
Nonlinear Dyn (2017) 89:1689–1704
DOI 10.1007/s11071-017-3543-9

ORIGINAL PAPER

Secure communication in wireless sensor networks based on
chaos synchronization using adaptive sliding mode control

Behrouz Vaseghi · Mohammad Ali Pourmina ·
Saleh Mobayen

Received: 19 December 2016 / Accepted: 21 April 2017 / Published online: 8 May 2017
© Springer Science+Business Media Dordrecht 2017

Abstract Due to resource constraints in wireless sen-
sor networks and the presence of unwanted conditions
in communication systems and transmission channels,
the suggestion of a robust method which provides bat-
tery lifetime increment and relative security is of vital
importance. This paper considers the secure communi-
cation in wireless sensor networks based on new robust
adaptive finite time chaos synchronization approach in
the presence of noise and uncertainty. For this purpose,
the modified Chua oscillators are added to the base
station and sensor nodes to generate the chaotic sig-
nals. Chaotic signals are impregnated with the noise
and uncertainty. At first, we apply the modified inde-
pendent component analysis to separate the noise from
the chaotic signals. Then, using the adaptive finite-time
sliding mode controller, a control law and an adaptive
parameter-tuning method is proposed to achieve the
finite-time chaos synchronization under the noisy con-
ditions and parametric uncertainties. Synchronization
between the base station and each of the sensor nodes is
realized by multiplying a selection matrix by the spec-
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ified chaotic signal which is broadcasted by the base
station to the sensor nodes. Simulation results are pre-
sented to show the effectiveness and applicability of
the proposed technique.
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1 Introduction

In the past decades, various applications of chaotic
systems and different methods for chaos synchro-
nization have been developed by many researchers
in the world [1–10]. In the area of signal process-
ing and chaotic communication, some practical appli-
cations such as spread-spectrum systems [11], radar
systems [12], ultra-wide-band communication [13],
image and video encryption [14–17] and secure com-
munication [18] can be mentioned. Specifically, in the
field of secure communication, according to the con-
cept of drive-response provided by Pecora and Carroll
[19], many secure communication systems have been
successfully designed. Based on these approaches,
chaotic shift-keying [20], chaotic-modulation [21],
chaotic-masking [22] and chaotic encryption [23–25]
have been investigated. Also, in the field of chaos
synchronization methods, various techniques such as
neural-based control [26], digital redesign control [27],
backstepping control [28], impulsive control [29],
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intermittent control [30,31], switching control [32],
optimal control [33], composite nonlinear feedback
[34], state-feedback control [35] and slidingmode con-
trol [36–38] can be considered. Sliding mode control
(SMC) is an efficient robust control method that has
been applied to control the linear and nonlinear sys-
tems such as power systems [39], electricalmotors [40],
robotic manipulators [41] and secure communication
[42]. The considerable features of SMC are the robust-
ness against uncertainties, fast response, insensitivity to
the disturbances, computational simplicitywith respect
to other robust control methods [43–55].

On the other hand, recent improvements in the hard-
ware technology and wireless communications have
simplified the development ofwireless sensor networks
for a wide range of real-world applications, containing
disaster relief, environmental monitoring, battlefield
surveillance, site security, medical diagnostics, and so
on. In general, security in data transmission for a com-
munication system is essential. There are many chal-
lenges on the way of using secure protocols for WSNs
as the communication systems. These communication
systems are composed of at least one base station and
many sensor nodes which deal with many restrictions,
including restrictions on battery lifetime as well as pro-
cessing and memory capabilities. Because of low cost
and high-security properties of the chaotic signals and
due to above-mentioned features of SMC, implemen-
tation of secure communication in wireless sensor net-
works (WSNs) using chaos synchronization via SMC
is a useful solution and they can perfectly resolve secu-
rity issues in WSNs. On the regards of applying chaos
in WSNs, several methods have been investigated. In
[55], a chaotic crypto-system with special focus on
the dynamic chaotic S-Box has been proposed. A data
security protocol for wireless sensor network using
chaotic map has been introduced in [57]. An energy-
aware chaotic communication in wireless sensor net-
work by three nonlinear ordinary differential equations
has been presented in [58]. A chaotic synchronization
method has been also investigated in [59] for achieving
secured communication between the base station and
sensor nodes in a WSN. However, most of the existing
works are mainly focused on the development of the
chaotic encryption techniques in WSNs. Moreover, to
the best of authors’ knowledge, the secure communica-
tion inwireless sensor networks basedonadaptivefinite
time chaos synchronization under the noisy conditions
and unbounded uncertainty has received less attention

and the relevant theoretical advances have seldom been
reported in the literature. This paper investigates finite
time chaos synchronization based on data transmission
by using the adaptive sliding mode control in presents
of strong noise and unbounded uncertainty, and also
enhances battery lifetime as well as relative security in
WSNs.The proposed schemeand suggested controllers
are robust to noise, parameter uncertainties and simple
to be constructed. The paper is organized as follows: In
Sect. 2, the model of chaotic WSN is presented. Main
results containing the independent component analy-
sis to separate noise from the signal and the design of
an adaptive sliding mode controller for synchroniza-
tion of the base station and sensor nodes are explained
in Sect. 3. In Sect. 4, the employment of the proposed
control technique on WSN systems is described. The
numerical simulation results are presented in Sect. 5.
Finally, conclusions are outlined in Sect. 6.

2 Problem description

2.1 Model of chaotic WSN

Consider a modified Chua oscillator which is used
in the base station to generate the chaotic signals
x1(t), x2(t) and x3(t). The data gathering from all the
sensor nodes can be done using a selection method.
The selector matrix M is multiplied by the first chaotic
output signal of the base station and the chaotic sig-
nal Mx1(t) is broadcasted to the sensor nodes. The
matrix M is an n × m matrix, where n is the num-
ber of sensors and m is the number of the route in
the network routing table. This matrix is applied to
choose the sensor and select the route that must be
used for data transmission. For example, if one decides
to gather the information from the sensor i on route j ,
the value of Mi, j becomes equal to 1. In this scheme,
sensing range of the sensors in the idle mode is set to
the minimum power level where the sensors can only
hear the powerful chaotic signal Mx1(t). Therefore,
the power consumption comes down and after broad-
casting the signal Mx1(t), only sensor i and the sen-
sors which are located on route j switch their sens-
ing range from the idle mode to the TX/RX mode. On
the other hand, in the selected sensor i , signal x1(t)
is used to generate the chaotic signals y1(t), y2(t) and
y3(t). By using these signals and a chaotic encryption
scheme, the data are encrypted and sent to the base sta-
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Fig. 1 Schematics view of
a WSN
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tion. In the base station, because of the received signals
from the sensor node have been mixed with noise at the
transmission channel, employing an ICA technique, the
chaotic signals are separated from the noise. Then, by
implementing a finite-time sliding mode control syn-
chronization method, the encrypted data are restored.
Thus, in the proposed scheme, as already mentioned,
besides the increase of the battery lifetime, the rela-
tive security forWSNs can be provided. The schematic
view of the considered WSN system is shown in
Fig. 1

2.2 Problem formulation

Changing the piecewise linear function f (x) in the dif-
ferential equations of the general Chua oscillator and
replacing it by a bounded and smooth function f (x1),
the modified Chua oscillator is obtained as

ẋ1 = ζσ (x2 − f (x1))

ẋ2 = ζ(x1 − x2 + x3)

ẋ3 = −ζγ x2

(1)

with f (x1) = − sin(x1)e−0.1|x |, where x1, x2 and x3
are the system states, σ and γ are two appropriate pos-
itive constants which guarantee the chaotic behavior of
the system and ζ > 0 is a time-scaling factor [60]. For
the parameters σ = 9.35, γ = 14.65, and the initial
conditions (14, 1,−14) or (15, 0,−15), the modified

Chua oscillator system is chaotic and has a bounded
attractor. Consider the dynamics of the base station
chaotic system based on modified Chua oscillator as

ẋ1 = ζσ (x2 − f (x1))

ẋ2 = ζ(x1 − x2 + x3) + u1

ẋ3 = −ζγ x2 + u2

(2)

where u1(t) and u2(t) are the control inputs. Moreover,
the chaotic system in the sensors can be considered as

ẏi1 = ζκ sgn(xi1 − yi1)

ẏi2 = ζ(yi1 − yi2 + yi3)

ẏi3 = −ζ(γ + �γi )yi2

(3)

where yi1, yi2 and yi3 are the system states, xi1 =
Mx1(t), M ∈ R

n×m is the selector matrix, κ is the
design parameter, γ is the system parameter, ζ > 0
is the time-scaling factor, and �γi is designated as the
parameter mismatch in each sensor where

θi > |�γi | (4)

where θi is the upper bound of �γi . Assuming that
there are N sensors in a WSN, the parameter i, (i =
1, 2, . . . , N ) represents each sensor node.

The synchronization errors are defined as

ei1 = x1 − yi1

ei2 = x2 − yi2

ei3 = x3 − yi3

(5)
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By differentiating (5) and subtracting (3) from (2), the
synchronization error dynamics between sensors and
base station are obtained as

ėi1 = ζσ (x2 − f (x1)) − ζκ sgn(xi1 − yi1)

ėi2 = ζ(ei1 − ei2 + ei3) + u1

ėi3 = −ζγ ei2 + ζ�γi yi2 + u2

(6)

Our goal is to design controllers u1 and u2 such
that the states of the base station chaotic system can be
synchronized in afinite timewith the states of the sensor
nodes chaotic system. This problem can be converted
to design controllers u1 and u2 in order to achieve the
finite-time stability of the error system (6).

Lemma 1 [61]Consider a continuouspositive-definite
functional V (t) and a real number 0 < λ < 1 that is a
ratio of two odd positive integers such that

V̇ (t) ≤ −α1V (t)λ − α2V (t) ∀ t ≥ t0, V (t0) ≥ 0

(7)

where α1, α2 > 0. Then, for the initial time t0, the
positive-definite functional V (t) approaches to the ori-
gin at least in a finite-time ts as

ts = t0 + 1

α2(1 − λ)
ln

α1 + α2V (t0)1−λ

α1
(8)

Proof Dividing two sides of Eq. (7) by V (t)λ yields

V (t)−λV̇ (t) ≤ −α1 − α2V (t)1−λ (9)

where simplifying (9), we have

dt ≤ − V (t)−λdV (t)

α1 + α2V (t)1−λ
(10)

By Integrating from two sides of the inequality (10)
from t0 to ts , we achieve

ts − t0 ≤ −
∫ 0

V (t0)

V (t)−λdV (t)

α1 + α2V (t)1−λ

= ln(α1 + α2V (t0)1−λ) − ln α1

α2(1 − λ)

= 1

α2(1 − λ)
ln

α1 + α2V (t0)1−λ

α1

(11)

which finalizes the proof of lemma. ��

3 Main results

3.1 Modified independent component analysis

In the real conditions, noise represents uncertainty
in the telecommunication systems. The strong white

Gaussian noises cause chaotic signals unrecognizable
even when the robust methods are used for chaos syn-
chronization. Thus, the noise must be separated from
the chaotic signals before the synchronization process.
In this study, amodified independent component analy-
sis (MICA) is used to separate the chaotic signals from
the noise. As mentioned in the problem description
section, obtaining data from all sensor nodes can be
done using the selector matrix M . Consequently, we
can ignore the index i and consider the transmitted sig-
nals from the sensor node mixed with Gaussian noise,
as

s1(t) = a11y1(t) + a12y2(t) + a13y3(t) + a14y4(t)

s2(t) = a21y1(t) + a22y2(t) + a23y3(t) + a24y4(t)

s3(t) = a31y1(t) + a32y2(t) + a33y3(t) + a34y4(t)

s4(t) = a41y1(t) + a42y2(t) + a43y3(t) + a44y4(t)

(12)

where y1(t) = me(t) is the masked message sig-
nal, y2(t) and y3(t) are the sensor chaotic signals and
y4(t) = n(t) is the white Gaussian noise. The Eq. (12)
can be simplified as

S = A · Y (13)

Setting some of the elements of the matrix A to zero,
the mixing matrix A can be considered as

A =

⎡
⎢⎢⎣
a11 0 0 a14
0 a22 0 a24
0 0 a33 a34
a41 a42 a43 a44

⎤
⎥⎥⎦ (14)

In matrix (14), the elements a41, a42, a43 and a44 must
have known and equal values such as one, while other
non-zero elements of the matrix can have an unknown
and randomly selected value. The components of yi (t)
are independent and hence, the independent compo-
nent analysis can be used for signals separation. ICA
can calculate the unmixing matrixW that is the inverse
matrix of A. In order to calculate the unmixing matrix
W , the joint approximate diagonalization of eigenval-
ues for real signal (JADER) algorithm [62,63] is used.
Using the matrix W , we can obtain the separated sig-
nals similar to the original ones as

ŷ1(t) = w11s1(t) + w12s2(t) + w13s3(t) + w14s4(t)

ŷ2(t) = w21s1(t) + w22s2(t) + w23s3(t) + w24s4(t)

ŷ3(t) = w31s1(t) + w32s2(t) + w33s3(t) + w34s4(t)

ŷ4(t) = w41s1(t) + w42s2(t) + w43s3(t) + w44s4(t)

(15)
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Fig. 2 The structure of
MICA
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Also, to calculate accurately the amplitude and
phase of the obtained signals ŷi (t), the gradient estima-
tion method [63] is applied. In this method, the appro-
priate values of the gain vector can be used to adjust
opposite phase and unequal amplitude of the signals
ŷi (t). As shown in Fig. 2, the adjustable gain vector
G(t) = [g1(t), g2(t), g3(t), g4(t)]T is multiplied by
Ŷ (t) = [ŷ1(t), ŷ2(t), ŷ3(t), ŷ4(t)]T and we have

z(t) = g1(t)ŷ1(t) + g2(t)ŷ2(t) + g3(t)ŷ3(t)

+g4(t)ŷ4(t) (16)

The error of the gradient estimation algorithm can be
taken as

e(t) = s1(t) − z(t) (17)

The update rules of the gain vector G(t) can be defined
via the recursive relations as

g1(t + 1) = g1(t) + μ[e(t)ŷ1(t)]
g2(t + 1) = g2(t) + μ[e(t)ŷ2(t)]
g3(t + 1) = g3(t) + μ[e(t)ŷ3(t)]
g4(t + 1) = g4(t) + μ[e(t)ŷ4(t)]

(18)

whereμ is the step size of the iterations.After some iter-
ation, the gain values gi (t) converge to the constants.
When the gains gi (t) are fixed, the error of the gradient
estimation algorithm is convergent to zero and then,
the original signals yi (t) and estimated signals ỹi (t)
are identical, i.e.,
yi (t) ≈ ỹi (t) = gi (t)ŷi (t).

Remark 1 There are some specific conditions and
restrictions for applications of ICA to separate noise
from chaotic signals. All components yi must be statis-
tically independent which means that p(y1, y2, y3, y4)
= p1(y1)p2(y2)p3(y3)p4(y4), where p(.) is the prob-
ability of the components. Also, according to the cen-
tral limit theorem, one component is allowed to have
a Gaussian distribution and other independent compo-
nents yi must be non-Gaussian in distribution. These
conditions are fundamental for the effectiveness of
retrieving signals by ICA.

3.2 Adaptive finite-time sliding mode controller
design

After the incoming signals at the base station are sep-
arated, the synchronization of the chaotic signals must
be performed. In this section, we use the cascade syn-
chronization method to present the error dynamics. In
this method, the error system (6) is divided into two
different subsystems. In fact, the synchronization error
ei1 is considered as an external input to the dynamics
of ei2 and ei3. Therefore, ignoring index i in the error
signals, the system (6) is divided into two subsystems
as

ė1 = ζσ (x2 − f (x1)) − ζκ sgn(x1 − y1) (19)

and

ė2 = ζ(e1 − e2 + e3) + u1

ė3 = −ζγ e2 + ζ�γ y2 + u2
(20)

Hence, the design procedure of the controller consists
of two steps as follows:

Step 1 In Eq. (19), the function f (x1) is such that
| f (x1)| ≤ 1, ∀t ≥ 0. Since system (2) has the chaotic
behavior, signal x2(t) is bounded and thus there exists
a constant δ ≥ 0 such that |x2(t)| ≤ δ ,∀t ≥ 0. In fact,
parameter δ depends on the initial conditions.However,
assuming that x2(0) lies inside the attractor, then δ can
be obtained independently from the initial conditions.
Choose the candidate Lyapunov function as

V1(e1) = 1

2
e21 (21)

The derivative of the Lyapunov function (21) along the
trajectory of (19) is obtained as

V̇1(e1) = e1ė1

= e1ζσ x2 − e1ζσ f (x1) − e1ζκ sgn(e1)

= −ζκ|e1| + ζσ x2e1 − ζσ f (x1)e1

≤ −ζκ|e1| + ζσ x2e1 + |ζσ | · 1 · |e1|
≤ −ζκ|e1| + ζσ x2e1 + ζσ |e1|
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≤ −ζκ|e1| + ζσδ|e1| + ζσ |e1|
≤ −ζ |e1|(κ − σ(δ + 1)) (22)

Recall that ζ > 0 and if and only if κ > σ(δ + 1), one
can write

V̇1(e1) ≤ −ζ |e1| = −αV λ
1 (23)

where α = √
2ζ and λ = 1

2 . Under the condition (23),
the subsystem (19) is finite-time stable. This means
that there is a constant finite time T1 such that e1 ≡ 0
is obtained for t ≥ T1.

Step 2When t ≥ T1, we achieve e1 ≡ 0 and Eq. (20)
converts to

ė2 = ζ(e3 − e2) + u1

ė3 = −ζγ e2 + ζ�γ y2 + u2
(24)

In this step, our aim is to design an appropriate slid-
ing surface for the error subsystem (24) and control
laws u1 and u2 for the chaotic system (2) to achieve
a robust finite-time synchronization scheme between
chaotic systems (2) and (3).

The global sliding surface for the subsystem (24) is
presented by

s(t) =
3∑

k=2

ck(ek(t) − ek(0) exp(−ϕk t)) (25)

where ck’s are the gain coefficients and ϕk’s are the
appropriate positive constants.

Remark 2 Using the exponential term ek(0) exp(−ϕk t),
the global sliding surface (25) is defined to eliminate
the reaching phase, i.e., the states of the system begin at
the sliding surface from the first moment and the global
robustness of the whole system can be guaranteed.

Theorem 1 Consider the error dynamical system (24).
Applying the control inputs u1(t) and u2(t) as

u1 = −ζ(e3 − e2) − ϕ2e2(0) exp(−ϕ2t)

− ρ

c2
sgn(s(t))|s|β − ϑs(t) (26)

u2 = ζγ e2 − ϕ3e3(0) exp(−ϕ3t)

−ψ sgn(s(t))|y2| (27)

with arbitrary positive constantsρ andϑ , then the error
dynamics (24) is forced to move from any initial condi-
tion to the global sliding surface (25) in the finite time
T2 and to remain on it.

Proof From (25), the time-derivative of the global slid-
ing surface is obtained as

ṡ(t) =
3∑

k=2

ck(ėk(t) + ϕkek(0) exp(−ϕk(t)) (28)

where substituting (24) into (28), one can obtain

ṡ(t) = c2(ζ(e3 − e2) + u1 + ϕ2e2(0) exp(−ϕ2(t))

+ c3(−ζγ e2 + ζ�γ y2 + u2

+ ϕ3e3(0) exp(−ϕ3t)

(29)

Consider the candidate Lyapunov function as

V2(s(t)) = 1

2
s(t)2 (30)

where differentiating V2(s(t)) and using (29), it yields
that

V̇2(s) = s(t)ṡ(t)

= s(t){c2(ζ(e3 − e2) + ϕ2e2(0) exp(−ϕ2t)

+ c3(−ζγ e2 + ζ�γ y2

+ ϕ3e3(0) exp(−ϕ3t)) + c2u1 + c3u2}
(31)

Now, using the control inputs (26) and (27), we have

V̇2(s(t)) = s(t){−ρ sgn(s(t))|s|β − c2ϑs(t)

+ c3ζ�γ y2 − c3ψ |y2| sgn(s(t))}
≤ −ρ|s(t)|β+1 − c2ϑs(t)

2 + c3ζ�γ y2s(t)

− c3ψ |y2s(t)|
≤ −ρ|s(t)|β+1 − c2ϑs(t)

2

− c3(ψ − ζ�γ sgn(y2s(t)))|y2s(t)|
(32)

where based on the condition (4) andψ ≥ ζθ , Eq. (32)
can be simplified as

V̇2(s(t)) ≤ −ρ|s(t)|β+1 − c2ϑs(t)
2

= −α1V2(s(t))
λ − α2V2(s(t))

(33)

where α1 = 2λρ, α2 = 2c2ϑ and λ = β+1
2 . This

means that the Lyapunov function V2(s(t)) decreases
gradually. Then, the global sliding surface (25) con-
verges to zero in the finite time and the synchroniza-
tion errors (24) are convergent to the origin in the finite
time. Therefore, when t > T2 > T1, one obtains
y1 ≡ x1, y2 ≡ x2 and y3 ≡ x3. Consequently, the
base station chaotic system (2) is synchronized with
the sensor node chaotic system (3) using controllers
(26) and (27) in the finite time. ��
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Considering the condition (4), it is not easy to attain
the upper bound (θ) and (ψ ≥ ζθ) of the parameter
mismatch �γ . As a result, an adaptation law can be
proposed to dominate this problem.Then, the controller
(27) is modified to

u2 = ζγ e2 − ϕ3e3(0) exp(−ϕ3t)

− ψ̂(t)�(ω̂(t), s(t))|y2|
(34)

where ψ̂(t) is the estimate of ψ in (27), and �(ω̂(t),
s(t)) is a bipolar function as

�(ω̂(t), s(t)) = 1 − exp(−ω̂(t)s(t))

1 + exp(−ω̂(t)s(t))
(35)

with the adaptation parameters ψ̂(t) and ω̂(t) which
can be updated by

˙̂
ψ(t) = β1

1 + exp(−ω̂(t)s(t))

1 − exp(−ω̂(t)s(t))
s(t)λ sgn

( ∂s(t)

∂u2(t)

)

(36)

˙̂ω(t) = β2ψ̂
−1 (1 + exp(−ω̂(t)s(t)))2

2 exp(−ω̂(t)s(t))
sgn

( ∂s(t)

∂u2(t)

)

(37)

where β1 and β2 are two positive constants.

Theorem 2 Consider the base station and sensor
chaotic systems (2) and (3). If the control inputs are
selected as (26) and (34) and the adaptation laws are
chosen as (36) and (37), then the trajectories of the
error system (24) are forced toward the global slid-
ing surface (25) in the finite time T2 and the reaching
condition is satisfied.

Proof Consider the candidate Lyapunov function (30).
Using direct differentiation of the Lyapunov function,
we obtain
dV2(s(t))

dt
= ∂V2(s(t))

∂s(t)

∂s(t)

∂u2(t){
∂u2(t)

∂ψ̂(t)

∂ψ̂(t)

∂t
+ ∂u2(t)

∂ω̂(t)

∂ω̂(t)

∂t

} (38)

The first term on the right-hand side equation of (38)
can be simplified using (34)–(36) as

V̇3(s(t)) = ∂V2(s(t))

∂s(t)

∂s(t)

∂u2(t)

∂u2(t)

∂ψ̂(t)

∂ψ̂(t)

∂t

= s(t)
∂s(t)

∂u2(t)

[
− |y2|�(ω̂(t), s(t))

]

[
β1

1 + exp(−ω̂(t)s(t))

1 − exp(−ω̂(t)s(t))
s(t)λ sgn

(
∂s(t)

∂u2(t)

)]

= −β1|y2|
∣∣∣∣ ∂s(t)

∂u2(t)

∣∣∣∣s(t)λ+1 (39)

where (39) can be rewritten as

V̇3(s(t)) ≤ −α1V2(s(t))
λ̄ (40)

with λ̄ = λ+1
2 and α1 ≤ 2λ̄β1|y2|

∣∣ ∂s(t)
∂u2(t)

∣∣ . Moreover,
the second term on the right-hand side equation of (38)
is simplified using (34), (35) and (37) as

V̇4(s(t)) = ∂V2(s(t))

∂s(t)

∂s(t)

∂u2(t)

∂u2(t)

∂ω̂(t)

∂ω̂(t)

∂t

= s(t)
∂s(t)

∂u2(t)

[−2ψ̂ |y2|s(t) exp(−ω̂(t)s(t))

(1 + exp(−ω̂(t)s(t)))2

]

[
β2ψ̂

−1 1 + exp(−ω̂(t)s(t))

2 exp(−ω̂(t)s(t))
sgn

(
∂s(t)

∂u2(t)

)]

= −β2|y2|
∣∣∣∣ ∂s(t)

∂u2(t)

∣∣∣∣s(t)2 (41)

and consequently

V̇4(s(t)) ≤ −α2V2(s(t)) (42)

where α2 ≤ 2β2|y2|
∣∣ ∂s(t)
∂u2(t)

∣∣. Then, considering (40)
and (42), we obtain

V̇2(s(t)) = V̇3(s(t)) + V̇4(s(t)) ≤ −α1V2(s(t))
λ̄

− α2V2(s(t))
(43)

which satisfies the finite-time stability of the error
dynamics (24). This finishes the proof. ��

Remark 3 To eliminate the chattering phenomenon
affected by the discontinuous function sgn(s(t)), the
controller (26) and the adaptation laws (36) and (37)
can be modified using the continuous hyperbolic tan-
gent function. Then, the updated control inputs and
adaptation laws are written as

u1 = −ζ(e3 − e2) − ϕ2e2(0) exp(−ϕ2t)

− ρ

c2
tanh(�s(t))|s|β − ϑs(t) (44)

u2 = ζγ e2 − ϕ3e3(0) exp(−ϕ3t)

−ψ̂(t)�(ω̂(t), s(t))|y2| (45)

and

˙̂
ψ(t) = β1

1 + exp(−ω̂(t)s(t))

1 − exp(−ω̂(t)s(t))
s(t)λ

tanh

(
�

∂s(t)

∂u2(t)

)
(46)
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˙̂ω(t) = β2ψ̂
−1 (1 + exp(−ω̂(t)s(t)))2

2 exp(−ω̂(t)s(t))

tanh

(
�

∂s(t)

∂u2(t)

)
(47)

where � is the steepness coefficient of the hyperbolic
tangent function.

4 Application in WSNs

The block diagram of the secure communication sys-
tem in aWSN is shown in Fig. 3. In this system, at first,

x1 as oneof the state variables of the base station chaotic
system, is encrypted using the key signal k1(t) andmul-
tiplied by the selector matrix M . Then, the resulted sig-
nal Mx1e(t) is broadcasted to the sensor nodes. After
receiving and decrypting the signal Mx1e(t) using the
same key, the target sensor i encrypts the information
signalm(t) and sends the encrypted signalme(t) to the
base station. The encryption scheme in the sensor node
consists of the chaotic-masking and chaotic encryp-
tion techniques. In this scheme, the key k1(t) is added
with the first state y1(t), and the message signalm(t) is
added with the second state y2(t) of the sensor chaotic

Chua 
System

Chua 
System

Encryptor

Decryptor

Synchr
onizer

Base Station Sensor Node

MICA

T
ransceiver

T
ransceiver

N
oisy  C

hannel

Encryptor

Decryptor

Fig. 3 Block diagram of proposed chaotic communication system

Fig. 4 The original signals
y1(t), y2(t), y3(t) and white
Gaussian noise y4(t) = n(t)
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Fig. 5 The mixed signals
si (t), i = 1, . . . , 4
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Fig. 6 The separated and
retrieved signals by
modified ICA
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system. Then, the masked signals k(t) = k1(t) + y1(t)
and m1(t) = m(t) + y2(t) are applied to the encryp-
tor/decryptor block. In the encryptor/decryptor block,
themulti-shift cipher encryption algorithm is employed
to encrypt themessage signal using the following equa-
tion [64]

e(m1(t)) = f1(. . . f1( f1︸ ︷︷ ︸
n

(m1(t), k(t)), k(t)), . . . , k(t))︸ ︷︷ ︸
n

= me1(t) (48)

where f1(.) is a piecewise function described by

f1(m1(t), k(t))

=

⎧⎪⎨
⎪⎩

(m1(t) + k(t)) + 2h −2h ≤ (m1(t) + k(t)) ≤ −h

(m1(t) + k(t)) −h < (m1(t) + k(t)) ≤ h

(m1(t) + k(t)) − 2h h < (m1(t) + k(t)) ≤ 2h

(49)

and h is selected such thatm1(t) and k(t) lie within the
interval [−h, h].
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Fig. 7 Synchronization
performance using
controller in [60]
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Fig. 8 Synchronization
errors using controller in
[60]
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Finally, the encrypted signal me1(t) is added with
the third state of the sensor chaotic system y3(t) and
the masked signal me(t) = me1(t) + y3(t) is obtained.
Then, the masked signal and the states of the chaotic
oscillator in the sensor nodes are sent to the base station.
Considering the white Gaussian noise in the communi-
cation channel, the received signals in the base station
are mixed as Eqs. (12) by nonsingular mixing matrix
A in (14). At first, by applying the modified ICA, the
unmixing matrix W ≈ A−1 is calculated via JADER
algorithm and the optimal amplitude and phase are

estimated by using the gradient estimation algorithm.
After the incoming signals at the base station are sep-
arated and retrieved, by using the synchronizer block,
the states of the base station chaotic system can be syn-
chronized with the states of the sensor nodes chaotic
system in a finite time. Hence, the message signal can
be recovered using a recursive method. In the recursive
method, according to the chaotic-masking concept, the
signal x3(t) is subtracted fromme(t) and the key signal
k1(t) is added to the signal x1(t) such that the signals
m̃e1(t) = me(t) − x3(t) and k̃(t) = k1(t) + x1(t) are
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Fig. 9 States x1 and y1 of
the chaotic systems using
proposed controllers (26)
and (34)
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Fig. 10 States x2 and y2 of
the chaotic systems using
proposed controllers (26)
and (34)
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obtained. Now, replacing k(t) and m1(t) by −k̃(t) and
m̃e1(t) in (48), the decrypted signal is found as

d(m̃e1(t)) = f1(. . . f1( f1︸ ︷︷ ︸
n

(m̃e1(t),−k̃(t)),

−k̃(t)), . . . ,−k̃(t))︸ ︷︷ ︸
n

= m̃1(t)
(50)

and by subtracting x2(t) from m̃1(t), the original mes-
sage signal is recovered as m̃(t).

5 Numerical results

In this section, the simulation results of the proposed
scheme are described. The base station chaotic system
(2) with σ = 9.35 and γ = 14.65, and the initial
condition (x1(0), x2(0), x3(0)) = (15, 0,−15) is con-
sidered.

The sensor node chaotic system (3) with κ = 100
and γ = 14.65, and the initial condition (y1(0), y2(0),
y3(0)) = (14, 1,−14) is specified.

123



1700 B. Vaseghi et al.

Fig. 11 States x3 and y3 of
the chaotic systems using
proposed controllers (26)
and (34)

Time[s]

0 2 4 6 8 10 12 14 16 18 20

x 3,y
3

-22

-21

-20

-19

-18

-17

-16

-15

-14

Fig. 12 Synchronization
errors using finite-time
controllers (26) and (34)
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In the sensor nodes, the uncertainty parameter is
assumed as: �γi = 5t + 0.3 sin(y1t) + 0.2 sin(y2 +
y3

√
t). Assumingμ = 0.01, the variables g1(t), g2(t),

g3(t) and g4(t) are calculated using gradient estimation
algorithm as g1(t) = 4.93, g2(t) = −1.037, g3(t) =
−1.632 ,g4(t) = 1.005.

Figure 4 shows the original signals yi (t), i = 1, 2, 3
and the white Gaussian noise y4(t). The received sig-
nals at the base station mixed as Eq. (12) are presented
in Fig. 5. As indicated in Fig. 6, the mixed signals are

separated and retrieved successfully by using the mod-
ified ICA.

Figs. 7 and 8 show the simulation results of the
method in [60]. As it can be observed from these fig-
ures, the signal y1 is synchronized with the signal x1 in
0.2 s, and the signals y2 and y3 are synchronized with
x2 and x3 in approximately 6 s. This synchronization
performance is not satisfactory in the real-world com-
munication applications.
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Fig. 13 a, b Control
inputs(26) and (34), and c
Global sliding surface (25)
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Fig. 14 Analog message
signal using finite-time
controller, a original and
retrieved message, b
encrypted message
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In what follows, the proposed finite-time controllers
(26) and (34) are used. The state trajectories of the
chaotic systems in the base station and sensors are
shown in Figs. 9, 10 and 11. It is observed that the
states y1 and x1 are synchronized in less than 0.02 s.
Moreover, the states y2 and y3 are synchronized with
x2 and x3 in 0.1 s.

Figure 12 demonstrates the synchronization errors
which show the reasonable synchronization perfor-
mance of the proposed control technique. Time
response of the proposed controllers (26) and (34), and
the global sliding surface (25) are illustrated in Fig. 13.

In this figure, the subfigures (a) and (b) show the
controller inputs u1(t) and u2(t), respectively. From
Fig. 13, it is obtained that the amplitude of the inputs is
appropriate and no chattering phenomenon is observed
in the control signals. Subfigure (c) shows the sliding
surface s(t). It is seen that the sliding surface converges
to the origin with the reaching time of t = 0.1s.

In this section, the WSN communication system is
also considered. A sinusoidal function is used for the
analog message signal m(t) as

m(t) = 2 sin2(π t) cos(π t) (51)
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Fig. 15 Digital message
signal using finite-time
controller, a original and
retrieved message, b
encrypted message
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The digital message signal is considered with two
values −1 and 1, and the data rate equal to 0.5bit/s.
For the analog and digital messages, the time-scaling
factor ζ is set to 1 and 5, respectively. The simulation
results of the WSN communication system are illus-
trated in Figs. 14 and 15. In these figures, the top sub-
figures compare the original and reiterative message
signals and the bottom subfigures show the encrypted
signals. As it can be seen from Figs. 14 and 15, the
encrypted message signals are recovered in t = 0.1s
approximately.

6 Conclusions

In this paper, a new chaotic communication method
has been proposed to enhance the security of WSNs
considering the hardware and software limitations.
The chaotic signals are mixed with the Gaussian
white noise. To separate the noise from the chaotic
signals, a modified independent component analy-
sis is employed. Moreover, a new adaptive finite-
time sliding mode controller has been proposed to
achieve the finite-time synchronization between the
chaotic oscillators in the base station and sensor nodes
with unbounded uncertainties. Using the proposed
scheme, as is found from the simulations results,
the synchronization time has been reduced substan-
tially. Because that the sensors return faster to the
idle mode and consequently the battery lifetime is

increased, the time reduction in WSNs is signifi-
cantly valuable. The further researches in this field
can be extended to realize secure communication
in WSNs by applying chaotic systems composed of
multi-scroll attractors using the results reported in
[65].
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