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Abstract From the governing equation −(3 + 1)-
dimensional nonlinear Schrödinger equation with
cubic-quintic-septimal nonlinearities, different diffrac-
tions and PT -symmetric potentials, we obtain two
kinds of analytical Gaussian-type light bullet solutions.
The septimal nonlinear term has a strong impact on
the formation of light bullets. The eigenvalue method
and direct numerical simulation to analytical solutions
imply that stable and unstable evolution of light bul-
lets against white noise attributes to the coaction of
cubic-quintic-septimal nonlinearities, dispersion, dif-
ferent diffractions and PT -symmetric potential.

Keywords Cubic-quintic-septimal nonlinearity ·
Different diffractions · PT -symmetric potential ·
Light bullet · Stability
1 Introduction

As one of dispersive nonlinear evolutional equa-
tions [1–3], the nonlinearSchrödinger equation (NLSE)
stands out as a prototypical and essential model to
describe features of numerous fields in mathematical
physics [4–7]. Based on NLSE, spatiotemporal opti-
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cal similaritons in dual-core waveguide with an exter-
nal source were studied [8]. In optics, high power of
incident light makes the medium exhibit complicated
nonlinearities. It is most common that Kerr nonlinear-
ity compensates dispersion/diffraction to induce self-
trapped soliton [9,10]. The competition between focus-
ing cubic and defocusing quintic nonlinearities sup-
ports stable soliton solution [11]. Higher-order nonlin-
earities lead to unstable soliton propagation in (1+ 1)-
dimension [12]. In previous literatures [13,14], higher-
order dissipative terms are introduced to suppress the
collapse.

When higher-order nonlinearity is considered, spa-
tial solitons can also propagate stably. Recently, dissi-
pative term is considered to induce (2+1)-dimensional
bright spatial solitons in metal colloids with focus-
ing quintic and defocusing septimal nonlinearities [15].
More recently, parity-time (PT ) symmetric potentials,
which are introduced from quantum mechanics [16],
are used to produce stable localized spatial solitons
to interplay with power-law nonlinearity [17]. Light
bullet in PT -potentials has also been discussed [18].
Light bullet in the media with same diffraction and
PT -potentials have also been studied [19]. Sech-type
and Gaussian-type light bullet solutions to the general-
ized (3 + 1)-dimensional cubic-quintic NLSE in PT -
symmetric potentials were reported [20]. Therefore,
PT -symmetric potentials become a good tool to stabi-
lize spatial and spatiotemporal solitons [17–20]. More-
over, controllable behaviors of rogue waves in PT -
potentials have also extensively discussed [21–23].
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More recently, the stability of (1 + 1)-dimensional
sech-type solitons is studied with the consequence
of cubic-quintic-septimal nonlinearities and diffraction
[24]. However, in this work [24], the PT -symmetric
potentials have not been studied. Considering that
Gaussian shape is very fundamental shape of pulse
in the optical experiment, in this paper, we study the
stability of Gaussian-type light bullets (spatiotempo-
ral solitons) under the interplay among cubic-quintic-
septimal nonlinearity, dispersion, different diffractions
and PT -symmetric potentials based on the following
NLSE

iuz + β1uxx + β2uyy + β3utt + γ3|u|2u
+ γ5|u|4u + γ7|u|6u + [v(x, y, t)

+ iw(x, y, t)]u = 0, (1)

which describes the propagation of an optical pulse in
a nonlinear medium of non-Kerr index which is per-
turbed by a complex profile n = n0[1+ δnR(x, y, t)+
iδnI (x, y, t)] with complex envelope of the electri-
cal field u(z, x, y, t) and transverse spatial coordi-
nates x, y and the retarded time t . The second to
fourth terms describe different diffractions in (x, y)-
directions and dispersion, the fifth to seventh terms
denote the cubic, quintic and septimal nonlinearities.
Last two terms represent the complex PT -symmetric
potential with odd function of the real component
v(x, y, t) ≡ k20w

2
0δnR(x, y, t) describing the index

guiding and even function of imaginary component
w(x, y, t) ≡ k20w

2
0δnI (x, y, t) describing the gain/loss

distribution. In semiconductor optical amplifiers, the
gain/loss levels are approximate to±40 cm−1 at wave-
lengths of ≈ 1μm, which should be sufficient to
observe PT behavior [25].

When β1 = β2 = β3, Eq. (1) is the model in Ref.
[19], where sech-type light bullet solutions were stud-
ied. If γ7 = 0, higher-dimensional localizedmode fam-
ilies were studied in PT -symmetric potentials with
competing nonlinearities and same values of disper-
sion and diffractions [26]. If thePT -symmetric poten-
tials disappear with v(x, y, t) = w(x, y, t) = 0 and
β2 = β3 = 0, Eq. (1) is the model in Ref. [24].

2 Analytical light bullet solutions

Assuming analytical solutions of Eq. (1) in the form
u(z, x, y, t) = Φ(x, y, t) exp[iλz+iΘ(x, y, t)], Eq. (1)
is separated into real and imaginary parts as

β1

[
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− Φ

(
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]

+[v(x, y, t) − λ]Φ + γ3Φ
3+γ5Φ

5+γ7Φ
7 = 0,

(2)
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)
+w(x, y, t)Φ = 0. (3)

Under two different PT -symmetric potentials, we
focus on two families of Gaussian-type light bullet
solutions of Eq. (1) because Gaussian shape is very
fundamental shape of pulse in the optical experiment.

2.1 Family 1

If the PT -symmetric potential has the form

v(x, y, t) = −4
(
β1b

4
1x

2 + β2b
4
2 y

2 + β3b
4
3t

2
)

+ w2
1
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2
, (4)

w(x, y, t) = w1xe
−b21x

2 + w2ye
−b22 y

2 + w3te
−b23 t

2
,

(5)

with arbitrary constants v1, w1, w2, w3, b1, b2 and
b3, and considering the localization of solution as
{x, y, t} → ±∞, Eq. (1) has solution

u(z, x, y, t) =
(

−v1

γ7

) 1
6

exp
(
−b21x

2 − b22 y
2 − b23t

2
)

exp[iΨ (z, x, y, t)], (6)

where Ψ (z, x, y, t) = −2(β1b21 + β2b22 + β3b23)z +
w1

√
π

12β1b31
erf(b1x)+ w2

√
π

12β2b32
erf(b2y)+ w3

√
π

12β3b33
erf(b3t) with

the error function erf(X) = 2√
π

∫ X
0 e−ς2

dς [27].
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2.2 Family 2

If the PT -symmetric potential reads

v(x, y, t) = −4

9
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2
,

(8)

with arbitrary constants v2, w1, w2, w3, b1, b2 and
b3, and considering the localization of solution as
{x, y, t} → ±∞, solution of Eq. (1) reads

u(z, x, y, t) =
[(

−v2

γ7

) 1
2

exp
(
−b21x

2 − b22 y
2

− b23t
2
) ] 1

3

exp[iΨ (z, x, y, t)], (9)

where Ψ (z, x, y, t) = − 2
3 (β1b21 + β2b22 + β3b23)z +

3w1
√

π

20β1b31
erf(b1x) + 3w2

√
π

20β2b32
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√
π

20β3b33
erf(b3t).

3 Stability of light bullets from the eigenvalue
method

We use the eigenvalue method to study the linear sta-
bility of analytical solutions (6) and (9) of Eq. (1). The
perturbed solution reads u(z, x, y, t) = {u0(x, y, t) +
ε[R(x, y, t) + I (x, y, t)] exp (iηz)} exp (iλz), where ε

is an infinitesimal amplitude, u0(x, y, t) is an analyt-
ical solution (eigenmode) of Eq. (1), R(x, y, t) and
I (x, y, t) are the real and imaginary parts of pertur-
bation eigenfunctions, which may grow upon propa-
gation with the perturbation growth rate η. If η exists
nonzero imaginary parts, the perturbed solution is lin-
early unstable, otherwise solution becomes stable.

Inserting the perturbed solution into Eq. (1) and lin-
earizing it around the first-order term of ε (the unper-
turbed one), the eigenvalue problem reads

(
L+ 0
0 L−

) (
R
I

)
= η

(
I
R

)
, (10)

where η is an eigenvalue, R and I are eigenfunc-
tions with Hermitian operators L± = −β1∂

2
x −

β2∂
2
y − β3∂

2
t − σ±γ3u20(x, y, t) − μ±γ5u40(x, y, t) −

ν±γ7u60(x, y, t) − (v + iw) + η with σ+ = 3, σ− = 1,
μ+ = 5, μ− = 1 and ν+ = 7, ν− = 1.

From the eigenvalue spectra of the above problem
(10), we know that the eigenvalue η of solution (6)
with (4) and (5) is real value only in the medium
of focusing quintic and septimal nonlinearities with
defocusing cubic nonlinearity [See Fig. 1(c)] when all
parameters are chosen as those in figure; thus, solu-
tion (6) is stable in this medium, where values of
w1, w2 and w3 are smaller than the threshold values
when parameters β1, β2, β3, γ3, γ5 and γ7 are chosen
as some fixed values. For example, if parameters are
chosen as β1 = 0.5, β2 = 0.46, β3 = 0.45, b1 =
0.5, b2 = 0.48, b3 = 0.47, the threshold values are
close to w1 ∼ 0.3, w2 ∼ 0.21, w3 ∼ 0.21. If val-
ues of w1, w2 and w3 are chosen as those bigger than
these threshold values, analytical solution (6) evolves
unstably, however, smaller than these threshold values,
analytical solution (6) becomes stable.

However, the eigenvalue η exists imaginary parts in
all other media, such as focusing cubic, quintic and
septimal nonlinearities (See Fig. 1a), focusing cubic
and septimal nonlinearities with disappearing quintic
nonlinearity (See Fig. 1b), focusing septimal and defo-
cusing cubic nonlinearities with disappearing quintic
nonlinearity (See Fig. 1d), defocusing cubic and sep-
timal nonlinearities with focusing quintic nonlinearity
(See Fig. 1e) and defocusing cubic and septimal non-
linearities with disappearing quintic nonlinearity (See
Fig. 1f); therefore, solution (6) is always unstable in
these media. This result is different from that without
considering PT -symmetric potential in Ref. [24].

The similar eigenvalue method is used to solution
(9) under the PT -symmetric potential (7) and (8), and
we find that the eigenvalue η exists imaginary parts in
all media regardless of focusing or defocusing cubic,
quintic and septimal nonlinearities. As some examples,
Figure 2 shows the imaginary eigenvalues for solu-
tion (9) in the media with focusing cubic and septi-
mal nonlinearities with disappearing quintic nonlinear-
ity (Fig. 2a), focusing quintic and septimal nonlineari-
ties with defocusing cubic nonlinearity (Fig. 2b), defo-
cusing cubic and focusing septimal nonlinearities with
disappearing quintic nonlinearity (Fig. 2c) and defo-
cusing cubic and septimal nonlinearities with focusing
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Fig. 1 (Color online)
Eigenvalues for solution (6)
in the media with a focusing
cubic, quintic and septimal
nonlinearities, b focusing
cubic and septimal
nonlinearities with
disappearing quintic
nonlinearity, c focusing
quintic and septimal
nonlinearities with
defocusing cubic
nonlinearity, d focusing
septimal and defocusing
cubic nonlinearities with
disappearing quintic
nonlinearity, e defocusing
cubic and septimal
nonlinearities with focusing
quintic nonlinearity and f
defocusing cubic and
septimal nonlinearities with
disappearing quintic
nonlinearity under the
PT -symmetric potential (4)
and (5). Parameters are
chosen as β1 = 0.5, β2 =
0.46, β3 = 0.45, b1 =
0.5, b2 = 0.48, b3 = 0.47
with a w1 = 0.056, w2 =
0.057, w3 = 0.057, b w1 =
0.1, w2 = 0.11, w3 = 0.11,
c w1 = 0.3, w2 =
0.21, w3 = 0.21, d w1 =
0.65, w2 = 0.7, w3 = 0.7,
and e, f w1 = 0.37, w2 =
0.38, w3 = 0.38. Other
parameters are shown in
figures

−4 −2 0 2 4
−3

−2

−1

0

1

2

3 x 10−7

Re(η)

Im
(η

)

V
1
=−6,γ

3
=1,γ

5
=0.7,γ

7
=0.5

(a)

−4 −2 0 2 4
−3

−2

−1

0

1

2

3 x 10−7

Re(η)

Im
(η

)

V
1
=−6,γ

3
=1,γ

5
=0,γ

7
=0.5

(b)

−4 −2 0 2 4
−3

−2

−1

0

1

2

3 x 10−7

Re(η)

Im
(η

)

V
1
=−6,γ

3
=−1,γ

5
=0.7,γ

7
=0.5

(c)

−4 −2 0 2 4

−2

0

2

x 10−6

Re(η)

Im
(η

)

V
1
=−6,γ

3
=−1,γ

5
=0,γ

7
=0.5

(d)

−4 −2 0 2 4

−2

0

2

x 10−6

Re(η)

Im
(η

)

V
1
=6,γ

3
=−1,γ

5
=0.7,γ

7
=−0.5

(e)

−4 −2 0 2 4
−3

−2

−1

0

1

2

3 x 10−7

Re(η)

Im
( η

)
V
1
=6,γ

3
=−1,γ

5
=0,γ

7
=−0.5

(f)

quintic nonlinearity (Fig. 2d). In these cases, solution
(9) always evolves unstably.

4 Light bullets by interplay between
cubic-quintic-septimal nonlinearities and
PT -symmetric potential

In the previous section, the stability of light bullets in
different media is discussed by the eigenvalue method.
In this section, based on these results from the eigen-
value method, we further study the role of cubic-
quintic-septimal nonlinearities in the formation of light
bullets by the split-step Fourier method. According to
this method, we split Eq. (1) into a linear part including

different diffraction and dispersion terms and a nonlin-
ear part including the PT -symmetric potential terms
and cubic-quintic-septimal nonlinear terms. Actually,
analytical solutions do not exactly describe the real sit-
uations; thus, it is valuable to study the stability of
solutions against finite perturbations. We use the ini-
tial field coming from analytical solutions (6) and (9)
with 5% initial white noise, and carry out the prop-
agation of the optical pulse from z to z + h in two
steps with a small distance h, namely the nonlinear
and linear parts play the role alone from z to z + h/2
(the first step) and then from z + h/2 to z + h (the
second step), respectively. This operation is worked
again and again from initial distance to a long dis-
tance.
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Fig. 2 (Color online) Eigenvalues for solution (9) in the media
with a focusing cubic and septimal nonlinearities with dis-
appearing quintic nonlinearity, b focusing quintic and septi-
mal nonlinearities with defocusing cubic nonlinearity, c defo-
cusing cubic and focusing septimal nonlinearities with disap-
pearing quintic nonlinearity and d defocusing cubic and septi-

mal nonlinearities with focusing quintic nonlinearity under the
PT -symmetric potential (7) and (8). Parameters are chosen as
β1 = 0.5, β2 = 0.46, β3 = 0.45, b1 = 0.5, b2 = 0.48, b3 =
0.47 with a, c, d w1 = 0.1, w2 = 0.11, w3 = 0.11 and b
w1 = 0.3, w2 = 0.21, w3 = 0.21. Other parameters are shown
in figures

It is noted that the split-step Fourier method implies
the periodic boundary conditions; thus, we need to ana-
lyze carefully the longitude and transverse step sizes,
and choose the transversewindow in order to ensure the
numerical precision lest numerical instabilities from
periodic boundary conditions. In Refs.[28,29] compu-
tation precision in regard to the step size choice follows
the criteria, namely step sizes in the longitude and trans-
verse directions can be fixed from the spectrogram, and
the transversewindow can be chosen from the temporal
figure.

From light bullet solutions (6) and (9), the septi-
mal nonlinear coefficient γ7 has strong impact on the
formation of solution by influencing the amplitude of
solutions. The real amplitude requires that V1γ7 < 0 or
V2γ7 < 0, which indicates that light bullet solutions (6)
and (9) can exist in focusing (positive) septimal nonlin-
earity with γ7 > 0 as V1 < 0 or V2 < 0 and defocusing

(negative) septimal nonlinearity with γ7 < 0 as V1 > 0
or V2 > 0.

The stability of light bullet solutions (6) and (9) is
related to the association of different cubic, quintic
and septimal nonlinearities under the PT -symmetric
potential. Figure 3a exhibits the initial shape of light
bullet (6) with a 5% white noise. In the medium of
focusing septimal and defocusing cubic nonlinearities
with disappearing quintic nonlinearity, the PT com-
plex potential is strong enough to inhibit the collapse
of light bullet solutions caused by diffraction, disper-
sion and nonlinearities. In Fig. 3d, the numerical sim-
ulation does not yield any visible instability, and the
influence of initial 5% white noise is suppressed, and
light bullet (6) stably evolves over hundreds of diffrac-
tion/dispersion lengths except for some small oscilla-
tions around its surface.
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Fig. 3 (Color online) a Initial shape of intensity of light bullet
(6); b, c, e, f Unstable light bullet (6) in the media corresponding
to Figs. 1a, b, e, f at distance b z = 200, c z = 400, and e, f
z = 100; d Stable light bullet (6) in the medium corresponding
to Fig. 1c at distance z = 400. All parameters are chosen as those
in Fig. 1

However, after the evolution of different distances,
light bullet (6) displays unstable behaviors in themedia
of focusing cubic, quintic and septimal nonlinearities
(Fig. 3b), focusing cubic and septimal nonlinearities
with disappearing quintic nonlinearity (Fig. 3c), defo-
cusing cubic and septimal nonlinearities with focusing
quintic nonlinearity (Fig. 3e) and defocusing cubic and
septimal nonlinearities with disappearing quintic non-
linearity (Fig. 3f). In thesemedia, light bullet (6) cannot
maintain its original shape, then is distorted and broken
up, and ultimately collapses into noise.

Compared these plots in Figs. 3b, c, e and f, light
bullet (6) is relatively stable in the medium of focus-
ing cubic and septimal nonlinearities with disappear-
ing quintic nonlinearity because there only exist some
large oscillations around its surface and little collapse

Fig. 4 (Color online) Unstable light bullet (9) in the media cor-
responding to Fig. 2. All parameters are chosen as those in Fig. 2

(Fig. 3c); however, the degree of collapse is strongest
in the medium of defocusing cubic and septimal non-
linearities with focusing quintic nonlinearity (Fig. 3e).

When light bullet (9) evolves in various nonlinear
media, it is unstable regardless of focusing or defocus-
ing cubic, quintic and septimal nonlinearities under the
PT -symmetric potentials (7) and (8). Figure 4 demon-
strates four examples of unstable evolution in themedia
corresponding to Fig. 2. In these cases, cubic-quintic-
septimal nonlinearities, diffraction, dispersion and the
PT complex potential cannot exactly balance, and the
5%white noise strongly influences the stable evolution
of light bullet (9). Along the evolutional distance, light
bullet (9) cannotmaintain its original shape, alters from
distortion to collapse and finally decays into noise.

5 Conclusions

In conclusion, a (3 + 1)-dimensional NLSEwith cubic-
quintic-septimal nonlinearities and PT -symmetric
potentials is studied, and two kinds of analytical
Gaussian-type light bullet solutions are derived. In
these solutions, the septimal nonlinear termhas a strong
impact on the formation of light bullets. Based on
these analytical solutions, the eigenvalue method and
direct numerical simulation are used to study the sta-
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bility of light bullet solutions. Results indicate that
light bullet solution (6) is stable only in the medium of
focusing septimal and defocusing cubic nonlinearities
with disappearing quintic nonlinearity under the PT -
symmetric potential; however, it is unstable in other
media, such as focusing cubic, quintic and septimal
nonlinearities, focusing cubic and septimal nonlinear-
ities with disappearing quintic nonlinearity, defocus-
ing cubic and septimal nonlinearities with focusing
quintic nonlinearity and defocusing cubic and septi-
mal nonlinearities with disappearing quintic nonlin-
earity. Moreover, light bullet (9) is unstable in vari-
ous nonlinear media regardless of focusing or defocus-
ing cubic, quintic and septimal nonlinearities under the
PT -symmetric potentials. These stable and unstable
evolutions of light bullet against white noise attribute
to the coactionof cubic-quintic-septimal nonlinearities,
dispersion, diffraction and PT -symmetric potential.
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