0, −). The
chaotic 2-torus is named when Lyapunov exponents
are (+, 0, 0,−) as given in [47].

Lyapunov spectrum of system (2) with variation of
parameters a and b but keeping b = 0.5, c = 0.014 and
a = 0.5, c = 0.014 fixed are shown in Figs. 5 and 6,
respectively. It is seen from Lyapunov spectrum plots
that with the variation of parameters a and b, the new
systemhas different dynamical behaviours like chaotic,
chaotic 2-torus, quasi-periodic. It is also observed from

the Figs. 3, 4, 5 and 6 that the system has almost
same ranges of parameters for chaotic behaviour. Lya-
punov spectrum for variation of parameter c is shown
up to a = 0.5237 (Fig. 5). This is because the system
response is unbounded after a > 0.5237. The same
phenomenon is observed in case of the parameter b
(Fig. 6) for b < 0.44.

The nature of Lyapunov exponents for chaotic and
chaotic 2-torus behaviour of system (2) for some values
of parameter c are given in Tables 4 and 5, respectively.
It is seen from Table 4 that the system has four dis-
tinct Lyapunov exponents. This clearly establish that
although the Jacobian matrix of the system has rank
less than four, but the system behaves as four dimen-
sional for some selected values of parameters. This fact
is validated from reference [48].
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Table 4 Four distinct
nature of Lyapunov
exponents (+, 0,−,−)

(chaotic) for some values of
parameter c of system (2)

Sl. no. Parameter c LE1 LE2 LE3 LE4 Summation
of LEs

1. c = 0.014 0.0191 0 −0.0050 −0.5141 −0.5

2. c = 0.0139 0.0322 0 −0.0284 −.05038 −0.5

3. c = 0.0172 0.0873 0 −0.0004 −0.5869 −0.5

4. c = 0.0235 0.0775 0 −0.0004 −0.5771 −0.5

5. c = 0.0242 0.0808 0 −0.0004 −0.5804 −0.5

6. c = 0.0306 0.0837 0 −0.0003 −0.5834 −0.5

7. c = 0.037 0.0290 0 −0.0007 −0.5283 −0.5

Table 5 Three distinct
nature of Lyapunov
exponents (+, 0, 0,−)

(chaotic 2-torus) for some
values of parameter c of
system (2)

Sl. no. Parameter c LE1 LE2 LE3 LE4 Summation
of LEs

1. c = 0.0017 0.0955 0 0 −0.5955 −0.5

2. c = 0.0052 0.0956 0 0 −0.5956 −0.5

3. c = 0.0547 0.0856 0 0 −0.5856 −0.5

4. c = 0.0499 0.0838 0 0 −0.5838 −0.5

Fig. 7 Chaotic attractors
of system (2) with
c = 0.014 and x (0) =
(0.01, 0.001, 0.001, 0.1)T
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The chaotic attractors of system (2) are shown in
Fig. 7. The attractors of the system are shown consid-
ering signal from for 9500 to 10,000 observation time.
Thus, the attractors are bounded. The local Lyapunov

dimensions (LDs) of the points on the grid of the third
attractor (Fig. 7c) of system (2) are shown in Fig. 8.
The LDs are shown here only for the grid points where
the system has chaotic behaviour. The system has max-
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Fig. 8 Local Lyapunov
dimensions for chaotic
behaviour on the grid points
of the third attractor of
system (2) with c = 0.014
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Fig. 9 Quasi-periodic (3-torus) behaviour of system (2) with
c = 0.0094 and x (0) = (0.01, 0.001, 0.001, 0.1)T where LEs
are Li = (0, 0, 0,−0.50)

imum KDY dimension equal to 3.1271 among the grid
points of the third attractor of the system. The other
behaviours of system (2) like 3-torus and 2-torus are
shown in Figs. 9 and 10, respectively.

4.2 Instantaneous phase and Poincaré map

To validate the chaotic dynamics of system (2), the
instantaneous phase (∅) and Poincaré maps are plotted.
The instantaneous phase (∅) is plotted using Hilbert
transformation. Suppose, a chaotic signal x(t) is given

−1 −0.5 0 0.5 1 1.5 2
−1.8

−1.6
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−0.6

−0.4
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x
2

x 3

Fig. 10 Quasi-periodic (2-torus) behaviour of system (2) with
c = 0.0384 and x (0) = (0.01, 0.001, 0.001, 0.1)T where LEs
are Li = (0, 0,−0.0060,−0.4950)

in the form of a complex signal s(t), its amplitude (A)
and phase (∅) can be written as

s (t) = x (t) + i x̃ (t) = A(t)e j∅(t) (8)

where

x̃ (t) = 1

π
P · V

(∫ ∞

−∞
x(τ )

t − τ
dτ

)

(9)

where P ·V is the Cauchy principle value in the Hilbert
transform (HT). Here, HT is calculated in MATLAB
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Fig. 11 The instantaneous phase (∅) of the x2 and x3
signals of system (2) with c = 0.014 and x (0) =
(0.01, 0.001, 0.001, 0.1)T and �t = 0.001 using HT

using the technique given in [49]. The instantaneous
phase of x2(t) and x3(t) signals after truncating initial
transient part are shown in Fig. 11. The instantaneous
phase (∅) of a chaotic signal increases monotonically
(inset) as the time increases [49,50]. It is seen that the
instantaneous phase (∅) of the system increases mono-
tonically with time. The monotonous increase in the
phase indicates the chaotic behaviour of the system.

The Poincaré maps on the different sections of the
plane of system (2) are shown in Figs. 12 and 13. The
maps in Figs. 12 and 13 are drawn for x2 = 0 and x3 =
0, respectively. Different random dots in the Poincaré
maps indicate the chaotic behaviour of the system [48].
Poincaré maps in Figs. 12 and 13 are generated for
observation time in the ranges 9500 < t < 10,000.

4.3 Frequency spectrum

The frequency spectra of system (2) are plotted to know
the complex dynamic behaviour. The single sided fre-
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x 4

Fig. 12 Poincaré maps on the plane of the system for x2 = 0
with c = 0.014, x (0) = (0.01, 0.001, 0.001, 0.1)T and �t =
0.001: a on x1 − x3 plane, b on x3 − x4 plane
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Fig. 13 Poincaré maps on the plane of the system for x3 = 0
with c = 0.014, x (0) = (0.01, 0.001, 0.001, 0.1)T and �t =
0.001: a on x1 − x2 plane, b on x2 − x4 plane

quency spectra of x2(t) and x3(t) signals of system
(2) are shown in Fig. 14. Random peaks in the spec-
trum indicate the chaotic behaviour of the proposed
system [48].

4.4 Recurrence analysis

A recurrence plot (RP) is a graphical visualisation of
the repetitions or recurrences of a particular state of a
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Fig. 14 The frequency spectrum of system (2) with c = 0.014
and x (0) = (0.01, 0.001, 0.001, 0.1)T and �t = 0.001 : a
spectrum of x2(t) and b spectrum of x3(t)

system as its dynamics evolve [49]. It is used to study
the reduced phase space plot of a higher dimensional
system. In this the recurrence of a state at time i at a
different time j is marked within a 2-D square matrix
whose column and row correspond to a pair of time
scales. The matrix is marked with the black and white
dots (usually a black dots for recurrence).A signal x1(t)
is used from the multi-variable x (t) = [x1(t), x2(t)
,..., xm(t)] to construct a lower n-D phase space using
a time delay (τ ). The reconstructed trajectory in n-D
phase space can be written as [49].

w = [y1, y2, y3, y4]T (10)

where yi = [xi , xi+τ , . . . , xi+(DE−1)τ ] and m =
n − (DE − 1)τ and DE is the embedding dimension.
Any recurrence of state i with state j can be expressed
as [49];

Rε
i, j = Θ(ε − ∥

∥yi − y j
∥
∥) (11)

t

t

9000 9100 9200
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9100
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9200

9250

Fig. 15 The recurrence plot of x2(t) of system (2) with
c = 0.014 and x (0) = (0.01, 0.001, 0.001, 0.1)T, �t =
0.001, DE = 6, τ = 75.

where Θ is the Heaviside function and ε is an arbi-
trary threshold. Here, x2(t) signal of system (2) is used
for the recurrence plot. A total of 10,000 data points
are used. The recurrence plot is obtained by assuming
ε = 2, DE = 7 and the time delay τ = 75. The recur-
rence plot is shown in Fig. 15. The random distribution
of the black dots indicates the chaotic behaviour [49].
The label of x and y in Fig. 15 is considered based on
the theory given in [51,52].

4.5 0–1 test analysis

It is a binary test used to classify the chaotic or peri-
odic behaviour of a system [53]. Here, the dynamics of
the system is plotted in a space of translation variable
and asymptotic growth rate (kc) of themean square dis-
placement of the trajectories. The chaotic and periodic
behaviours are defined based on the values of kc. The
translation variables are defined as [49,53,54]:

{
pc (n) = ∑n

j=1 x( j)cos( jc)

qc (n) = ∑n
j=1 x( j)sin( jc)

(12)

where c is a randomly chosen variable constant in the
range of (0 − 2π) and x( j) is the time series of any
state variable of a dynamical system. If the dynamics is
chaotic, then the space of translation variables is a ran-
dom Brownian-like motion, whereas if the dynamics is
regular then the space of the translation variables is a
boundedmotion. Themean square displacementMc(n)
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Fig. 16 The 0–1 test of
x2(t) of system (2) with
c = 0.014 and x (0) =
(0.01, 0.001, 0.001, 0.1)T

and �t = 1: a dynamics of
the translation components
(pc(n), qc(n)), b
asymptotic growth rate (kc)
and c mean square
displacement Mc (n)
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Fig. 17 Bifurcation
diagram of system (2) with
a = b = 0.5

obtained using translation variables (pc(n), qc(n)) is
defined as [49,53,54].

Mc (n) = lim
n→∞

1

n

n∑

j=1

{
[pc ( j + n) − pc( j)]

2

+ [qc ( j + n) − qc( j)]
2
}

(13)

Mc(n) grows exponentially for chaotic behaviour
whereas it varies periodically for regular/periodic
behaviour. The asymptotic growth rate (kc) is defined
as [49,53,54]

kc = lim
n→∞

logMc(n)

log n
(14)
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Fig. 18 a Coexistences of
2-torus with chaotic
attractor and b coexistences
of 2-torus with 2-torus
of system (2) with
a = b = 0.5, c = 0.12
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Fig. 19 a Coexistence of
2-torus with chaotic
attractor for c = 0.123 and
b coexistence of 2-torus
with 3-torus with c = 0.119
of system (2) with
a = b = 0.5
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The value of kc ≈ 1 determines the chaotic behaviour,
and kc ≈ 0 indicates the periodic/regular behaviour.
Here, x2(t) signal of system (2) is used for 0–1 test.
The translation variables, asymptotic growth rate and
mean square displacement are shown in Fig. 16. We
got kc = 0.99691 ≈ 1 for a = b = 0.5, c =
0.014 which confirms the chaotic nature of the new
system.

4.6 Multistability (coexistence of attractors)

Multistability can be determined by observing changes
in the responses of bifurcation diagram of the system
[55,56]. The bifurcation diagram of system (2) with
variation of the parameter c is replotted to observe the
phenomenon ofmultistability. The bifurcation diagram
is plotted considering the final state for each value of
c as the initial states for the next value of the bifurca-
tion parameter. The results are shown in Fig. 17. It is
observed by comparing Figs. 2 and 17 that the system
has changed in behaviour for the bifurcation parame-
ter range c ∈ [0.12, 0.14] . In Fig. 17, for c = 0.12,
it appears that the system has chaotic behaviour, but
in Fig. 2 it has periodic behaviour. It is also observed
from Fig. 2 that for c ∈ [0.11, 0.125] the system has

Fig. 20 Sensitivity to initial conditions of system (2) with
x3 = 0.001, x4 = 0.1 and x1 ∈ [−2, 3] , x2 ∈ [−2, 5]
where red colour represents the chaotic nature and blue colour
represents the unbounded nature of the proposed system. (Color
figure online)
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Fig. 21 Sensitivity to initial conditions of system (2) with
x1 = 0.01, x2 = 0.001 and x3 ∈ [−3, 2] , x4 ∈ [−3, 3]
where red colour represents the chaotic nature and blue colour
represents the unbounded nature of the proposed system. (Color
figure online)

cascaded reverse period-doubling route to chaos along
with one reverse period-doubling route to chaos, but in
Fig. 17, there is no cascaded reverse periodic period-
doubling route to chaos. Further in Fig. 17, there are
four more jump routes to chaos. Thus, it seems that
the system has coexistence of different attractors due
to changes in initial conditions. The coexistences of (i)
quasi-periodic (2-torus) with chaotic attractor and (ii)
2-torus with 2-torus of system (2) are shown in Fig. 18.
The coexistences of (i) quasi-periodic (2-torus) with
chaotic attractor and (ii) 2-torus with 3-torus of system
(2) with c = 0.123 and c = 0.119, respectively, are
shown in Fig. 19.

Fig. 22 Circuit design of
chaotic system (2)
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Fig. 23 Chaotic attractors of system (2) using NI Multisim cir-
cuit simulation: a in y1 − y3 plane with scale position 500,
500 mv/div and b in y2 − y3 plane with scale position 1 V/div,
500 mv/div

5 Sensitivity to initial conditions

This section describes the effect of initial conditions on
system (2).

System (2) is simulated with different initial con-
ditions in the considered regions of four state vari-
ables. The results of two different cases are shown. In
the first case, the initial conditions for state variables
x3(0) = 0.001 and x4(0) = 0.1 are kept fixed and x1(0)
and x2(0) are varied. In the second case, the state vari-
ables x1(0) = 0.01 and x2(0) = 0.001 are kept fixed,
and x3(0) and x4(0) are varied. The simulated results
for the first and second cases are shown in Figs. 20 and
21, respectively. It is seen from both the figures that
system (2) is very sensitive to initial conditions.

6 Circuit validation

The circuit designed for the implementation of sys-
tem (2) is shown in Fig. 22. The circuit validation of

Fig. 24 Hardware circuit design of system (2) on breadboard
along with oscilloscope output

the new system is achieved using NI Multisim 12 soft-
ware. Many chaotic circuits are simulated and veri-
fied using NI Multisim [57–61] and PSpice [62–65].
NI Multisim software is based on actual circuit com-
ponents. Its simulation results are basically consistent
with those of actual circuit results [58]. Here in cir-
cuit (Fig. 22), four integration lines are considered cor-
respond to four states of the new system. The sup-
ply voltages are considered as ±15 Vdc. The circuit
is designed using four capacitors (C1,C2,C3,C4),
eleven resistances (R1, . . . , R12), six op-amp (741)
and onemultiplier (AD633JN). Here, multiplier is used
for the nonlinear term x2. It is seem from the chaotic
attractors plot (Fig. 7) of the new system that states
x1 and x4 are in the range of 50 and 60. Thus, the
states are scaled with y1 = x1/40, y2 = x2/10, y3 =
x3/10, y4 = x4/10 to make compatible for the cir-
cuit simulation and implementable in the hardware cir-
cuit. The circuit equation corresponding to each state
of scaled system (2) using Kirchhoff’s laws can be
obtained as:
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Fig. 25 Chaotic attractors using hardware circuit realisation of
system (2) in oscilloscope for: a x2 − x3 plane and b x1 − x3
plane

⎧
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[− R
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]
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Rc2

[ R
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R6 y4
]

ẏ3 = 1
Rc3

[ R
R11 y2 − 0.1R

R10 y2y2 − R
R9 y3

]

ẏ4 = 1
Rc4

[ R
R12 y2

]

(15)

where the variables y1, y2, y3, y4 are the outcomes of
the integrators U1A, U3A, U5A, U6A. System (2)
is equivalent to (15) with τ = t/RC , R3 = R = R4 =
R7 = R8 = 100 k�, R11 = R

a = 200 k�, R10 =
R
a = 20 k�, R1 = R2 = 400 k�, R5 = 25 k�,
R9 = R

b = 200 k�, R12 = R
c = 7142.85 k�, c1 =

c2 = c3 = c4 = 1nF and a = b = 0.5, c = 0.014.
Hardware circuit design alongwith oscilloscope output
results of system (2) is shown in Fig. 24. The chaotic
attractors of system (2) with c = 0.014 obtained using
NI Multisim circuit simulation and hardware circuit
realisation oscilloscope results are shown in Figs. 23

and 25, respectively. Agilent 1024A 200 MHz digi-
tal oscilloscope is used for capturing the experimental
results. It is seen fromFigs. 23 and 25 that the attractors
plot using circuit simulation and hardware circuit real-
isation validate with the MATLAB simulation results.

7 Conclusions

In this paper, the simplest new 4-D chaotic systemwith
the line of equilibria is reported. The system has only
two types of behaviour. These are chaotic (chaotic,
chaotic 2-torus) and quasi-periodic (2-torus, 3-torus).
The system is unusual with many unique properties.
The system exhibits multistability. The system has a
total of eight terms including only one nonlinear term
and one bifurcation parameter. Hence, the system is
the simplest compared with similar 4-D systems (sys-
tems with many number of equilibria). The system has
chaotic 2-torus with (+, ≈0, ≈0, −) nature of Lya-
punov exponents for chaotic behaviour which is rare
in the literature. The rank of the Jacobian matrix of
the proposed system is three which is less than the
dimension of the system. However, the system exhibits
four distinct Lyapunov exponents and thereby behav-
ing as a 4-D system for some values of parameter.
The system has asymmetry to its coordinates, plane
and space. Bifurcation diagram, Lyapunov spectrum,
phase portrait, instantaneous phase plot, Poincaré map,
frequency spectrum, recurrence analysis, 0–1 test and
theoretical analyses are used to analyse the complex
dynamic behaviours of the proposed system. The sim-
ulation results using MATLAB are validated by using
hardware circuit design and realisation. The design
and analyses presented in this paper can be further
extended by developing some new simplest 4-D/5-D
hyperchaotic systems with new complex dynamical
behaviours along with their applications.

Acknowledgements Author thanks editor and anonymous
reviewers for their valuable suggestions that helped to improve
the standard of the paper.
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